metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Redetermination of chlorido(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)gold(I) dichloride trihydrate at 173 K

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 7 July 2008; accepted 1 September 2008; online 6 September 2008)

The redetermined structure of the title compound, [AuCl(C15H11N3)]Cl2·3H2O, at 173 (2) K is reported. The structure displays O—H⋯Cl and O—H⋯O hydrogen bonding. The distance of one of the chloride ions from the gold(I) atom [5.047 (1) Å] differs from that determined previously.

Related literature

For the previous determination of the crystal structure of the title compound, see: Hollis & Lippard (1983[Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293-4299.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl(C15H11N3)]Cl2·3H2O

  • Mr = 590.63

  • Monoclinic, P 21 /c

  • a = 8.4486 (1) Å

  • b = 6.9766 (1) Å

  • c = 31.1581 (6) Å

  • β = 94.392 (1)°

  • V = 1831.14 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.49 mm−1

  • T = 173 (2) K

  • 0.41 × 0.31 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration [Face-indexed absorption corrections carried out with XPREP (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.])] Tmin = 0.128, Tmax = 0.185

  • 13022 measured reflections

  • 4386 independent reflections

  • 4157 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.061

  • S = 1.37

  • 4386 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −2.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯Cl2i 0.84 2.32 3.140 (4) 167
O1W—H1B⋯Cl3 0.84 2.42 3.229 (4) 161
O2W—H2A⋯Cl2 0.84 2.31 3.141 (4) 172
O2W—H2B⋯O3W 0.84 1.94 2.768 (5) 169
O3W—H3A⋯Cl3ii 0.84 2.31 3.133 (4) 167
O3W—H3B⋯Cl3iii 0.84 2.36 3.194 (4) 171
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I, Scheme 1) was synthesized as part of an ongoing study of the DNA binding and intercalation properties of metalloterpyridine complexes.

The asymmetric unit (Fig. 1) consists of the planar terpyridine-AuCl complex with one water molecule and one chloride ion above the plane of the complex, and the remaining two water molecules and a chloride ion below the plane.

A search of the literature revealed that the crystal structure of this compound was previously reported by Hollis & Lippard (1983). The reported structure possesses almost identical crystal parameters to the structure reported here in terms of space group, and unit-cell dimensions and angles. In addition, the coordination sphere parameters appear to closely match those obtained previously. However, the collection of data at 173 K, in comparison to 296 K as reported by Hollis & Lippard, results in some notable conclusions in addition to yielding more accurate data.

The water molecules and chloride ions are involved in extensive intermolecular hydrogen bonding. Fig. 2 illustrates these interactions which extend throughout the crystal structure. The atoms and interaction distances involved in the hydrogen bonding are very similar to those proposed by Hollis & Lippard, and the redetermined hydrogen bonding network confirms the proposed hydrogen bonds.

Additionally, Cl3 is orientated differently here than in the previously determined structure. With reference to the gold centre, Cl3 is found 5.047 (1) Å from the metal atom while the structure reported by Hollis & Lippard shows this distance to be 5.016 Å.

Related literature top

For the previous determination of the crystal structure of the title compound, see: Hollis & Lippard (1983).

Experimental top

A mixture of AuCl4.3H2O (0.100 g, 0.29 mmol) and terpyridine (0.072 g, 0.31 mmol) was placed in 10 ml of deionized water in a round-bottom flask. The solution pH was adjusted to 3.0 with 1 M NaOH, and the resulting mixture refluxed at 100°C for 24 h. The red mixture was then cooled to room temperature and filtered to remove small amounts of a purple solid. The filtrate obtained was allowed to stand at room temperature to induce precipitation of the crystalline product. The crystals were filtered off and air-dried to yield the title compound. (0.013 g, 7.5%), mp 503 K. 1H NMR [DMSO, 600 MHz]: δ = 8.07 (t, 2H), 8.13 (t, 1H), 8.47 (d, 2H), 8.66 (t, 2H), 8.67 (d, 2H), 8.71 (d, 2H). IR (KBr, cm-1): 3341, 1604, 1584, 1035. 13C NMR [DMSO, 150 MHz]: δ = 151.8, 151.5, 146.8, 141.5, 139.7, 126.0, 122.8, 122.7.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 0.93 Å (CH) in a riding model with Uiso(H) = 1.2Ueq(X) for X = CH.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I. Displacement ellipsoids are drawn at the 40% probability level. The labelling of atoms is as shown, and is identical to that of Hollis & Lippard. The two chloride counter ions and the three water molecules associated with I are evident, present above and below the plane of the molecule.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding present in I, shown by the dashed lines. Hanging dashed lines indicate bonding to an adjacent unit cell. Displacement ellipsoids are drawn at the 40% probability level. Protons belonging to individual molecules have been omitted for purposes of clarity. The water and the chloride ions are seen to be found between the individual molecules of I.
Chlorido(2,2':6',2''-terpyridine-κ3N,N',N'')gold(I) dichloride trihydrate top
Crystal data top
[AuCl(C15H11N3)]Cl2·3H2OF(000) = 1128
Mr = 590.63Dx = 2.142 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8408 reflections
a = 8.4486 (1) Åθ = 3.8–28.3°
b = 6.9766 (1) ŵ = 8.49 mm1
c = 31.1581 (6) ÅT = 173 K
β = 94.392 (1)°Block, brown
V = 1831.14 (5) Å30.41 × 0.31 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4386 independent reflections
Radiation source: fine-focus sealed tube4157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.0°, θmin = 3.5°
Absorption correction: integration
[Face-indexed absorption corrections carried out with XPREP (Bruker, 2005)]
h = 1111
Tmin = 0.128, Tmax = 0.185k = 98
13022 measured reflectionsl = 4139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.37 w = 1/[σ2(Fo2) + (0.0093P)2 + 4.719P]
where P = (Fo2 + 2Fc2)/3
4386 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 2.24 e Å3
Crystal data top
[AuCl(C15H11N3)]Cl2·3H2OV = 1831.14 (5) Å3
Mr = 590.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4486 (1) ŵ = 8.49 mm1
b = 6.9766 (1) ÅT = 173 K
c = 31.1581 (6) Å0.41 × 0.31 × 0.30 mm
β = 94.392 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4386 independent reflections
Absorption correction: integration
[Face-indexed absorption corrections carried out with XPREP (Bruker, 2005)]
4157 reflections with I > 2σ(I)
Tmin = 0.128, Tmax = 0.185Rint = 0.034
13022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.37Δρmax = 1.32 e Å3
4386 reflectionsΔρmin = 2.24 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0770 (6)0.2047 (7)0.02507 (15)0.0253 (10)
H10.02370.23310.00010.030*
C20.2269 (6)0.1252 (7)0.02079 (17)0.0298 (11)
H20.27660.09860.00690.036*
C30.3033 (6)0.0848 (7)0.05707 (17)0.0298 (11)
H30.40640.02970.05450.036*
C40.2298 (5)0.1246 (7)0.09735 (16)0.0248 (10)
H40.28230.09760.12250.030*
C50.0803 (5)0.2036 (6)0.10059 (15)0.0204 (9)
C60.0097 (5)0.2552 (6)0.14095 (14)0.0196 (9)
C70.0305 (5)0.2284 (7)0.18273 (15)0.0261 (10)
H70.12930.17210.18820.031*
C80.0750 (6)0.2845 (8)0.21643 (16)0.0290 (11)
H80.04780.26690.24520.035*
C90.2201 (6)0.3663 (7)0.20891 (15)0.0265 (10)
H90.29260.40370.23220.032*
C100.2570 (5)0.3922 (6)0.16673 (15)0.0203 (9)
C110.4020 (5)0.4747 (6)0.15124 (15)0.0209 (9)
C120.5251 (5)0.5513 (7)0.17706 (17)0.0272 (10)
H120.51940.55700.20740.033*
C130.6570 (5)0.6197 (7)0.15853 (18)0.0305 (11)
H130.74270.67290.17620.037*
C140.6651 (5)0.6113 (7)0.11450 (18)0.0287 (11)
H140.75640.65640.10160.034*
C150.5375 (5)0.5358 (7)0.08946 (17)0.0250 (10)
H150.54080.53130.05910.030*
Cl10.28844 (15)0.3714 (2)0.00827 (4)0.0321 (3)
Cl20.06873 (13)0.75596 (17)0.08334 (4)0.0268 (2)
Cl30.56001 (14)0.06210 (19)0.19728 (4)0.0298 (3)
Au10.211462 (19)0.35966 (2)0.076389 (5)0.01864 (6)
N10.0062 (4)0.2421 (5)0.06372 (12)0.0206 (8)
N20.1517 (4)0.3343 (5)0.13536 (11)0.0162 (7)
N30.4098 (4)0.4693 (5)0.10746 (12)0.0200 (8)
O1W0.3810 (4)0.0056 (6)0.10320 (13)0.0384 (9)
H1A0.30000.07500.10210.058*
H1B0.40600.00500.12960.058*
O2W0.0068 (4)0.7688 (7)0.18143 (12)0.0422 (10)
H2A0.02610.77800.15550.063*
H2B0.09310.79800.19490.063*
O3W0.2720 (4)0.8576 (6)0.23548 (13)0.0449 (10)
H3A0.34210.90590.22130.067*
H3B0.32210.77490.25080.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.028 (3)0.021 (2)0.0037 (19)0.0037 (18)0.002 (2)
C20.028 (2)0.028 (3)0.033 (3)0.006 (2)0.003 (2)0.004 (2)
C30.024 (2)0.026 (3)0.039 (3)0.0032 (19)0.002 (2)0.002 (2)
C40.021 (2)0.021 (2)0.033 (3)0.0039 (18)0.0076 (18)0.001 (2)
C50.021 (2)0.015 (2)0.025 (2)0.0008 (16)0.0039 (17)0.0019 (18)
C60.0170 (19)0.017 (2)0.026 (2)0.0012 (16)0.0065 (17)0.0039 (18)
C70.024 (2)0.030 (3)0.025 (2)0.0022 (19)0.0101 (19)0.001 (2)
C80.033 (3)0.035 (3)0.019 (2)0.001 (2)0.0074 (19)0.002 (2)
C90.027 (2)0.031 (3)0.021 (2)0.002 (2)0.0013 (18)0.001 (2)
C100.021 (2)0.016 (2)0.024 (2)0.0010 (16)0.0032 (17)0.0017 (18)
C110.020 (2)0.018 (2)0.025 (2)0.0020 (16)0.0048 (17)0.0004 (18)
C120.023 (2)0.026 (3)0.032 (3)0.0007 (19)0.0009 (19)0.000 (2)
C130.018 (2)0.024 (3)0.049 (3)0.0013 (18)0.001 (2)0.001 (2)
C140.018 (2)0.020 (3)0.048 (3)0.0018 (17)0.008 (2)0.001 (2)
C150.022 (2)0.021 (2)0.033 (3)0.0013 (18)0.0076 (19)0.001 (2)
Cl10.0363 (6)0.0386 (7)0.0230 (6)0.0093 (5)0.0120 (5)0.0003 (5)
Cl20.0285 (5)0.0258 (6)0.0260 (6)0.0037 (4)0.0015 (4)0.0004 (5)
Cl30.0263 (5)0.0290 (6)0.0344 (6)0.0015 (5)0.0044 (5)0.0023 (5)
Au10.01834 (8)0.01925 (9)0.01896 (9)0.00206 (7)0.00558 (6)0.00098 (7)
N10.0188 (17)0.019 (2)0.024 (2)0.0018 (14)0.0045 (15)0.0004 (16)
N20.0180 (16)0.0136 (18)0.0175 (17)0.0029 (13)0.0040 (13)0.0000 (14)
N30.0181 (17)0.0163 (19)0.026 (2)0.0003 (14)0.0027 (15)0.0003 (16)
O1W0.0303 (19)0.043 (2)0.042 (2)0.0015 (17)0.0029 (16)0.0090 (19)
O2W0.0289 (18)0.068 (3)0.030 (2)0.0122 (19)0.0052 (15)0.003 (2)
O3W0.0305 (19)0.061 (3)0.042 (2)0.0077 (19)0.0007 (17)0.013 (2)
Geometric parameters (Å, º) top
C1—N11.329 (6)C11—N31.371 (6)
C1—C21.380 (6)C11—C121.373 (7)
C1—H10.9500C12—C131.379 (7)
C2—C31.373 (7)C12—H120.9500
C2—H20.9500C13—C141.380 (8)
C3—C41.385 (7)C13—H130.9500
C3—H30.9500C14—C151.386 (7)
C4—C51.375 (6)C14—H140.9500
C4—H40.9500C15—N31.336 (5)
C5—N11.376 (6)C15—H150.9500
C5—C61.463 (6)Cl1—Au12.2686 (11)
C6—N21.345 (5)Au1—N21.950 (3)
C6—C71.383 (6)Au1—N32.021 (4)
C7—C81.381 (7)Au1—N12.025 (4)
C7—H70.9500O1W—H1A0.8369
C8—C91.388 (7)O1W—H1B0.8373
C8—H80.9500O2W—H2A0.8388
C9—C101.386 (6)O2W—H2B0.8381
C9—H90.9500O3W—H3A0.8361
C10—N21.333 (6)O3W—H3B0.8423
C10—C111.468 (6)
N1—C1—C2120.8 (4)C12—C11—C10125.0 (4)
N1—C1—H1119.6C11—C12—C13119.3 (5)
C2—C1—H1119.6C11—C12—H12120.3
C3—C2—C1119.3 (5)C13—C12—H12120.3
C3—C2—H2120.4C12—C13—C14120.3 (5)
C1—C2—H2120.4C12—C13—H13119.8
C2—C3—C4119.9 (5)C14—C13—H13119.8
C2—C3—H3120.1C13—C14—C15118.7 (4)
C4—C3—H3120.1C13—C14—H14120.7
C5—C4—C3119.5 (4)C15—C14—H14120.7
C5—C4—H4120.2N3—C15—C14120.9 (5)
C3—C4—H4120.2N3—C15—H15119.5
C4—C5—N1119.4 (4)C14—C15—H15119.5
C4—C5—C6125.1 (4)N2—Au1—N381.25 (15)
N1—C5—C6115.5 (4)N2—Au1—N181.39 (15)
N2—C6—C7117.6 (4)N3—Au1—N1162.64 (15)
N2—C6—C5113.6 (4)N2—Au1—Cl1176.48 (11)
C7—C6—C5128.9 (4)N3—Au1—Cl198.51 (11)
C8—C7—C6119.2 (4)N1—Au1—Cl198.82 (11)
C8—C7—H7120.4C1—N1—C5121.1 (4)
C6—C7—H7120.4C1—N1—Au1126.5 (3)
C7—C8—C9121.0 (4)C5—N1—Au1112.4 (3)
C7—C8—H8119.5C10—N2—C6125.6 (4)
C9—C8—H8119.5C10—N2—Au1117.2 (3)
C10—C9—C8118.7 (4)C6—N2—Au1117.2 (3)
C10—C9—H9120.7C15—N3—C11120.7 (4)
C8—C9—H9120.7C15—N3—Au1126.7 (3)
N2—C10—C9118.0 (4)C11—N3—Au1112.7 (3)
N2—C10—C11113.9 (4)H1A—O1W—H1B103.6
C9—C10—C11128.1 (4)H2A—O2W—H2B103.8
N3—C11—C12120.1 (4)H3A—O3W—H3B103.3
N3—C11—C10114.9 (4)
N1—C1—C2—C30.1 (8)N2—Au1—N1—C1178.4 (4)
C1—C2—C3—C40.2 (8)N3—Au1—N1—C1178.2 (4)
C2—C3—C4—C50.3 (7)Cl1—Au1—N1—C15.1 (4)
C3—C4—C5—N10.1 (7)N2—Au1—N1—C50.9 (3)
C3—C4—C5—C6179.1 (4)N3—Au1—N1—C51.1 (7)
C4—C5—C6—N2178.5 (4)Cl1—Au1—N1—C5175.6 (3)
N1—C5—C6—N20.5 (6)C9—C10—N2—C61.3 (7)
C4—C5—C6—C73.4 (8)C11—C10—N2—C6179.6 (4)
N1—C5—C6—C7177.6 (5)C9—C10—N2—Au1176.8 (3)
N2—C6—C7—C80.5 (7)C11—C10—N2—Au12.3 (5)
C5—C6—C7—C8178.5 (5)C7—C6—N2—C101.1 (7)
C6—C7—C8—C90.2 (8)C5—C6—N2—C10179.4 (4)
C7—C8—C9—C100.5 (8)C7—C6—N2—Au1177.0 (3)
C8—C9—C10—N21.0 (7)C5—C6—N2—Au11.3 (5)
C8—C9—C10—C11179.9 (5)N3—Au1—N2—C100.6 (3)
N2—C10—C11—N33.5 (6)N1—Au1—N2—C10179.5 (3)
C9—C10—C11—N3175.5 (4)N3—Au1—N2—C6178.9 (3)
N2—C10—C11—C12177.3 (4)N1—Au1—N2—C61.2 (3)
C9—C10—C11—C123.7 (8)C14—C15—N3—C110.2 (7)
N3—C11—C12—C130.9 (7)C14—C15—N3—Au1178.7 (3)
C10—C11—C12—C13178.2 (4)C12—C11—N3—C150.9 (7)
C11—C12—C13—C140.0 (7)C10—C11—N3—C15178.4 (4)
C12—C13—C14—C151.0 (7)C12—C11—N3—Au1177.8 (4)
C13—C14—C15—N31.1 (7)C10—C11—N3—Au12.9 (5)
C2—C1—N1—C50.3 (7)N2—Au1—N3—C15179.9 (4)
C2—C1—N1—Au1179.6 (4)N1—Au1—N3—C15179.7 (4)
C4—C5—N1—C10.2 (7)Cl1—Au1—N3—C153.6 (4)
C6—C5—N1—C1178.9 (4)N2—Au1—N3—C111.4 (3)
C4—C5—N1—Au1179.5 (3)N1—Au1—N3—C111.1 (7)
C6—C5—N1—Au10.5 (5)Cl1—Au1—N3—C11177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl2i0.842.323.140 (4)167
O1W—H1B···Cl30.842.423.229 (4)161
O2W—H2A···Cl20.842.313.141 (4)172
O2W—H2B···O3W0.841.942.768 (5)169
O3W—H3A···Cl3ii0.842.313.133 (4)167
O3W—H3B···Cl3iii0.842.363.194 (4)171
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[AuCl(C15H11N3)]Cl2·3H2O
Mr590.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.4486 (1), 6.9766 (1), 31.1581 (6)
β (°) 94.392 (1)
V3)1831.14 (5)
Z4
Radiation typeMo Kα
µ (mm1)8.49
Crystal size (mm)0.41 × 0.31 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
[Face-indexed absorption corrections carried out with XPREP (Bruker, 2005)]
Tmin, Tmax0.128, 0.185
No. of measured, independent and
observed [I > 2σ(I)] reflections
13022, 4386, 4157
Rint0.034
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.061, 1.37
No. of reflections4386
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 2.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl2i0.842.323.140 (4)167
O1W—H1B···Cl30.842.423.229 (4)161
O2W—H2A···Cl20.842.313.141 (4)172
O2W—H2B···O3W0.841.942.768 (5)169
O3W—H3A···Cl3ii0.842.313.133 (4)167
O3W—H3B···Cl3iii0.842.363.194 (4)171
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance in the acquisition and solution of the crystallographic data.

References

First citationBruker (2005). APEX2 and SAINT-NT (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293–4299.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds