organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,7′-(3,3′-Di­benzyl-3H,3′H-4,4′-bi-1,2,3-triazole-5,5′-di­yl)bis­­(4-methyl-2H-chromen-2-one)

aAlberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2, and bX-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
*Correspondence e-mail: michael.ferguson@ualberta.ca

(Received 7 August 2008; accepted 3 September 2008; online 13 September 2008)

The title compound, a bis-5,5′-triazole, C38H28N6O4, was observed as a side-product from the Sharpless–Meldal click reaction of the corresponding coumarin alkyne and benzyl­azide. Although the compound was present as a minor component, it crystallized in preference to the major product. The two triazole rings are almost orthogonal to each other [dihedral angle = 83.8 (1)°]. However the 4 and 4′ coumarin systems are close to coplanar with their respective triazole rings [23.6 (1) and 15.1 (1)°]. Each of the benzene rings packs approximately face-to-face with the opposing coumarin ring systems, with inter­planar angles of 7.7 (1) and 25.3 (1)° and distances of 3.567 (2) and 3.929 (2) Å between the respective centroids of the opposing rings.

Related literature

Similar 5,5′-bis­triazole structures have been described previously by Angell & Burgess (2007[Angell, Y. & Burgess, K. (2007). Angew. Chem. Int. Ed. 46, 3649-3651.]). For the synthesis of related alkyne-modified coumarins, see: Sivakumar et al. (2004[Sivakumar, K., Xie, F., Cash, B. M., Long, S., Barnhill, H. N. & Wang, Q. (2004). Org. Lett. 6, 4603-4606.]); Zhou & Fahrni (2004[Zhou, Z. & Fahrni, C. J. (2004). J. Am. Chem. Soc. 126, 8862-8863.]).

[Scheme 1]

Experimental

Crystal data
  • C38H28N6O4

  • Mr = 632.66

  • Monoclinic, P 21 /c

  • a = 12.4328 (17) Å

  • b = 17.565 (2) Å

  • c = 14.456 (2) Å

  • β = 94.573 (3)°

  • V = 3147.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 (2) K

  • 0.36 × 0.19 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.995

  • 21410 measured reflections

  • 5703 independent reflections

  • 3222 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.00

  • 5703 reflections

  • 435 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.45 3.292 (3) 148
C33—H33B⋯O2ii 0.99 2.33 3.307 (3) 168
C10—H10C⋯O4iii 0.98 2.52 3.337 (4) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our studies of new synthetic fluorophores through modification of a common fluorophore structure 4-methyl-unbelliferone (II), we generated new alkyne containing profluorophores. We subjected alkyne-modified coumarin structure (III) to conditions typical in a Sharpless–Meldal click reaction with the intention of forming the corresponding 1,2,3-triazole (IV). We explored several conditions for the synthesis of (IV), and obtained reasonable yields with (III) and benzyl azide when reacted with CuI and TEA in a methanol:water mixture. In some of these reactions we observed a minor side-product (23%) evidenced by the appearance of two doublet peaks between 4–5 ppm in the 1H NMR spectrum. These resonances were attributed to the benzylic hydrogen atoms of a bis-5,5'-triazole structure (I), and the presence of this side product was confirmed by the accompanying crystal structure data. This type of side product was first reported by Angell & Burgess (2007). Those authors reported similar observations by 1H NMR and crystallography of the bis-triazole adduct. We have identified improved conditions that avoid formation of the bis-triazole, however it is notable that commonly used conditions for click reactions may produce this type of side product.

Related literature top

Similar 5,5'-bistriazole structures have been observed previously by Angell & Burgess (2007). For the synthesis of related alkyne-modified coumarins, see: Sivakumar et al. (2004); Zhou & Fahrni (2004).

Experimental top

Synthesis of triazole (IV): The alkyne, (III) (1 equiv), and benzyl azide (4–5 equiv) were dissolved in a 1:1 solution of methanol:water (0.03 M alkyne). CuI (0.2 equiv) was then added, followed by triethylamine (TEA) (2 equiv). The reaction proceeded at room temperature and was monitored by thin layer chromatography. The reaction was complete within 2–3 h. The crude product was concentrated in vacuo, extracted with chloroform and purified by flash column chromatography (CH2Cl2/MeOH), a small amount of the bis-5,5'-triazole (I) was present (23%). The mixture of I and IV was dissolved in 200 µl chloroform, followed by 800 µl of hexanes. Suitable crystals were obtained after two weeks. The crystals were used for determination of the X-ray structure. The original product mixture, 77:23 of IV and I, was used for NMR and MS analysis. 1H NMR (400 MHz, CDCl3):** δ 7.85 (dd, 1H, 3J = 10.8 Hz, 4J = 2.1 Hz), 7.76 (s, 1H), 7.67 (d, 1H, 4J = 2.1 Hz), 7.64 (d, 1H, 3J = 10.8 Hz), 7.43- 7.32 (m, 7H), 7.22 (d, 1H, 4J = 1.6 Hz), 7.05 (m, 2H)I, 6.68 (m, 1H)I, 6.29 (d, 1H, 4J = 1 Hz), 6.26 (d, 0.5H, 4J = 1.6 Hz), 5.61 (s, 2H), 4.88 (d, 0.7H, 3J = 15.2 Hz)I, 4.63 (d, 0.7H, 3J = 15.2 Hz)I, 2.45 (s, 3H), 2.37 (s, 1.5H)I. APT 13C NMR (100 MHz, CDCl3): δ 160.7, 160.3, 153.9, 153.5, 152.0, 151.6, 134.3, 132.6, 132.3, 129.3, 129.0, 128.8, 128.6, 128.2, 128.0, 125.2, 121.5, 121.3, 120.1, 119.6, 115.5, 115.0, 113.8, 113.6, 54.5, 53.0, 18.6, 18.5. HRMS calculated for C38H28N6O4: 632.22; observed: 632.21768 ([2M-2H]+). HRMS calculated for C19H15N3O2: 317.12; observed: 340.11635 ([M+Na]+). Rf = 0.68 (10:1 CH2Cl2/MeOH). **NMR peaks attributed to compound I are denoted by a superscript, and were not observed in purified samples of IV.

Refinement top

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms were generated in idealized positions and then refined using a riding model with fixed C—H distances (Caryl = 0.95 Å, Cmethyl = 0.98 Å, Cmethylene = 0.99 Å) and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 20% probability level. Hydrogen atoms are not shown.
[Figure 2] Fig. 2. Compounds used in this study.
7,7'-(3,3'-Dibenzyl-3H,3'H-4,4'-bi-1,2,3-triazole-5,5'- diyl)bis(4-methyl-2H-chromen-2-one) top
Crystal data top
C38H28N6O4F(000) = 1320
Mr = 632.66Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2863 reflections
a = 12.4328 (17) Åθ = 2.3–20.4°
b = 17.565 (2) ŵ = 0.09 mm1
c = 14.456 (2) ÅT = 193 K
β = 94.573 (3)°Plate, colourless
V = 3147.0 (7) Å30.36 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker PLATFORM
diffractometer/SMART 1000 CCD area-detector
5703 independent reflections
Radiation source: fine-focus sealed tube3222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 8.192 pixels mm-1θmax = 25.3°, θmin = 1.6°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2121
Tmin = 0.969, Tmax = 0.995l = 1717
21410 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.7089P]
where P = (Fo2 + 2Fc2)/3
5703 reflections(Δ/σ)max < 0.001
435 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
110 constraints
Crystal data top
C38H28N6O4V = 3147.0 (7) Å3
Mr = 632.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4328 (17) ŵ = 0.09 mm1
b = 17.565 (2) ÅT = 193 K
c = 14.456 (2) Å0.36 × 0.19 × 0.06 mm
β = 94.573 (3)°
Data collection top
Bruker PLATFORM
diffractometer/SMART 1000 CCD area-detector
5703 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3222 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.995Rint = 0.074
21410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
5703 reflectionsΔρmin = 0.16 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04554 (13)0.38038 (9)0.61080 (10)0.0487 (4)
O20.11506 (15)0.35827 (9)0.74362 (12)0.0611 (5)
O30.40923 (16)0.24278 (11)0.23341 (13)0.0765 (6)
O40.5627 (2)0.20011 (15)0.29991 (18)0.1143 (9)
N10.22902 (15)0.49591 (11)0.24171 (13)0.0435 (5)
N20.27468 (17)0.50775 (12)0.32747 (14)0.0529 (6)
N30.21771 (16)0.47016 (11)0.38566 (13)0.0493 (5)
N40.01392 (15)0.46189 (10)0.12514 (12)0.0399 (5)
N50.05450 (16)0.42958 (11)0.04549 (13)0.0460 (5)
N60.00981 (16)0.37304 (11)0.02675 (13)0.0441 (5)
C10.1166 (2)0.34162 (14)0.66209 (18)0.0479 (6)
C20.18458 (19)0.28631 (13)0.61442 (17)0.0471 (6)
H20.23750.26160.64760.056*
C30.17758 (19)0.26742 (13)0.52525 (17)0.0431 (6)
C40.09753 (18)0.30559 (12)0.47449 (15)0.0389 (6)
C50.0778 (2)0.28938 (13)0.38278 (16)0.0466 (6)
H50.11720.24980.35070.056*
C60.00257 (19)0.32950 (13)0.33810 (16)0.0455 (6)
H60.00970.31710.27590.055*
C70.05606 (18)0.38843 (12)0.38319 (15)0.0381 (6)
C80.03910 (18)0.40452 (12)0.47489 (15)0.0407 (6)
H80.07850.44400.50710.049*
C90.03566 (18)0.36255 (13)0.51869 (15)0.0392 (6)
C100.2493 (2)0.20886 (15)0.47772 (18)0.0610 (8)
H10A0.29720.18770.52190.073*
H10B0.20520.16800.45430.073*
H10C0.29270.23240.42580.073*
C110.13516 (18)0.43373 (12)0.33611 (15)0.0392 (6)
C120.14149 (18)0.44964 (12)0.24347 (15)0.0368 (5)
C130.27160 (19)0.53422 (14)0.16239 (16)0.0487 (7)
H13A0.31560.57840.18520.058*
H13B0.21050.55390.12110.058*
C140.33957 (19)0.48340 (14)0.10704 (18)0.0476 (6)
C150.3150 (2)0.47500 (15)0.01346 (18)0.0556 (7)
H150.25460.50130.01550.067*
C160.3761 (2)0.42923 (18)0.0396 (2)0.0715 (9)
H160.35770.42440.10440.086*
C170.4629 (3)0.39096 (18)0.0011 (3)0.0779 (10)
H170.50430.35860.03490.094*
C180.4899 (2)0.3996 (2)0.0946 (3)0.0861 (10)
H180.55120.37380.12280.103*
C190.4289 (2)0.44567 (18)0.1482 (2)0.0715 (9)
H190.44820.45130.21280.086*
C210.5019 (3)0.19979 (19)0.2306 (3)0.0810 (10)
C220.5171 (2)0.16063 (18)0.1459 (3)0.0800 (10)
H220.57960.12990.14310.096*
C230.4479 (2)0.16503 (17)0.0704 (2)0.0717 (9)
C240.3521 (2)0.21249 (15)0.07429 (19)0.0562 (7)
C250.2752 (2)0.22437 (16)0.0006 (2)0.0631 (8)
H250.28170.19800.05610.076*
C260.1900 (2)0.27323 (14)0.00755 (18)0.0528 (7)
H260.13890.28060.04410.063*
C270.17829 (19)0.31216 (13)0.09072 (16)0.0431 (6)
C280.2519 (2)0.29845 (14)0.16581 (17)0.0512 (7)
H280.24340.32240.22370.061*
C290.3372 (2)0.25008 (15)0.15623 (19)0.0537 (7)
C300.4669 (3)0.1241 (2)0.0173 (2)0.1060 (13)
H30A0.53110.09190.00720.127*
H30B0.47790.16130.06630.127*
H30C0.40420.09240.03610.127*
C310.09201 (18)0.36899 (13)0.09483 (15)0.0382 (6)
C320.07816 (17)0.42608 (12)0.15855 (15)0.0364 (5)
C330.07212 (19)0.52408 (13)0.16521 (17)0.0481 (6)
H33A0.10750.55530.11450.058*
H33B0.02000.55700.20180.058*
C340.1562 (2)0.49688 (16)0.22682 (16)0.0492 (7)
C350.1863 (3)0.5442 (2)0.2960 (2)0.0877 (11)
H350.15470.59330.30360.105*
C360.2617 (3)0.5209 (3)0.3541 (3)0.1298 (18)
H360.28140.55360.40220.156*
C370.3088 (3)0.4506 (3)0.3432 (3)0.1210 (17)
H370.36120.43490.38370.145*
C380.2809 (3)0.4032 (2)0.2748 (2)0.0917 (11)
H380.31370.35460.26670.110*
C390.2042 (2)0.42693 (18)0.2171 (2)0.0676 (8)
H390.18420.39380.16940.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0625 (12)0.0467 (10)0.0383 (10)0.0123 (9)0.0128 (9)0.0055 (8)
O20.0865 (14)0.0564 (11)0.0424 (11)0.0080 (10)0.0177 (10)0.0004 (9)
O30.0629 (13)0.0901 (15)0.0732 (14)0.0306 (11)0.0150 (11)0.0122 (11)
O40.0845 (18)0.139 (2)0.112 (2)0.0492 (16)0.0406 (16)0.0220 (16)
N10.0425 (12)0.0502 (12)0.0374 (12)0.0082 (10)0.0017 (10)0.0042 (10)
N20.0550 (14)0.0602 (14)0.0424 (13)0.0147 (11)0.0027 (11)0.0027 (11)
N30.0523 (13)0.0551 (13)0.0399 (12)0.0127 (11)0.0001 (11)0.0015 (10)
N40.0404 (12)0.0449 (12)0.0346 (11)0.0009 (10)0.0040 (9)0.0021 (9)
N50.0431 (12)0.0550 (13)0.0394 (12)0.0023 (11)0.0005 (10)0.0043 (10)
N60.0412 (12)0.0510 (13)0.0402 (12)0.0007 (10)0.0041 (10)0.0037 (10)
C10.0574 (17)0.0426 (15)0.0453 (16)0.0012 (13)0.0138 (14)0.0065 (13)
C20.0447 (15)0.0447 (15)0.0531 (17)0.0056 (12)0.0114 (13)0.0038 (13)
C30.0409 (15)0.0391 (14)0.0489 (16)0.0003 (11)0.0011 (13)0.0037 (12)
C40.0406 (14)0.0353 (13)0.0404 (15)0.0026 (11)0.0015 (12)0.0006 (11)
C50.0547 (17)0.0436 (14)0.0410 (15)0.0109 (13)0.0008 (13)0.0043 (12)
C60.0561 (16)0.0476 (15)0.0330 (14)0.0081 (13)0.0046 (12)0.0033 (12)
C70.0397 (14)0.0379 (14)0.0363 (14)0.0004 (11)0.0012 (11)0.0023 (11)
C80.0479 (15)0.0370 (13)0.0372 (14)0.0084 (11)0.0026 (12)0.0043 (11)
C90.0446 (15)0.0386 (14)0.0345 (14)0.0011 (12)0.0041 (12)0.0010 (11)
C100.0523 (17)0.0643 (18)0.0657 (19)0.0200 (14)0.0005 (14)0.0008 (15)
C110.0421 (14)0.0406 (14)0.0344 (14)0.0030 (11)0.0007 (12)0.0031 (11)
C120.0360 (14)0.0363 (13)0.0381 (14)0.0015 (11)0.0036 (11)0.0005 (11)
C130.0465 (15)0.0547 (16)0.0452 (15)0.0101 (13)0.0066 (12)0.0112 (12)
C140.0345 (14)0.0573 (17)0.0516 (17)0.0077 (12)0.0069 (13)0.0111 (13)
C150.0486 (17)0.0635 (18)0.0550 (18)0.0015 (14)0.0052 (14)0.0027 (14)
C160.065 (2)0.085 (2)0.066 (2)0.0007 (18)0.0158 (17)0.0099 (17)
C170.063 (2)0.078 (2)0.098 (3)0.0030 (18)0.038 (2)0.003 (2)
C180.050 (2)0.105 (3)0.105 (3)0.0202 (18)0.020 (2)0.028 (2)
C190.0469 (18)0.102 (2)0.066 (2)0.0033 (17)0.0075 (16)0.0221 (18)
C210.056 (2)0.090 (2)0.094 (3)0.0247 (18)0.015 (2)0.013 (2)
C220.0467 (19)0.085 (2)0.107 (3)0.0192 (17)0.002 (2)0.019 (2)
C230.0444 (18)0.078 (2)0.093 (2)0.0118 (16)0.0065 (18)0.0228 (18)
C240.0391 (16)0.0618 (18)0.0676 (19)0.0048 (13)0.0034 (15)0.0201 (15)
C250.0468 (17)0.078 (2)0.0645 (19)0.0038 (15)0.0040 (15)0.0303 (16)
C260.0409 (16)0.0644 (18)0.0525 (16)0.0019 (13)0.0008 (13)0.0155 (14)
C270.0366 (14)0.0470 (15)0.0465 (16)0.0010 (12)0.0077 (12)0.0043 (12)
C280.0515 (17)0.0579 (17)0.0440 (16)0.0123 (14)0.0022 (13)0.0056 (13)
C290.0421 (16)0.0593 (17)0.0580 (17)0.0070 (14)0.0062 (14)0.0075 (14)
C300.067 (2)0.133 (3)0.119 (3)0.039 (2)0.010 (2)0.050 (3)
C310.0336 (13)0.0461 (14)0.0349 (13)0.0026 (11)0.0030 (12)0.0006 (11)
C320.0331 (13)0.0413 (14)0.0348 (13)0.0030 (11)0.0035 (11)0.0029 (11)
C330.0495 (16)0.0463 (15)0.0480 (15)0.0070 (12)0.0002 (13)0.0058 (12)
C340.0443 (15)0.0636 (18)0.0394 (15)0.0143 (14)0.0004 (12)0.0009 (13)
C350.064 (2)0.127 (3)0.074 (2)0.009 (2)0.0146 (18)0.041 (2)
C360.081 (3)0.230 (6)0.082 (3)0.004 (3)0.032 (2)0.061 (3)
C370.073 (3)0.220 (6)0.075 (3)0.006 (3)0.037 (2)0.009 (3)
C380.071 (2)0.123 (3)0.085 (3)0.004 (2)0.029 (2)0.025 (2)
C390.065 (2)0.074 (2)0.067 (2)0.0103 (17)0.0268 (16)0.0103 (16)
Geometric parameters (Å, º) top
O1—C11.378 (3)C15—H150.9500
O1—C91.383 (2)C16—C171.364 (4)
O2—C11.213 (3)C16—H160.9500
O3—C291.380 (3)C17—C181.374 (4)
O3—C211.381 (3)C17—H170.9500
O4—C211.206 (3)C18—C191.388 (4)
N1—N21.338 (2)C18—H180.9500
N1—C121.360 (3)C19—H190.9500
N1—C131.465 (3)C21—C221.431 (4)
N2—N31.319 (2)C22—C231.337 (4)
N3—C111.363 (3)C22—H220.9500
N4—N51.345 (2)C23—C241.459 (4)
N4—C321.361 (3)C23—C301.493 (4)
N4—C331.456 (3)C24—C291.381 (3)
N5—N61.317 (2)C24—C251.390 (3)
N6—C311.363 (3)C25—C261.374 (3)
C1—C21.428 (3)C25—H250.9500
C2—C31.341 (3)C26—C271.401 (3)
C2—H20.9500C26—H260.9500
C3—C41.447 (3)C27—C281.384 (3)
C3—C101.493 (3)C27—C311.470 (3)
C4—C91.387 (3)C28—C291.375 (3)
C4—C51.397 (3)C28—H280.9500
C5—C61.373 (3)C30—H30A0.9800
C5—H50.9500C30—H30B0.9800
C6—C71.397 (3)C30—H30C0.9800
C6—H60.9500C31—C321.382 (3)
C7—C81.388 (3)C33—C341.504 (3)
C7—C111.473 (3)C33—H33A0.9900
C8—C91.379 (3)C33—H33B0.9900
C8—H80.9500C34—C391.368 (4)
C10—H10A0.9800C34—C351.376 (4)
C10—H10B0.9800C35—C361.370 (5)
C10—H10C0.9800C35—H350.9500
C11—C121.376 (3)C36—C371.371 (6)
C12—C321.464 (3)C36—H360.9500
C13—C141.503 (3)C37—C381.359 (5)
C13—H13A0.9900C37—H370.9500
C13—H13B0.9900C38—C391.381 (4)
C14—C151.371 (3)C38—H380.9500
C14—C191.387 (4)C39—H390.9500
C15—C161.380 (4)
C1—O1—C9121.08 (19)C17—C18—C19120.8 (3)
C29—O3—C21121.1 (2)C17—C18—H18119.6
N2—N1—C12110.89 (18)C19—C18—H18119.6
N2—N1—C13120.06 (19)C14—C19—C18119.6 (3)
C12—N1—C13129.0 (2)C14—C19—H19120.2
N3—N2—N1107.66 (18)C18—C19—H19120.2
N2—N3—C11108.65 (18)O4—C21—O3116.3 (3)
N5—N4—C32110.87 (18)O4—C21—C22126.7 (3)
N5—N4—C33119.52 (19)O3—C21—C22117.1 (3)
C32—N4—C33129.53 (19)C23—C22—C21123.4 (3)
N6—N5—N4107.57 (18)C23—C22—H22118.3
N5—N6—C31108.87 (18)C21—C22—H22118.3
O2—C1—O1116.3 (2)C22—C23—C24118.4 (3)
O2—C1—C2126.6 (2)C22—C23—C30122.1 (3)
O1—C1—C2117.2 (2)C24—C23—C30119.5 (3)
C3—C2—C1123.4 (2)C29—C24—C25117.1 (2)
C3—C2—H2118.3C29—C24—C23118.2 (3)
C1—C2—H2118.3C25—C24—C23124.8 (3)
C2—C3—C4118.2 (2)C26—C25—C24121.7 (2)
C2—C3—C10122.1 (2)C26—C25—H25119.2
C4—C3—C10119.7 (2)C24—C25—H25119.2
C9—C4—C5116.8 (2)C25—C26—C27120.1 (2)
C9—C4—C3118.6 (2)C25—C26—H26119.9
C5—C4—C3124.5 (2)C27—C26—H26120.0
C6—C5—C4121.3 (2)C28—C27—C26118.8 (2)
C6—C5—H5119.3C28—C27—C31121.7 (2)
C4—C5—H5119.3C26—C27—C31119.5 (2)
C5—C6—C7120.7 (2)C29—C28—C27119.7 (2)
C5—C6—H6119.7C29—C28—H28120.1
C7—C6—H6119.7C27—C28—H28120.1
C8—C7—C6118.9 (2)C28—C29—O3115.6 (2)
C8—C7—C11119.3 (2)C28—C29—C24122.6 (2)
C6—C7—C11121.8 (2)O3—C29—C24121.8 (2)
C9—C8—C7119.3 (2)C23—C30—H30A109.5
C9—C8—H8120.4C23—C30—H30B109.5
C7—C8—H8120.4H30A—C30—H30B109.5
C8—C9—O1115.8 (2)C23—C30—H30C109.5
C8—C9—C4122.9 (2)H30A—C30—H30C109.5
O1—C9—C4121.2 (2)H30B—C30—H30C109.5
C3—C10—H10A109.5N6—C31—C32108.5 (2)
C3—C10—H10B109.5N6—C31—C27120.9 (2)
H10A—C10—H10B109.5C32—C31—C27130.5 (2)
C3—C10—H10C109.5N4—C32—C31104.18 (19)
H10A—C10—H10C109.5N4—C32—C12123.2 (2)
H10B—C10—H10C109.5C31—C32—C12132.6 (2)
N3—C11—C12108.5 (2)N4—C33—C34112.85 (19)
N3—C11—C7120.9 (2)N4—C33—H33A109.0
C12—C11—C7130.6 (2)C34—C33—H33A109.0
N1—C12—C11104.33 (19)N4—C33—H33B109.0
N1—C12—C32122.06 (19)C34—C33—H33B109.0
C11—C12—C32133.6 (2)H33A—C33—H33B107.8
N1—C13—C14113.43 (19)C39—C34—C35118.4 (3)
N1—C13—H13A108.9C39—C34—C33122.8 (2)
C14—C13—H13A108.9C35—C34—C33118.7 (3)
N1—C13—H13B108.9C36—C35—C34120.2 (4)
C14—C13—H13B108.9C36—C35—H35119.9
H13A—C13—H13B107.7C34—C35—H35119.9
C15—C14—C19118.7 (3)C35—C36—C37120.5 (4)
C15—C14—C13119.9 (2)C35—C36—H36119.8
C19—C14—C13121.4 (2)C37—C36—H36119.8
C14—C15—C16121.5 (3)C38—C37—C36120.2 (4)
C14—C15—H15119.3C38—C37—H37119.9
C16—C15—H15119.3C36—C37—H37119.9
C17—C16—C15119.9 (3)C37—C38—C39119.0 (4)
C17—C16—H16120.0C37—C38—H38120.5
C15—C16—H16120.0C39—C38—H38120.5
C16—C17—C18119.5 (3)C34—C39—C38121.7 (3)
C16—C17—H17120.3C34—C39—H39119.2
C18—C17—H17120.3C38—C39—H39119.2
C12—N1—N2—N30.4 (3)C17—C18—C19—C140.0 (5)
C13—N1—N2—N3176.64 (19)C29—O3—C21—O4176.2 (3)
N1—N2—N3—C110.3 (3)C29—O3—C21—C222.8 (4)
C32—N4—N5—N60.2 (2)O4—C21—C22—C23177.5 (4)
C33—N4—N5—N6176.94 (18)O3—C21—C22—C231.4 (5)
N4—N5—N6—C310.1 (2)C21—C22—C23—C240.3 (5)
C9—O1—C1—O2175.8 (2)C21—C22—C23—C30179.2 (3)
C9—O1—C1—C24.3 (3)C22—C23—C24—C290.5 (4)
O2—C1—C2—C3175.8 (3)C30—C23—C24—C29179.5 (3)
O1—C1—C2—C34.3 (4)C22—C23—C24—C25177.9 (3)
C1—C2—C3—C40.5 (4)C30—C23—C24—C251.1 (5)
C1—C2—C3—C10179.5 (2)C29—C24—C25—C262.1 (4)
C2—C3—C4—C93.3 (3)C23—C24—C25—C26176.3 (3)
C10—C3—C4—C9176.7 (2)C24—C25—C26—C270.5 (4)
C2—C3—C4—C5177.0 (2)C25—C26—C27—C282.1 (4)
C10—C3—C4—C53.0 (4)C25—C26—C27—C31174.9 (2)
C9—C4—C5—C61.6 (3)C26—C27—C28—C293.1 (4)
C3—C4—C5—C6178.1 (2)C31—C27—C28—C29173.9 (2)
C4—C5—C6—C70.5 (4)C27—C28—C29—O3177.0 (2)
C5—C6—C7—C81.7 (3)C27—C28—C29—C241.5 (4)
C5—C6—C7—C11178.3 (2)C21—O3—C29—C28175.8 (3)
C6—C7—C8—C90.6 (3)C21—O3—C29—C242.7 (4)
C11—C7—C8—C9179.4 (2)C25—C24—C29—C281.1 (4)
C7—C8—C9—O1178.1 (2)C23—C24—C29—C28177.4 (3)
C7—C8—C9—C41.7 (3)C25—C24—C29—O3179.4 (2)
C1—O1—C9—C8179.2 (2)C23—C24—C29—O31.0 (4)
C1—O1—C9—C40.6 (3)N5—N6—C31—C320.3 (2)
C5—C4—C9—C82.8 (3)N5—N6—C31—C27178.29 (19)
C3—C4—C9—C8177.0 (2)C28—C27—C31—N6168.9 (2)
C5—C4—C9—O1176.9 (2)C26—C27—C31—N614.2 (3)
C3—C4—C9—O13.3 (3)C28—C27—C31—C3213.6 (4)
N2—N3—C11—C120.1 (3)C26—C27—C31—C32163.3 (2)
N2—N3—C11—C7178.5 (2)N5—N4—C32—C310.4 (2)
C8—C7—C11—N324.2 (3)C33—N4—C32—C31176.4 (2)
C6—C7—C11—N3155.8 (2)N5—N4—C32—C12178.81 (19)
C8—C7—C11—C12153.9 (2)C33—N4—C32—C124.4 (3)
C6—C7—C11—C1226.2 (4)N6—C31—C32—N40.4 (2)
N2—N1—C12—C110.3 (2)C27—C31—C32—N4178.1 (2)
C13—N1—C12—C11176.4 (2)N6—C31—C32—C12178.6 (2)
N2—N1—C12—C32178.5 (2)C27—C31—C32—C120.9 (4)
C13—N1—C12—C324.8 (3)N1—C12—C32—N496.3 (3)
N3—C11—C12—N10.2 (2)C11—C12—C32—N485.2 (3)
C7—C11—C12—N1178.1 (2)N1—C12—C32—C3182.6 (3)
N3—C11—C12—C32178.5 (2)C11—C12—C32—C3195.9 (3)
C7—C11—C12—C323.3 (4)N5—N4—C33—C3486.5 (2)
N2—N1—C13—C14102.5 (2)C32—N4—C33—C3490.0 (3)
C12—N1—C13—C1481.1 (3)N4—C33—C34—C3925.5 (3)
N1—C13—C14—C15125.2 (2)N4—C33—C34—C35154.5 (2)
N1—C13—C14—C1956.2 (3)C39—C34—C35—C360.8 (5)
C19—C14—C15—C161.0 (4)C33—C34—C35—C36179.2 (3)
C13—C14—C15—C16179.5 (2)C34—C35—C36—C370.8 (6)
C14—C15—C16—C170.2 (4)C35—C36—C37—C380.2 (7)
C15—C16—C17—C181.3 (5)C36—C37—C38—C390.4 (6)
C16—C17—C18—C191.2 (5)C35—C34—C39—C380.2 (4)
C15—C14—C19—C181.1 (4)C33—C34—C39—C38179.8 (3)
C13—C14—C19—C18179.6 (2)C37—C38—C39—C340.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.453.292 (3)148
C33—H33B···O2ii0.992.333.307 (3)168
C10—H10C···O4iii0.982.523.337 (4)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC38H28N6O4
Mr632.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.4328 (17), 17.565 (2), 14.456 (2)
β (°) 94.573 (3)
V3)3147.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.19 × 0.06
Data collection
DiffractometerBruker PLATFORM
diffractometer/SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.969, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
21410, 5703, 3222
Rint0.074
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.00
No. of reflections5703
No. of parameters435
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.453.292 (3)147.6
C33—H33B···O2ii0.992.333.307 (3)167.5
C10—H10C···O4iii0.982.523.337 (4)140.8
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science and Engineering Research Council of Canada, the Alberta Ingen­uity Centre for Carbohydrate Science and the University of Alberta.

References

First citationAngell, Y. & Burgess, K. (2007). Angew. Chem. Int. Ed. 46, 3649–3651.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, K., Xie, F., Cash, B. M., Long, S., Barnhill, H. N. & Wang, Q. (2004). Org. Lett. 6, 4603–4606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, Z. & Fahrni, C. J. (2004). J. Am. Chem. Soc. 126, 8862–8863.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds