metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­[5,5′-(m-phenylene)di­tetra­zolato-κN2]manganese(II) dihydrate

aDepartment of Chemsitry, Dezhou University, University West Road 566, Dezhou 253023, People's Republic of China
*Correspondence e-mail: yqlu@dzu.edu.cn

(Received 14 August 2008; accepted 4 September 2008; online 13 September 2008)

The title compound, [Mn(C8H4N8)2(H2O)5]·2H2O, is the fourth transition metal complex containing the 1,3-di(2H-tetra­zol-5-yl)benzene ligand to be structurally characterized. The Mn^II^ cation has a distorted octahedral coordination geometry. The 1,3-di(tetra­zol-5-yl)benzene ligand is planar. All H atoms bonded to O atoms participate in hydrogen bonds, which link the mol­ecules into a framework structure.

Related literature

For similar complexes, see: Jiang et al. (2004[Jiang, C., Yu, Z., Jiao, C., Wang, S., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 4669-4674.]); Hill et al. (1996[Hill, M., Mahon, M. F., McGinley, J. & Molloy, K. C. (1996). J. Chem. Soc. Dalton Trans. pp. 835-845.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H4N8)2(H2O)5]·2H2O

  • Mr = 393.24

  • Triclinic, [P \overline 1]

  • a = 6.5932 (1) Å

  • b = 10.0711 (2) Å

  • c = 12.9857 (3) Å

  • α = 68.296 (1)°

  • β = 77.213 (3)°

  • γ = 77.280 (5)°

  • V = 772.10 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 296 (2) K

  • 0.26 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.931

  • 7710 measured reflections

  • 3704 independent reflections

  • 2846 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.02

  • 3704 reflections

  • 273 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O6 0.57 (6) 2.31 (6) 2.852 (3) 162 (8)
O5—H5A⋯O5i 0.57 (6) 2.41 (5) 2.910 (6) 148 (9)
O6—H6B⋯O7ii 0.61 (5) 2.21 (5) 2.814 (3) 171 (6)
O4—H4A⋯O1iii 0.67 (4) 2.38 (4) 3.035 (3) 167 (5)
O3—H3A⋯O7i 0.84 (4) 1.91 (4) 2.747 (3) 171 (3)
O3—H3B⋯O6iv 0.82 (3) 1.98 (3) 2.794 (3) 176 (3)
O2—H2B⋯N1v 0.75 (3) 2.06 (3) 2.800 (3) 173 (3)
O1—H1B⋯N6vi 0.85 (4) 1.89 (4) 2.730 (3) 176 (3)
O5—H5B⋯N8vii 0.75 (4) 2.07 (4) 2.810 (3) 168 (4)
O7—H7A⋯N5ii 0.73 (4) 2.10 (4) 2.828 (3) 173 (4)
O4—H4B⋯N3iv 0.88 (4) 1.80 (4) 2.681 (3) 175 (3)
O6—H6A⋯N4 0.82 (3) 2.07 (4) 2.886 (3) 176 (3)
O1—H1A⋯N7viii 0.78 (3) 1.99 (3) 2.771 (3) 175 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) -x, -y+1, -z+1; (v) -x, -y+2, -z+1; (vi) x, y, z+1; (vii) x, y-1, z+1; (viii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,3-di(2H-tetrazol-5-yl)benzene (DHTB) ligand has hitherto been reported in the twice deprotonated form in the crystal structures of its complexes with zinc, cadmium and tin (Jiang et al., 2004; Hill et al., 1996), where it acts as a bridging ligand. This paper provides the first structural characterization of a DHTB complex with the transition metal Mn(II); the ligand in this complex is also twice deprotonated, but coordinated to the Mn atom as a terminal ligand.

The molecule of Mn(DHTB)(H2O)5 occupies a general position in the unit cell; the Mn atom has a non-distorted octahedral coordination as indicated by bond lengths and angles (Fig. 1). The DHTB ligand has an essentially planar conformation, with the maximum deviation from the mean plane being 0.054 (2) Å by atom C7. The geometry of the ligand is similar to that observed in Jiang et al. (2004) and Hill et al. (1996).

Strong ππ interactions between the aromatic rings are indicated by the short distance of 3.324 (3) Å between C1 and C8i [Symmetry code: (i) 1-x, 2-y, -z]. All hydrogen atoms that are bonded to oxygen atoms participate in H-bonding (Table 1); the extensive H-bond system and the strong ππ interactions link molecules of the complex and non-coordinated water molecules into a three-dimensional infinite network (Fig. 2).

Related literature top

For similar complexes, see: Jiang et al. (2004); Hill et al. (1996).

Experimental top

The hydrothermal reaction of Mn(NO3)2 (0.5 mmol) and 1,3-di(2H-tetrazol-5-yl)benzene (0.5 mmol) in 20 ml of distilled water at 180°C for 3 days resulted in light yellow plate crystals of the title compound, in a yield of 42%. The crystals were filtered, washed with cold EtOH and dried in air.

Refinement top

All of the H atoms on carbon atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 times Ueq(C). All of the H atoms on oxygen atoms were located from the difference Fourier map, and refined freely, except for the bond length of O5—H5A being constrained to 0.87 Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-labelling scheme.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis,
Pentaaqua[5,5'-(m-phenylene)ditetrazolato-κN2]manganese(II) dihydrate top
Crystal data top
[Mn(C8H4N8)2(H2O)5]·2H2OZ = 2
Mr = 393.24F(000) = 406
Triclinic, P1Dx = 1.691 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5932 (1) ÅCell parameters from 3628 reflections
b = 10.0711 (2) Åθ = 2.7–27.9°
c = 12.9857 (3) ŵ = 0.91 mm1
α = 68.296 (1)°T = 296 K
β = 77.213 (3)°Plate, yellow
γ = 77.280 (5)°0.26 × 0.14 × 0.08 mm
V = 772.10 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3704 independent reflections
Radiation source: fine-focus sealed tube2846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.798, Tmax = 0.931k = 1313
7710 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.3671P]
where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mn(C8H4N8)2(H2O)5]·2H2Oγ = 77.280 (5)°
Mr = 393.24V = 772.10 (3) Å3
Triclinic, P1Z = 2
a = 6.5932 (1) ÅMo Kα radiation
b = 10.0711 (2) ŵ = 0.91 mm1
c = 12.9857 (3) ÅT = 296 K
α = 68.296 (1)°0.26 × 0.14 × 0.08 mm
β = 77.213 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3704 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2846 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.931Rint = 0.022
7710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
3704 reflectionsΔρmin = 0.30 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.11390 (6)0.68638 (4)0.58413 (3)0.02732 (12)
O10.3923 (3)0.7734 (2)0.57901 (16)0.0388 (4)
O20.1155 (4)0.8808 (2)0.58408 (19)0.0402 (5)
O30.0794 (3)0.6043 (2)0.76359 (15)0.0361 (4)
O40.1679 (4)0.6027 (2)0.59456 (18)0.0411 (5)
O50.3064 (5)0.4784 (2)0.5795 (2)0.0508 (6)
O60.2643 (3)0.5392 (2)0.12086 (18)0.0370 (4)
O70.6605 (4)0.3559 (3)0.11514 (17)0.0367 (4)
N10.1613 (3)0.90491 (19)0.31988 (14)0.0244 (4)
N20.1633 (3)0.76902 (19)0.39242 (14)0.0264 (4)
N30.1980 (3)0.6792 (2)0.33621 (15)0.0300 (4)
N40.2200 (3)0.75287 (19)0.22651 (15)0.0268 (4)
N50.3286 (3)0.9471 (2)0.21040 (15)0.0276 (4)
N60.3651 (3)0.9732 (2)0.32077 (16)0.0315 (4)
N70.3610 (3)1.1128 (2)0.37435 (16)0.0318 (4)
N80.3223 (3)1.1812 (2)0.29911 (15)0.0275 (4)
C10.1974 (3)0.8914 (2)0.21865 (17)0.0205 (4)
C20.2128 (3)1.0130 (2)0.11148 (17)0.0216 (4)
C30.2001 (4)1.1526 (2)0.11091 (19)0.0306 (5)
H30.17961.16990.17830.037*
C40.2177 (4)1.2662 (2)0.0105 (2)0.0380 (6)
H40.20771.35970.01050.046*
C50.2501 (4)1.2411 (2)0.09028 (19)0.0311 (5)
H50.26271.31780.15760.037*
C60.2640 (3)1.1024 (2)0.09143 (17)0.0217 (4)
C70.2443 (3)0.9883 (2)0.00989 (17)0.0214 (4)
H70.25230.89500.00980.026*
C80.3031 (3)1.0766 (2)0.19900 (17)0.0224 (4)
H1A0.455 (5)0.808 (3)0.519 (3)0.044 (9)*
H6A0.254 (5)0.602 (4)0.148 (3)0.053 (9)*
H4B0.180 (5)0.511 (4)0.613 (3)0.063 (10)*
H7A0.659 (5)0.278 (4)0.135 (3)0.060 (12)*
H5B0.306 (6)0.402 (4)0.620 (3)0.068 (12)*
H1B0.378 (5)0.838 (4)0.608 (3)0.068 (11)*
H2B0.124 (5)0.933 (4)0.614 (3)0.052 (10)*
H3B0.018 (5)0.560 (3)0.800 (3)0.059 (10)*
H3A0.149 (5)0.615 (4)0.806 (3)0.065 (11)*
H4A0.261 (6)0.645 (4)0.597 (3)0.076 (16)*
H2A0.179 (7)0.908 (5)0.539 (4)0.105 (18)*
H6B0.286 (8)0.554 (5)0.070 (4)0.09 (2)*
H7B0.588 (10)0.394 (6)0.126 (5)0.11 (3)*
H5A0.396 (10)0.477 (7)0.567 (5)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0377 (2)0.02288 (18)0.02168 (18)0.00688 (14)0.00202 (14)0.00808 (13)
O10.0537 (12)0.0406 (10)0.0275 (9)0.0234 (9)0.0075 (8)0.0164 (8)
O20.0540 (13)0.0266 (9)0.0423 (11)0.0024 (8)0.0102 (10)0.0174 (9)
O30.0426 (11)0.0429 (11)0.0241 (9)0.0157 (9)0.0046 (8)0.0078 (8)
O40.0460 (13)0.0253 (10)0.0564 (13)0.0068 (9)0.0170 (10)0.0128 (9)
O50.0666 (16)0.0254 (11)0.0400 (12)0.0045 (10)0.0116 (11)0.0056 (9)
O60.0484 (11)0.0342 (10)0.0310 (10)0.0101 (8)0.0005 (9)0.0150 (8)
O70.0479 (12)0.0276 (10)0.0350 (10)0.0079 (9)0.0089 (8)0.0082 (8)
N10.0311 (10)0.0217 (9)0.0191 (8)0.0043 (7)0.0027 (7)0.0059 (7)
N20.0347 (10)0.0215 (9)0.0209 (9)0.0044 (8)0.0021 (8)0.0062 (7)
N30.0428 (12)0.0239 (9)0.0223 (9)0.0070 (8)0.0005 (8)0.0083 (7)
N40.0356 (11)0.0240 (9)0.0203 (9)0.0063 (8)0.0011 (8)0.0077 (7)
N50.0333 (10)0.0258 (9)0.0236 (9)0.0052 (8)0.0022 (8)0.0092 (8)
N60.0375 (11)0.0343 (11)0.0247 (10)0.0074 (9)0.0005 (8)0.0135 (8)
N70.0380 (11)0.0333 (11)0.0219 (9)0.0072 (9)0.0009 (8)0.0088 (8)
N80.0338 (10)0.0269 (10)0.0193 (9)0.0048 (8)0.0001 (8)0.0072 (7)
C10.0197 (10)0.0214 (10)0.0202 (10)0.0028 (8)0.0008 (8)0.0083 (8)
C20.0207 (10)0.0219 (10)0.0203 (10)0.0010 (8)0.0028 (8)0.0066 (8)
C30.0427 (14)0.0259 (11)0.0222 (11)0.0016 (10)0.0027 (10)0.0105 (9)
C40.0638 (18)0.0197 (11)0.0301 (12)0.0058 (11)0.0040 (12)0.0101 (9)
C50.0448 (14)0.0199 (10)0.0230 (11)0.0015 (10)0.0051 (10)0.0028 (9)
C60.0206 (10)0.0238 (10)0.0203 (10)0.0029 (8)0.0022 (8)0.0076 (8)
C70.0223 (10)0.0186 (10)0.0228 (10)0.0027 (8)0.0022 (8)0.0073 (8)
C80.0206 (10)0.0235 (10)0.0213 (10)0.0039 (8)0.0024 (8)0.0058 (8)
Geometric parameters (Å, º) top
Mn1—O32.1423 (18)N1—N21.343 (2)
Mn1—O42.162 (2)N2—N31.314 (2)
Mn1—O12.1797 (19)N3—N41.332 (2)
Mn1—O22.1946 (19)N4—C11.338 (3)
Mn1—O52.212 (2)N5—N61.333 (3)
Mn1—N22.2857 (17)N5—C81.336 (3)
O1—H1A0.78 (3)N6—N71.315 (3)
O1—H1B0.85 (4)N7—N81.343 (3)
O2—H2B0.75 (3)N8—C81.338 (3)
O2—H2A0.73 (5)C1—C21.476 (3)
O3—H3B0.82 (3)C2—C31.387 (3)
O3—H3A0.84 (4)C2—C71.394 (3)
O4—H4B0.88 (4)C3—C41.382 (3)
O4—H4A0.67 (4)C3—H30.9300
O5—H5B0.75 (4)C4—C51.385 (3)
O5—H5A0.57 (6)C4—H40.9300
O6—H6A0.82 (3)C5—C61.385 (3)
O6—H6B0.61 (5)C5—H50.9300
O7—H7A0.73 (4)C6—C71.393 (3)
O7—H7B0.57 (6)C6—C81.472 (3)
N1—C11.335 (3)C7—H70.9300
O3—Mn1—O488.99 (8)N3—N2—N1109.26 (16)
O3—Mn1—O189.37 (8)N3—N2—Mn1120.96 (13)
O4—Mn1—O1177.83 (8)N1—N2—Mn1129.79 (13)
O3—Mn1—O292.33 (8)N2—N3—N4109.71 (17)
O4—Mn1—O281.61 (9)N3—N4—C1104.97 (17)
O1—Mn1—O297.05 (8)N6—N5—C8105.15 (17)
O3—Mn1—O589.42 (8)N7—N6—N5109.76 (17)
O4—Mn1—O590.03 (11)N6—N7—N8109.04 (17)
O1—Mn1—O591.36 (10)C8—N8—N7105.04 (18)
O2—Mn1—O5171.42 (11)N1—C1—N4111.28 (17)
O3—Mn1—N2177.82 (7)N1—C1—C2124.65 (18)
O4—Mn1—N292.24 (8)N4—C1—C2124.07 (18)
O1—Mn1—N289.44 (7)C3—C2—C7119.41 (19)
O2—Mn1—N289.63 (8)C3—C2—C1120.24 (19)
O5—Mn1—N288.78 (8)C7—C2—C1120.34 (18)
Mn1—O1—H1A116 (2)C4—C3—C2120.2 (2)
Mn1—O1—H1B118 (2)C4—C3—H3119.9
H1A—O1—H1B102 (3)C2—C3—H3119.9
Mn1—O2—H2B131 (3)C3—C4—C5120.2 (2)
Mn1—O2—H2A115 (4)C3—C4—H4119.9
H2B—O2—H2A113 (4)C5—C4—H4119.9
Mn1—O3—H3B120 (2)C6—C5—C4120.4 (2)
Mn1—O3—H3A129 (2)C6—C5—H5119.8
H3B—O3—H3A110 (3)C4—C5—H5119.8
Mn1—O4—H4B127 (2)C5—C6—C7119.31 (19)
Mn1—O4—H4A119 (4)C5—C6—C8119.95 (19)
H4B—O4—H4A113 (4)C7—C6—C8120.73 (18)
Mn1—O5—H5B132 (3)C6—C7—C2120.44 (19)
Mn1—O5—H5A117 (7)C6—C7—H7119.8
H5B—O5—H5A99 (7)C2—C7—H7119.8
H6A—O6—H6B119 (5)N5—C8—N8111.01 (18)
H7A—O7—H7B120 (6)N5—C8—C6125.20 (18)
C1—N1—N2104.79 (16)N8—C8—C6123.78 (19)
C1—N1—N2—N30.3 (2)N4—C1—C2—C3176.0 (2)
C1—N1—N2—Mn1179.63 (15)N1—C1—C2—C7177.9 (2)
O4—Mn1—N2—N362.82 (18)N4—C1—C2—C72.7 (3)
O1—Mn1—N2—N3118.54 (17)C7—C2—C3—C40.2 (4)
O2—Mn1—N2—N3144.41 (18)C1—C2—C3—C4179.0 (2)
O5—Mn1—N2—N327.16 (18)C2—C3—C4—C50.6 (4)
O3—Mn1—N2—N1119.2 (19)C3—C4—C5—C60.4 (4)
O4—Mn1—N2—N1116.41 (19)C4—C5—C6—C70.2 (4)
O1—Mn1—N2—N162.23 (19)C4—C5—C6—C8178.7 (2)
O2—Mn1—N2—N134.82 (19)C5—C6—C7—C20.5 (3)
O5—Mn1—N2—N1153.6 (2)C8—C6—C7—C2178.31 (19)
N1—N2—N3—N40.2 (2)C3—C2—C7—C60.3 (3)
Mn1—N2—N3—N4179.52 (14)C1—C2—C7—C6178.46 (19)
N2—N3—N4—C10.1 (2)N6—N5—C8—N80.2 (2)
C8—N5—N6—N70.3 (2)N6—N5—C8—C6178.4 (2)
N5—N6—N7—N80.4 (3)N7—N8—C8—N50.0 (2)
N6—N7—N8—C80.2 (2)N7—N8—C8—C6178.67 (19)
N2—N1—C1—N40.4 (2)C5—C6—C8—N5176.9 (2)
N2—N1—C1—C2179.00 (19)C7—C6—C8—N51.9 (3)
N3—N4—C1—N10.3 (2)C5—C6—C8—N81.6 (3)
N3—N4—C1—C2179.09 (19)C7—C6—C8—N8179.6 (2)
N1—C1—C2—C33.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O60.57 (6)2.31 (6)2.852 (3)162 (8)
O5—H5A···O5i0.57 (6)2.41 (5)2.910 (6)148 (9)
O6—H6B···O7ii0.61 (5)2.21 (5)2.814 (3)171 (6)
O4—H4A···O1iii0.67 (4)2.38 (4)3.035 (3)167 (5)
O3—H3A···O7i0.84 (4)1.91 (4)2.747 (3)171 (3)
O3—H3B···O6iv0.82 (3)1.98 (3)2.794 (3)176 (3)
O2—H2B···N1v0.75 (3)2.06 (3)2.800 (3)173 (3)
O1—H1B···N6vi0.85 (4)1.89 (4)2.730 (3)176 (3)
O5—H5B···N8vii0.75 (4)2.07 (4)2.810 (3)168 (4)
O7—H7A···N5ii0.73 (4)2.10 (4)2.828 (3)173 (4)
O4—H4B···N3iv0.88 (4)1.80 (4)2.681 (3)175 (3)
O6—H6A···N40.82 (3)2.07 (4)2.886 (3)176 (3)
O1—H1A···N7viii0.78 (3)1.99 (3)2.771 (3)175 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y+1, z+1; (v) x, y+2, z+1; (vi) x, y, z+1; (vii) x, y1, z+1; (viii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H4N8)2(H2O)5]·2H2O
Mr393.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5932 (1), 10.0711 (2), 12.9857 (3)
α, β, γ (°)68.296 (1), 77.213 (3), 77.280 (5)
V3)772.10 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.26 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
7710, 3704, 2846
Rint0.022
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.02
No. of reflections3704
No. of parameters273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O60.57 (6)2.31 (6)2.852 (3)162 (8)
O5—H5A···O5i0.57 (6)2.41 (5)2.910 (6)148 (9)
O6—H6B···O7ii0.61 (5)2.21 (5)2.814 (3)171 (6)
O4—H4A···O1iii0.67 (4)2.38 (4)3.035 (3)167 (5)
O3—H3A···O7i0.84 (4)1.91 (4)2.747 (3)171 (3)
O3—H3B···O6iv0.82 (3)1.98 (3)2.794 (3)176 (3)
O2—H2B···N1v0.75 (3)2.06 (3)2.800 (3)173 (3)
O1—H1B···N6vi0.85 (4)1.89 (4)2.730 (3)176 (3)
O5—H5B···N8vii0.75 (4)2.07 (4)2.810 (3)168 (4)
O7—H7A···N5ii0.73 (4)2.10 (4)2.828 (3)173 (4)
O4—H4B···N3iv0.88 (4)1.80 (4)2.681 (3)175 (3)
O6—H6A···N40.82 (3)2.07 (4)2.886 (3)176 (3)
O1—H1A···N7viii0.78 (3)1.99 (3)2.771 (3)175 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y+1, z+1; (v) x, y+2, z+1; (vi) x, y, z+1; (vii) x, y1, z+1; (viii) x+1, y+2, z.
 

Acknowledgements

The author is grateful for funding from the National High Advanced Scientific Project of China (No. 2007AA10Z406) and the Scientific Project of Dezhou City (No. 2006067).

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, M., Mahon, M. F., McGinley, J. & Molloy, K. C. (1996). J. Chem. Soc. Dalton Trans. pp. 835–845.  CSD CrossRef Web of Science Google Scholar
First citationJiang, C., Yu, Z., Jiao, C., Wang, S., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 4669–4674.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds