organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3-(tert-Butyl­di­methyl­siloxymeth­yl)-5-nitro­phen­yl]acetamide

aChemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: g.clark@auckland.ac.nz

(Received 12 September 2008; accepted 24 September 2008; online 27 September 2008)

The title compound, C15H24N2O4Si, was prepared by the reaction of (3-acetamido-5-nitro­benz­yl)methanol with tert-butyl­dimethyl­silyl chloride and is a key inter­mediate in the synthesis of novel nonsymmetrical DNA minor groove-binding agents. There are two independent mol­ecules in the structure, which differ primarily in the rotation about the C—O bond next to the Si atom. Two strong N—H⋯O hydrogen bonds align the mol­ecules into a wide ribbon extending approximately parallel to the b axis.

Related literature

For literature related to protecting groups, see: Jarowicki & Kocienski (1998[Jarowicki, K. & Kocienski, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 4005-4037.]); Kocienski (2004[Kocienski, P. J. (2004). Protein Groups, 3rd ed. New York, Stuttgart: Georg Thieme.]); Schelhaas & Waldmann (1996[Schelhaas, M. & Waldmann, H. (1996). Angew. Chem. Int. Ed. 35, 2056-2083.]); Wetter & Oertle (1985[Wetter, H. & Oertle, K. (1985). Tetrahedron Lett. 26, 5515-5518.]); Wuts & Green (2006[Wuts, P. G. & Green, T. W. (2006). Protective Groups in Organic Synthesis, 4th ed. Hoboken: Wiley.]). For literature related to benzamides as minor groove binders, see: Barker et al. (2008[Barker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett. 49, 1660-1664.]); Gong & Yan (1997[Gong, B. & Yan, Y. (1997). Biochem. Biophys. Res. Commun. 240, 557-560.]). For related literature, see: Crouch (2004[Crouch, R. D. (2004). Tetrahedron, 60, 5833-5871.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. IUCr Monographs on Crystallography 9. New York: Oxford University Press.]); Nelson & Crouch (1996[Nelson, T. D. & Crouch, R. D. (1996). Synthesis, 9, 1031-1069.]).

[Scheme 1]

Experimental

Crystal data
  • C15H24N2O4Si

  • Mr = 324.45

  • Triclinic, [P \overline 1]

  • a = 9.5037 (3) Å

  • b = 10.0713 (3) Å

  • c = 18.1985 (5) Å

  • α = 89.885 (1)°

  • β = 86.009 (1)°

  • γ = 88.888 (1)°

  • V = 1737.31 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 90 (2) K

  • 0.34 × 0.22 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.878, Tmax = 0.977

  • 15951 measured reflections

  • 6570 independent reflections

  • 4732 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.117

  • S = 1.05

  • 6570 reflections

  • 409 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1B 0.86 2.13 2.982 (2) 172
N1B—H1B⋯O1Ai 0.86 2.14 2.991 (2) 173
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1995[Bruker (1995). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1995[Bruker (1995). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Due to the nucleophilic nature of benzylic hydroxyl groups these are usually protected during multi-step organic synthesis (Barker et al., 2008). Large numbers of protecting groups are reported including a variety of silyl ethers. Among the silyl ethers, the tert-butyldimethylsilyl ether is widely used due to it stability towards oxidative, reductive, and mild acidic and basic conditions (Jarowicki & Kocienski, 1998; Kocienski, 2004; Schelhaas & Waldmann, 1996; Wetter & Oertle, 1985; Wuts & Green, 2006). It can however be easily deprotected to give the parent hydroxyl group efficiently using different fluoride reagents without affecting other functionalities (Crouch, 2004; Nelson & Crouch, 1996). The asymmetric unit contains two independent molecules which differ primarily in the rotation about the C7 - O4 bond. (Torsion angles C1-C7-O4-Si equal to -152.75, -110.21° for molecules A and B respectively). Two strong N-H···O hydrogen bonds (Desiraju & Steiner, 1999; Tab. 1) align the molecules into wide ribbons extending approximately parallel to the b axis. There are four very close intramolecular contacts (C4A-O1A 2.886 (3), C4B-O1B 2.894 (3), C6A-O4A 2.740 (3) and C6B-O4B 2.785 Å).

Related literature top

For literature related to protecting groups, see: Jarowicki & Kocienski (1998); Kocienski (2004); Schelhaas & Waldmann (1996); Wetter & Oertle (1985); Wuts & Green (2006). For literature related to benzamides as minor groove binders, see: Barker et al. (2008); Gong & Yan (1997). For related literature, see: Crouch (2004); Desiraju & Steiner (1999); Nelson & Crouch (1996).

Experimental top

To a solution of (3-acetamido-5-nitrobenzyl)methanol (alternatively 3-acetamido-5-nitrobenzyl alcohol) (150 mg, 0.714 mmol) in dry dimethylformamide (1 ml) under an atmosphere of nitrogen, was added tert-butyldimethylsilyl chloride (129 mg. 0.856 mmol) and imidazole (146 mg, 2.14 mmol) and the mixture stirred at room temperature, under an atmosphere of nitrogen for 2 h. Water (10 ml) was added, and the aqueous solution extracted with dichloromethane (2 × 10 ml). The combined organic extracts were washed with water (20 ml) and brine (20 ml), dried (MgSO4), filtered and the solvent removed in vacuo to afford the crude product, which was purified by flash chromatography (19:1 dichloromethane-methanol) to afford the title compound (214 mg, 93%) as a pale yellow solid, which was recrystallized from ethyl acetate and n-hexane to give a white crystal suitable for single-crystal analysis. (mp 416–417 K). νmax (NaCl)/cm-1 3315, 2929, 1666, 1532. δH (400 MHz, CDCl3) 0.13 (6H, s, OSi(CH3)2), 0.96 (9H, s, OSiC(CH3)2), 2.24 (3H, s, NHCOCH3), 4.79 (2H, s, ArCH2O), 7.56 (1H, s, NH), 7.91 (1H, s, Ar—H), 7.93 (1H, s, Ar—H) and 8.24 (1H, s, Ar—H). δC (100 MHz, CDCl3) -5.4 (CH3, OSi(CH3)2), 18.4 (quat. OSiC(CH3)3), 24.6 (CH3, NHCOCH3), 25.9 (CH3, OSiC(CH3)3), 63.8 (CH2, ArCH2O), 112.9 (CH, Ar—C), 116.2 (CH, Ar—C), 122.4 (CH, Ar—C), 138.8 (quat. Ar—C), 144.6 (quat. Ar—C), 148.6 (quat. Ar—C) and 168.6 (C=O). m/z (CI+) 325 (MH+, 43%), 295 (M+—CH2O, 100) 267 (M+-NHCOCH3, 35), 221 (M+—C2H4N2O3, 32). Found MH+ 325.15862, C15H25N2O4Si requires 325.15836.

Refinement top

All the hydrogens were clearly discernible in the difference electron density map. Nevertheless, the hydrogens were placed in calculated positions and refined using the riding model under the conditions:. Caryl-Haryl=0.93, Cmethyl-Hmethyl=0.96, Cmethylene-Hmethylene = 0.97, N-H = 0.86 Å, Uiso(H) = 1.2Ueq(C) except for the methyl hydrogens where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT (Bruker, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure showing 50% probability displacement ellipsoids for non-hydrogen atoms with hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996). The two molecules differ mainly in the rotation about the C7 - O4 bond.
N-[3-(tert-Butyldimethylsiloxymethyl)-5-nitrophenyl]acetamide top
Crystal data top
C15H24N2O4SiZ = 4
Mr = 324.45F(000) = 696
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5037 (3) ÅCell parameters from 7491 reflections
b = 10.0713 (3) Åθ = 2.0–25.7°
c = 18.1985 (5) ŵ = 0.15 mm1
α = 89.885 (1)°T = 90 K
β = 86.009 (1)°Plate, colourless
γ = 88.888 (1)°0.34 × 0.22 × 0.20 mm
V = 1737.31 (9) Å3
Data collection top
Siemens SMART CCD
diffractometer
6570 independent reflections
Radiation source: fine-focus sealed tube4732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1111
Tmin = 0.878, Tmax = 0.977k = 1212
15951 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.5796P]
where P = (Fo2 + 2Fc2)/3
6570 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
180 constraints
Crystal data top
C15H24N2O4Siγ = 88.888 (1)°
Mr = 324.45V = 1737.31 (9) Å3
Triclinic, P1Z = 4
a = 9.5037 (3) ÅMo Kα radiation
b = 10.0713 (3) ŵ = 0.15 mm1
c = 18.1985 (5) ÅT = 90 K
α = 89.885 (1)°0.34 × 0.22 × 0.20 mm
β = 86.009 (1)°
Data collection top
Siemens SMART CCD
diffractometer
6570 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4732 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.977Rint = 0.042
15951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
6570 reflectionsΔρmin = 0.31 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
SiA0.17682 (7)0.55743 (6)0.16477 (4)0.02135 (16)
O1A0.24286 (16)0.04298 (15)0.50611 (8)0.0226 (4)
O2A0.05223 (17)0.11050 (15)0.34529 (9)0.0266 (4)
O3A0.22213 (17)0.00550 (16)0.29506 (9)0.0277 (4)
O4A0.16983 (18)0.45572 (16)0.23590 (9)0.0289 (4)
N1A0.19067 (19)0.25787 (18)0.47613 (10)0.0198 (4)
H1A0.20940.33870.48640.024*
N2A0.1138 (2)0.00728 (18)0.32807 (10)0.0210 (4)
C1A0.0477 (2)0.3543 (2)0.33345 (12)0.0205 (5)
C2A0.0484 (2)0.3574 (2)0.38736 (12)0.0201 (5)
H2A0.08390.43860.40080.024*
C3A0.0934 (2)0.2417 (2)0.42199 (12)0.0182 (5)
C4A0.0406 (2)0.1201 (2)0.40215 (12)0.0189 (5)
H4A0.06870.04150.42420.023*
C5A0.0547 (2)0.1205 (2)0.34864 (12)0.0186 (5)
C6A0.1015 (2)0.2331 (2)0.31340 (12)0.0207 (5)
H6A0.16640.22800.27760.025*
C7A0.0922 (3)0.4822 (2)0.29796 (14)0.0293 (6)
H7A10.15000.53500.33340.035*
H7A20.00940.53280.28260.035*
C8A0.2593 (2)0.1632 (2)0.51459 (12)0.0197 (5)
C9A0.3541 (2)0.2174 (2)0.56920 (13)0.0234 (5)
H9A10.31410.20130.61820.035*
H9A20.36380.31120.56160.035*
H9A30.44510.17440.56270.035*
C10A0.0040 (3)0.5812 (3)0.12128 (17)0.0410 (7)
H10A0.06400.61300.15750.061*
H10B0.00040.64480.08210.061*
H10C0.04090.49800.10190.061*
C11A0.2521 (3)0.7202 (2)0.19618 (15)0.0353 (6)
H11A0.34120.70730.22320.053*
H11B0.26560.77580.15420.053*
H11C0.18860.76190.22740.053*
C12A0.2923 (2)0.4702 (2)0.10128 (12)0.0223 (5)
C13A0.3086 (3)0.5563 (3)0.03232 (14)0.0376 (7)
H13A0.21690.57630.00990.056*
H13B0.35810.63740.04610.056*
H13C0.36080.50880.00210.056*
C14A0.2269 (3)0.3351 (2)0.07771 (15)0.0329 (6)
H14A0.28870.29070.04670.049*
H14B0.21360.28200.12060.049*
H14C0.13750.34820.05110.049*
C15A0.4387 (2)0.4478 (3)0.14056 (14)0.0290 (6)
H15A0.49710.40320.10780.043*
H15B0.48150.53190.15470.043*
H15C0.42870.39430.18370.043*
SiB0.66924 (7)1.00767 (6)0.83117 (4)0.02233 (17)
O1B0.26630 (16)0.54068 (15)0.49672 (9)0.0252 (4)
O2B0.54486 (18)0.38508 (16)0.66784 (9)0.0296 (4)
O3B0.71294 (17)0.48319 (16)0.71949 (9)0.0279 (4)
O4B0.71134 (16)0.96086 (16)0.74525 (9)0.0245 (4)
N1B0.31186 (19)0.75499 (18)0.52717 (10)0.0190 (4)
H1B0.28920.83590.51750.023*
N2B0.6080 (2)0.48532 (19)0.68401 (10)0.0216 (4)
C1B0.5633 (2)0.8507 (2)0.66133 (13)0.0209 (5)
C2B0.4649 (2)0.8537 (2)0.60912 (12)0.0194 (5)
H2B0.43370.93550.59200.023*
C3B0.4107 (2)0.7380 (2)0.58106 (12)0.0191 (5)
C4B0.4566 (2)0.6150 (2)0.60630 (12)0.0197 (5)
H4B0.42210.53610.58890.024*
C5B0.5557 (2)0.6154 (2)0.65841 (13)0.0205 (5)
C6B0.6107 (2)0.7283 (2)0.68713 (12)0.0211 (5)
H6B0.67690.72300.72240.025*
C7B0.6209 (3)0.9803 (2)0.68756 (13)0.0262 (6)
H7B10.67221.02350.64660.031*
H7B20.54281.03850.70450.031*
C8B0.2475 (2)0.6608 (2)0.48844 (13)0.0206 (5)
C9B0.1529 (2)0.7165 (2)0.43247 (13)0.0229 (5)
H9B10.19640.70230.38390.034*
H9B20.13810.81000.44080.034*
H9B30.06390.67280.43710.034*
C10B0.4914 (3)0.9443 (3)0.86052 (17)0.0406 (7)
H10D0.42420.97660.82740.061*
H10E0.46420.97460.90950.061*
H10F0.49400.84890.85970.061*
C11B0.6654 (3)1.1913 (2)0.83711 (16)0.0387 (7)
H11D0.75451.22480.81790.058*
H11E0.64831.21780.88760.058*
H11F0.59161.22640.80890.058*
C12B0.8116 (3)0.9314 (2)0.88521 (13)0.0264 (6)
C13B0.7726 (3)0.9463 (3)0.96821 (15)0.0454 (8)
H13D0.84600.90720.99530.068*
H13E0.68560.90210.98070.068*
H13F0.76181.03880.98040.068*
C14B0.8295 (3)0.7825 (2)0.86699 (15)0.0333 (6)
H14D0.85740.77190.81560.050*
H14E0.74170.73890.87820.050*
H14F0.90070.74380.89580.050*
C15B0.9528 (3)0.9991 (3)0.86574 (16)0.0354 (6)
H15D1.02530.95690.89220.053*
H15E0.94481.09120.87910.053*
H15F0.97660.99140.81380.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
SiA0.0258 (3)0.0145 (3)0.0240 (4)0.0004 (3)0.0037 (3)0.0021 (3)
O1A0.0285 (9)0.0141 (8)0.0259 (9)0.0001 (7)0.0061 (7)0.0015 (7)
O2A0.0325 (9)0.0144 (8)0.0336 (10)0.0024 (7)0.0090 (8)0.0033 (7)
O3A0.0272 (9)0.0239 (9)0.0335 (10)0.0010 (7)0.0119 (8)0.0038 (8)
O4A0.0374 (10)0.0220 (9)0.0297 (10)0.0085 (8)0.0177 (8)0.0095 (7)
N1A0.0242 (10)0.0120 (9)0.0239 (10)0.0009 (8)0.0057 (8)0.0002 (8)
N2A0.0254 (11)0.0149 (10)0.0227 (11)0.0001 (8)0.0015 (9)0.0022 (8)
C1A0.0236 (12)0.0175 (12)0.0203 (12)0.0015 (10)0.0004 (10)0.0016 (10)
C2A0.0223 (12)0.0152 (11)0.0225 (12)0.0009 (9)0.0003 (10)0.0007 (10)
C3A0.0189 (11)0.0165 (11)0.0188 (12)0.0010 (9)0.0005 (9)0.0000 (9)
C4A0.0200 (11)0.0147 (11)0.0218 (12)0.0012 (9)0.0003 (10)0.0020 (9)
C5A0.0199 (11)0.0156 (11)0.0203 (12)0.0020 (9)0.0009 (10)0.0043 (9)
C6A0.0225 (12)0.0201 (12)0.0197 (12)0.0009 (10)0.0037 (10)0.0031 (10)
C7A0.0385 (14)0.0200 (13)0.0315 (14)0.0024 (11)0.0166 (12)0.0051 (11)
C8A0.0212 (12)0.0177 (12)0.0200 (12)0.0010 (9)0.0002 (10)0.0031 (9)
C9A0.0278 (13)0.0166 (12)0.0268 (13)0.0029 (10)0.0083 (11)0.0038 (10)
C10A0.0344 (15)0.0291 (15)0.059 (2)0.0062 (12)0.0031 (14)0.0046 (14)
C11A0.0458 (16)0.0218 (14)0.0384 (16)0.0039 (12)0.0049 (13)0.0032 (12)
C12A0.0279 (13)0.0203 (12)0.0192 (12)0.0008 (10)0.0039 (10)0.0026 (10)
C13A0.0455 (17)0.0416 (17)0.0267 (14)0.0017 (13)0.0096 (13)0.0101 (13)
C14A0.0418 (16)0.0252 (14)0.0318 (15)0.0010 (12)0.0023 (12)0.0050 (11)
C15A0.0287 (13)0.0283 (14)0.0308 (14)0.0022 (11)0.0075 (11)0.0021 (11)
SiB0.0263 (4)0.0151 (3)0.0256 (4)0.0002 (3)0.0016 (3)0.0021 (3)
O1B0.0291 (9)0.0142 (8)0.0332 (10)0.0009 (7)0.0086 (8)0.0002 (7)
O2B0.0364 (10)0.0172 (9)0.0363 (10)0.0019 (8)0.0102 (8)0.0038 (8)
O3B0.0268 (9)0.0247 (9)0.0334 (10)0.0016 (7)0.0117 (8)0.0056 (8)
O4B0.0281 (9)0.0237 (9)0.0227 (9)0.0006 (7)0.0085 (7)0.0033 (7)
N1B0.0227 (10)0.0121 (9)0.0225 (10)0.0023 (8)0.0049 (8)0.0002 (8)
N2B0.0250 (11)0.0179 (10)0.0220 (10)0.0011 (8)0.0027 (9)0.0026 (8)
C1B0.0237 (12)0.0167 (12)0.0220 (12)0.0002 (10)0.0006 (10)0.0009 (10)
C2B0.0218 (12)0.0142 (11)0.0219 (12)0.0024 (9)0.0007 (10)0.0021 (9)
C3B0.0191 (11)0.0175 (12)0.0206 (12)0.0009 (9)0.0004 (10)0.0001 (10)
C4B0.0213 (12)0.0136 (11)0.0237 (12)0.0005 (9)0.0015 (10)0.0009 (9)
C5B0.0223 (12)0.0164 (12)0.0227 (12)0.0021 (9)0.0006 (10)0.0022 (10)
C6B0.0222 (12)0.0217 (12)0.0191 (12)0.0010 (10)0.0006 (10)0.0001 (10)
C7B0.0309 (13)0.0201 (12)0.0286 (14)0.0012 (10)0.0095 (11)0.0005 (10)
C8B0.0200 (12)0.0185 (12)0.0227 (12)0.0010 (10)0.0013 (10)0.0031 (10)
C9B0.0266 (12)0.0159 (12)0.0265 (13)0.0017 (10)0.0055 (10)0.0018 (10)
C10B0.0348 (15)0.0322 (15)0.0533 (19)0.0004 (12)0.0063 (14)0.0005 (14)
C11B0.0473 (17)0.0226 (14)0.0481 (18)0.0031 (12)0.0172 (14)0.0052 (13)
C12B0.0353 (14)0.0226 (13)0.0215 (13)0.0013 (11)0.0043 (11)0.0016 (10)
C13B0.069 (2)0.0412 (18)0.0267 (15)0.0057 (15)0.0072 (14)0.0018 (13)
C14B0.0413 (16)0.0208 (13)0.0387 (16)0.0056 (12)0.0108 (13)0.0004 (12)
C15B0.0305 (14)0.0329 (15)0.0439 (17)0.0011 (12)0.0106 (12)0.0007 (13)
Geometric parameters (Å, º) top
SiA—O4A1.6533 (16)SiB—O4B1.6540 (17)
SiA—C11A1.851 (3)SiB—C11B1.852 (3)
SiA—C10A1.861 (3)SiB—C10B1.862 (3)
SiA—C12A1.879 (2)SiB—C12B1.879 (2)
O1A—C8A1.235 (3)O1B—C8B1.230 (3)
O2A—N2A1.233 (2)O2B—N2B1.231 (2)
O3A—N2A1.228 (2)O3B—N2B1.225 (2)
O4A—C7A1.420 (3)O4B—C7B1.414 (3)
N1A—C8A1.364 (3)N1B—C8B1.362 (3)
N1A—C3A1.409 (3)N1B—C3B1.412 (3)
N1A—H1A0.8600N1B—H1B0.8600
N2A—C5A1.473 (3)N2B—C5B1.478 (3)
C1A—C2A1.387 (3)C1B—C2B1.378 (3)
C1A—C6A1.392 (3)C1B—C6B1.396 (3)
C1A—C7A1.507 (3)C1B—C7B1.515 (3)
C2A—C3A1.398 (3)C2B—C3B1.395 (3)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.390 (3)C3B—C4B1.393 (3)
C4A—C5A1.375 (3)C4B—C5B1.382 (3)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.383 (3)C5B—C6B1.379 (3)
C6A—H6A0.9300C6B—H6B0.9300
C7A—H7A10.9700C7B—H7B10.9700
C7A—H7A20.9700C7B—H7B20.9700
C8A—C9A1.498 (3)C8B—C9B1.505 (3)
C9A—H9A10.9600C9B—H9B10.9600
C9A—H9A20.9600C9B—H9B20.9600
C9A—H9A30.9600C9B—H9B30.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C11A—H11A0.9600C11B—H11D0.9600
C11A—H11B0.9600C11B—H11E0.9600
C11A—H11C0.9600C11B—H11F0.9600
C12A—C14A1.534 (3)C12B—C15B1.535 (4)
C12A—C13A1.539 (3)C12B—C13B1.537 (4)
C12A—C15A1.540 (3)C12B—C14B1.541 (3)
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
C14A—H14A0.9600C14B—H14D0.9600
C14A—H14B0.9600C14B—H14E0.9600
C14A—H14C0.9600C14B—H14F0.9600
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
O4A—SiA—C11A109.65 (11)O4B—SiB—C11B109.84 (11)
O4A—SiA—C10A109.68 (11)O4B—SiB—C10B108.94 (12)
C11A—SiA—C10A109.21 (13)C11B—SiB—C10B109.21 (13)
O4A—SiA—C12A104.02 (9)O4B—SiB—C12B104.37 (10)
C11A—SiA—C12A112.45 (11)C11B—SiB—C12B111.97 (12)
C10A—SiA—C12A111.70 (12)C10B—SiB—C12B112.37 (12)
C7A—O4A—SiA123.43 (15)C7B—O4B—SiB123.18 (15)
C8A—N1A—C3A129.01 (19)C8B—N1B—C3B128.91 (19)
C8A—N1A—H1A115.5C8B—N1B—H1B115.5
C3A—N1A—H1A115.5C3B—N1B—H1B115.5
O3A—N2A—O2A123.41 (19)O3B—N2B—O2B123.62 (18)
O3A—N2A—C5A118.28 (17)O3B—N2B—C5B118.09 (19)
O2A—N2A—C5A118.31 (18)O2B—N2B—C5B118.28 (18)
C2A—C1A—C6A119.3 (2)C2B—C1B—C6B119.2 (2)
C2A—C1A—C7A119.4 (2)C2B—C1B—C7B119.2 (2)
C6A—C1A—C7A121.3 (2)C6B—C1B—C7B121.6 (2)
C1A—C2A—C3A121.7 (2)C1B—C2B—C3B122.1 (2)
C1A—C2A—H2A119.1C1B—C2B—H2B118.9
C3A—C2A—H2A119.1C3B—C2B—H2B118.9
C4A—C3A—C2A119.3 (2)C4B—C3B—C2B119.4 (2)
C4A—C3A—N1A124.29 (19)C4B—C3B—N1B124.2 (2)
C2A—C3A—N1A116.4 (2)C2B—C3B—N1B116.38 (19)
C5A—C4A—C3A117.5 (2)C5B—C4B—C3B117.0 (2)
C5A—C4A—H4A121.3C5B—C4B—H4B121.5
C3A—C4A—H4A121.3C3B—C4B—H4B121.5
C4A—C5A—C6A124.6 (2)C6B—C5B—C4B124.7 (2)
C4A—C5A—N2A118.10 (19)C6B—C5B—N2B117.9 (2)
C6A—C5A—N2A117.30 (19)C4B—C5B—N2B117.5 (2)
C5A—C6A—C1A117.5 (2)C5B—C6B—C1B117.5 (2)
C5A—C6A—H6A121.2C5B—C6B—H6B121.2
C1A—C6A—H6A121.2C1B—C6B—H6B121.2
O4A—C7A—C1A110.39 (19)O4B—C7B—C1B112.15 (19)
O4A—C7A—H7A1109.6O4B—C7B—H7B1109.2
C1A—C7A—H7A1109.6C1B—C7B—H7B1109.2
O4A—C7A—H7A2109.6O4B—C7B—H7B2109.2
C1A—C7A—H7A2109.6C1B—C7B—H7B2109.2
H7A1—C7A—H7A2108.1H7B1—C7B—H7B2107.9
O1A—C8A—N1A122.9 (2)O1B—C8B—N1B123.7 (2)
O1A—C8A—C9A122.75 (19)O1B—C8B—C9B122.3 (2)
N1A—C8A—C9A114.29 (19)N1B—C8B—C9B114.01 (19)
C8A—C9A—H9A1109.5C8B—C9B—H9B1109.5
C8A—C9A—H9A2109.5C8B—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
C8A—C9A—H9A3109.5C8B—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
SiA—C10A—H10A109.5SiB—C10B—H10D109.5
SiA—C10A—H10B109.5SiB—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
SiA—C10A—H10C109.5SiB—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
SiA—C11A—H11A109.5SiB—C11B—H11D109.5
SiA—C11A—H11B109.5SiB—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
SiA—C11A—H11C109.5SiB—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C14A—C12A—C13A109.0 (2)C15B—C12B—C13B109.3 (2)
C14A—C12A—C15A108.7 (2)C15B—C12B—C14B108.4 (2)
C13A—C12A—C15A109.36 (19)C13B—C12B—C14B108.6 (2)
C14A—C12A—SiA110.59 (16)C15B—C12B—SiB110.34 (17)
C13A—C12A—SiA109.21 (17)C13B—C12B—SiB110.11 (18)
C15A—C12A—SiA109.89 (16)C14B—C12B—SiB110.04 (17)
C12A—C13A—H13A109.5C12B—C13B—H13D109.5
C12A—C13A—H13B109.5C12B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C12A—C13A—H13C109.5C12B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C12A—C14A—H14A109.5C12B—C14B—H14D109.5
C12A—C14A—H14B109.5C12B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C12A—C14A—H14C109.5C12B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C12A—C15A—H15A109.5C12B—C15B—H15D109.5
C12A—C15A—H15B109.5C12B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C12A—C15A—H15C109.5C12B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.862.132.982 (2)172
N1B—H1B···O1Ai0.862.142.991 (2)173
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H24N2O4Si
Mr324.45
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.5037 (3), 10.0713 (3), 18.1985 (5)
α, β, γ (°)89.885 (1), 86.009 (1), 88.888 (1)
V3)1737.31 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.34 × 0.22 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.878, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
15951, 6570, 4732
Rint0.042
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.05
No. of reflections6570
No. of parameters409
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: SMART (Bruker, 1995), SAINT (Bruker, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.862.132.982 (2)172.3
N1B—H1B···O1Ai0.862.142.991 (2)172.9
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Higher Education Commission of Pakistan and The University of Auckland, New Zealand.

References

First citationBarker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett. 49, 1660–1664.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1995). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCrouch, R. D. (2004). Tetrahedron, 60, 5833–5871.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. IUCr Monographs on Crystallography 9. New York: Oxford University Press.  Google Scholar
First citationGong, B. & Yan, Y. (1997). Biochem. Biophys. Res. Commun. 240, 557–560.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJarowicki, K. & Kocienski, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 4005–4037.  Web of Science CrossRef Google Scholar
First citationKocienski, P. J. (2004). Protein Groups, 3rd ed. New York, Stuttgart: Georg Thieme.  Google Scholar
First citationNelson, T. D. & Crouch, R. D. (1996). Synthesis, 9, 1031–1069.  CrossRef Google Scholar
First citationSchelhaas, M. & Waldmann, H. (1996). Angew. Chem. Int. Ed. 35, 2056–2083.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWetter, H. & Oertle, K. (1985). Tetrahedron Lett. 26, 5515–5518.  CrossRef CAS Web of Science Google Scholar
First citationWuts, P. G. & Green, T. W. (2006). Protective Groups in Organic Synthesis, 4th ed. Hoboken: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds