organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)male­imide

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 2 September 2008; accepted 18 September 2008; online 24 September 2008)

In the title compound, C10H6ClNO2, the dihedral angle between the benzene and maleimide rings is 47.54 (9)°. Mol­ecules form centrosymmetric dimers through C—H⋯O hydrogen bonds, resulting in rings of graph-set motif R22(8) and chains in the [100] direction. Mol­ecules are also linked by C—H⋯Cl hydrogen bonds along [001]. In this same direction, mol­ecules are connected to other neighbouring mol­ecules by C—H⋯O hydrogen bonds, forming edge-fused R44(24) rings.

Related literature

For general background, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Howell & Zhang (2006[Howell, B. & Zhang, J. (2006). J. Therm. Anal. Calorim. 83, 83-86.]); Miller et al. (2000[Miller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Cryst. 30, 9, 563-571.], 2001[Miller, C. W., Jönsson, E. S., Hoyle, C. E., Viswanathan, K. & Valente, E. J. (2001). J. Phys. Chem. B, 105, 2707-2717.]); Moreno-Fuquen, Valencia, Abonia, Kennedy & Graham (2003[Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717-o1718.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Sarma & Desiraju (1986[Sarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222-228.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6ClNO2

  • Mr = 207.61

  • Monoclinic, P 21 /c

  • a = 10.6504 (7) Å

  • b = 3.8589 (2) Å

  • c = 22.0308 (14) Å

  • β = 100.741 (3)°

  • V = 889.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 150 K

  • 0.18 × 0.04 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.951, Tmax = 0.982

  • 11729 measured reflections

  • 1646 independent reflections

  • 1231 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.07

  • 1646 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.58 3.493 (3) 169
C2—H2⋯O1ii 0.93 2.77 3.659 (3) 161
C5—H5⋯O2iii 0.93 2.58 3.319 (3) 137
C9—H9⋯O2iv 0.93 2.64 3.326 (3) 131
C9—H9⋯Cl1v 0.93 2.89 3.551 (3) 129
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x+1, -y, -z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

It is known that cyclic unsaturated dicarbonyl compounds such as N-substituted maleimides can be used in free-radical-initiated polymerization processes upon exposure to light (Howell & Zhang, 2006). In order to study the possible application of N-(p-chlorophenylmaleimide) (I) in polymerization processes, and to explain its hydrogen bonding patterns, the synthesis and the study of the crystal structure are reported in this work. N-(p-nitrophenylmaleimide) (4NPMI) (Moreno-Fuquen et al., 2003), N-(o-chlorophenylmaleimide) (2ClPMI) systems (Miller et al., 2001) show a close analogy to the title compounds and are thus employed as a basic reference for comparison. Perspective view of (I), showing the atomic numbering scheme, can be seen in Fig.1. In the arylmaleimide systems the value of the dihedral angle between the benzene and imidic rings influences on the polimerization process, and the presence of different substituents in the benzene ring change the value of this angle (Miller et al., 2000). The photochemical properties of arylmaleimide systems depend on the value of this angle. The dihedral angle between benzene and maleimide planes is 42.98 (5)° for 4NPMI, 66.10 (4) ° for 2ClPMI and 47.54 (9)° for (I). The chlorine atoms, which are pending on the aromatic nucleus, tend to steer the crystal structure to a state characterized by a short axis (Sarma & Desiraju, 1986). For (I), the b axis has a small value [3.8589 (2) Å] and a Cl···Cl nonbonded contact is observed at the same distance. The crystal structure of (I) is stabilized by weak intermolecular C—H···O and C—H···Cl hydrogen-bonds (Nardelli, 1995) (Table 1). The molecules of (I) are linked into a three-dimensional framework by a combination of C—H···O and C—H···Cl hydrogen bonds. The formation of the framework can be explained in terms of three-one substructures. In the first substructure, atom C8 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O1 in the molecule at (-x,1 - y,1 - z) and atom C9 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O2 in the molecule at (1 - x,1 - y,1 - z). Both interactions generate dimers containing centrosymmetric rings with graph motif R22(8) (Etter, 1990) (Fig. 2, supp. material). These dimers are linked by C(5) chains which are running parallel to [100] direction. In the second substructure, atom C9 in the molecule at (x,1/2 - y,-1/2 + z) acts as a hydrogen-bond donor to atom Cl1 in the molecule at (x,y,z), similarly, atom C5 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O2 in the molecule at (x,1 + y,z) so generating a chain of edge-fused R44(24) rings along [001] (Fig. 3, supp. material). The third one-dimensional substructure is built by C—H···O hydrogen bonds. Atom C2 in the molecule at (x,y,z) acts as hydrogen bond donor to maleimidic O1 in the molecule at (-x,-1/2 + y,1/2 - z) so generating a C(7) chains in the [010] direction (Fig.4, supp. material). The low value of the dihedral angle between benzene and maleimide planes, allows to conclude that (I) is not a good candidate to use in a photopolymerization process.

Related literature top

For related literature, see: Etter (1990); Howell & Zhang (2006); Miller et al. (2000, 2001); Moreno-Fuquen, Valencia, Abonia, Kennedy & Graham (2003); Nardelli (1995); Sarma & Desiraju (1986). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

All reagents (purchased from Aldrich) and solvents were used as received. Column chromatography was performed using silica gel H60 to purify the intermediates and final products. Thin layer chromatography (TLC) was used to confirm the structure of the individual compounds.

Refinement top

The space group P 21/c for (I) was uniquely assigned from the systematic absences. All H-atoms were located from difference maps and then treated as riding atoms [C—H= 0.93Å and Uiso(H)= 1.2Ueq(C)].

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of centrosymmetric R22(8) dimmers rings and C(4) chains which are running parallel to the [100] direction. [Symmetry codes: (i) 1 + x,y + z; (ii)1 - x,1 - y,1 - z; (iii) -x,1 - y,1 - z].
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing the formation of C(9) chains and edge-fused R44(24) rings along [001]. [Symmetry codes: (i) x,1/2 - y,-1/2 + z; (ii) x,1 + y,z; (iii) x,y,-1 + z; (iv) x,1 + y,-1 + z; (v) x,3/2 - y,-1/2 + z; (vi) x,1/2 - y,1/2 + z; (vii) x,1/2 - y,1/2 + z].
[Figure 4] Fig. 4. Part of the crystal structure of (I) showing the formation of C(7) chains along [010]. [Symmetry codes: (i) x,-1 + y,z; (ii) -x,-1/2 + y,1/2 + z; (iii) -x,1/2 + y,1/2 - z; (iv) x,1 + y,z].
[Figure 5] Fig. 5. The formation of the title compound.
N-(4-Chlorophenyl)maleimide top
Crystal data top
C10H6ClNO2F(000) = 424
Mr = 207.61Dx = 1.550 Mg m3
Monoclinic, P21/cMelting point: 384(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.6504 (7) ÅCell parameters from 11729 reflections
b = 3.8589 (2) Åθ = 2.9–25.4°
c = 22.0308 (14) ŵ = 0.40 mm1
β = 100.741 (3)°T = 150 K
V = 889.57 (9) Å3Needle, pale-yellow
Z = 40.18 × 0.04 × 0.03 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1646 independent reflections
Radiation source: fine-focus sealed tube1231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ϕ and ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.951, Tmax = 0.982k = 44
11729 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.491P]
where P = (Fo2 + 2Fc2)/3
1646 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C10H6ClNO2V = 889.57 (9) Å3
Mr = 207.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6504 (7) ŵ = 0.40 mm1
b = 3.8589 (2) ÅT = 150 K
c = 22.0308 (14) Å0.18 × 0.04 × 0.03 mm
β = 100.741 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1646 independent reflections
Absorption correction: multi-scan
(DENZO; Otwinowski & Minor, 1997)
1231 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.982Rint = 0.089
11729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
1646 reflectionsΔρmin = 0.31 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26337 (8)0.6828 (2)0.13972 (3)0.0486 (3)
O10.04581 (16)0.6461 (5)0.40894 (8)0.0419 (5)
O20.45773 (15)0.2532 (5)0.43624 (8)0.0342 (5)
N10.25175 (18)0.4677 (5)0.40446 (9)0.0278 (5)
C10.2590 (2)0.6168 (6)0.21732 (11)0.0303 (6)
C20.1564 (2)0.4474 (7)0.23409 (11)0.0314 (6)
H20.08990.36570.20400.038*
C30.1537 (2)0.4004 (6)0.29608 (11)0.0282 (6)
H30.08520.28700.30810.034*
C40.2542 (2)0.5240 (6)0.34041 (11)0.0269 (6)
C50.3567 (2)0.6933 (6)0.32329 (12)0.0283 (6)
H50.42370.77480.35320.034*
C60.3585 (2)0.7399 (6)0.26132 (12)0.0303 (6)
H60.42660.85410.24920.036*
C70.1462 (2)0.5170 (7)0.43329 (12)0.0323 (6)
C80.1852 (2)0.3901 (7)0.49762 (11)0.0340 (6)
H80.13360.38620.52730.041*
C90.3057 (2)0.2833 (7)0.50601 (12)0.0317 (6)
H90.35240.19580.54270.038*
C100.3538 (2)0.3260 (6)0.44722 (11)0.0291 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0730 (6)0.0459 (5)0.0305 (4)0.0071 (4)0.0186 (4)0.0053 (3)
O10.0297 (10)0.0600 (13)0.0376 (11)0.0126 (9)0.0101 (8)0.0056 (9)
O20.0285 (10)0.0420 (11)0.0320 (10)0.0049 (8)0.0055 (8)0.0004 (8)
N10.0251 (11)0.0339 (12)0.0249 (11)0.0031 (9)0.0061 (9)0.0013 (9)
C10.0401 (15)0.0260 (14)0.0262 (14)0.0073 (11)0.0102 (11)0.0018 (11)
C20.0325 (14)0.0296 (14)0.0304 (15)0.0052 (11)0.0009 (11)0.0018 (11)
C30.0242 (13)0.0275 (14)0.0337 (14)0.0016 (10)0.0074 (11)0.0025 (11)
C40.0274 (13)0.0262 (13)0.0277 (13)0.0047 (10)0.0064 (10)0.0008 (10)
C50.0278 (13)0.0252 (13)0.0316 (14)0.0035 (10)0.0045 (10)0.0025 (11)
C60.0301 (13)0.0260 (14)0.0382 (16)0.0034 (11)0.0151 (12)0.0020 (11)
C70.0286 (14)0.0368 (15)0.0329 (15)0.0005 (12)0.0097 (11)0.0052 (12)
C80.0361 (15)0.0392 (16)0.0288 (14)0.0014 (12)0.0121 (11)0.0005 (12)
C90.0346 (15)0.0338 (14)0.0260 (14)0.0009 (12)0.0036 (11)0.0013 (11)
C100.0311 (14)0.0261 (13)0.0292 (14)0.0017 (11)0.0036 (11)0.0025 (11)
Geometric parameters (Å, º) top
Cl1—C11.738 (2)C3—H30.9300
O1—C71.210 (3)C4—C51.384 (3)
O2—C101.209 (3)C5—C61.380 (4)
N1—C71.404 (3)C5—H50.9300
N1—C101.410 (3)C6—H60.9300
N1—C41.433 (3)C7—C81.484 (4)
C1—C61.380 (4)C8—C91.327 (4)
C1—C21.381 (4)C8—H80.9300
C2—C31.383 (3)C9—C101.489 (4)
C2—H20.9300C9—H90.9300
C3—C41.392 (3)
C7—N1—C10109.5 (2)C4—C5—H5120.4
C7—N1—C4126.0 (2)C1—C6—C5120.0 (2)
C10—N1—C4124.3 (2)C1—C6—H6120.0
C6—C1—C2121.1 (2)C5—C6—H6120.0
C6—C1—Cl1118.86 (19)O1—C7—N1124.8 (2)
C2—C1—Cl1120.01 (19)O1—C7—C8128.8 (2)
C1—C2—C3119.3 (2)N1—C7—C8106.4 (2)
C1—C2—H2120.4C9—C8—C7109.1 (2)
C3—C2—H2120.4C9—C8—H8125.5
C2—C3—C4119.5 (2)C7—C8—H8125.5
C2—C3—H3120.2C8—C9—C10109.0 (2)
C4—C3—H3120.2C8—C9—H9125.5
C5—C4—C3120.9 (2)C10—C9—H9125.5
C5—C4—N1120.0 (2)O2—C10—N1125.3 (2)
C3—C4—N1119.1 (2)O2—C10—C9128.7 (2)
C6—C5—C4119.2 (2)N1—C10—C9106.0 (2)
C6—C5—H5120.4
C6—C1—C2—C30.0 (4)C10—N1—C7—O1177.3 (3)
Cl1—C1—C2—C3179.27 (18)C4—N1—C7—O17.5 (4)
C1—C2—C3—C40.1 (4)C10—N1—C7—C81.2 (3)
C2—C3—C4—C50.0 (4)C4—N1—C7—C8174.0 (2)
C2—C3—C4—N1178.7 (2)O1—C7—C8—C9177.0 (3)
C7—N1—C4—C5136.1 (3)N1—C7—C8—C91.5 (3)
C10—N1—C4—C549.4 (3)C7—C8—C9—C101.1 (3)
C7—N1—C4—C345.1 (3)C7—N1—C10—O2179.8 (2)
C10—N1—C4—C3129.4 (3)C4—N1—C10—O24.4 (4)
C3—C4—C5—C60.1 (4)C7—N1—C10—C90.6 (3)
N1—C4—C5—C6178.9 (2)C4—N1—C10—C9174.7 (2)
C2—C1—C6—C50.2 (4)C8—C9—C10—O2178.8 (3)
Cl1—C1—C6—C5179.46 (18)C8—C9—C10—N10.3 (3)
C4—C5—C6—C10.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.583.493 (3)169
C2—H2···O1ii0.932.773.659 (3)161
C5—H5···O2iii0.932.583.319 (3)137
C9—H9···O2iv0.932.643.326 (3)131
C9—H9···Cl1v0.932.893.551 (3)129
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6ClNO2
Mr207.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.6504 (7), 3.8589 (2), 22.0308 (14)
β (°) 100.741 (3)
V3)889.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.18 × 0.04 × 0.03
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO; Otwinowski & Minor, 1997)
Tmin, Tmax0.951, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11729, 1646, 1231
Rint0.089
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.07
No. of reflections1646
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.31

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.583.493 (3)169
C2—H2···O1ii0.932.773.659 (3)161
C5—H5···O2iii0.932.583.319 (3)137
C9—H9···O2iv0.932.643.326 (3)131
C9—H9···Cl1v0.932.893.551 (3)129
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x, y+1/2, z+1/2.
 

Acknowledgements

RMF dedicates this work to the memory of Professor J. Valderrama. RMF is grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of the license of Cambridge Structural Database System (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). This work was partially supported by the Universidad del Valle, Colombia.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowell, B. & Zhang, J. (2006). J. Therm. Anal. Calorim. 83, 83–86.  Web of Science CrossRef CAS Google Scholar
First citationMiller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Cryst. 30, 9, 563–571.  Google Scholar
First citationMiller, C. W., Jönsson, E. S., Hoyle, C. E., Viswanathan, K. & Valente, E. J. (2001). J. Phys. Chem. B, 105, 2707–2717.  Web of Science CrossRef CAS Google Scholar
First citationMoreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717–o1718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222–228.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds