organic compounds
N-(4-Chlorophenyl)maleimide
aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title compound, C10H6ClNO2, the dihedral angle between the benzene and maleimide rings is 47.54 (9)°. Molecules form centrosymmetric dimers through C—H⋯O hydrogen bonds, resulting in rings of graph-set motif R22(8) and chains in the [100] direction. Molecules are also linked by C—H⋯Cl hydrogen bonds along [001]. In this same direction, molecules are connected to other neighbouring molecules by C—H⋯O hydrogen bonds, forming edge-fused R44(24) rings.
Related literature
For general background, see: Etter (1990); Howell & Zhang (2006); Miller et al. (2000, 2001); Moreno-Fuquen, Valencia, Abonia, Kennedy & Graham (2003); Nardelli (1995); Sarma & Desiraju (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 2000); cell DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).
Supporting information
10.1107/S160053680803016X/fj2150sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680803016X/fj2150Isup2.hkl
All reagents (purchased from Aldrich) and solvents were used as received.
was performed using silica gel H60 to purify the intermediates and final products. Thin layer (TLC) was used to confirm the structure of the individual compounds.The
P 21/c for (I) was uniquely assigned from the All H-atoms were located from difference maps and then treated as riding atoms [C—H= 0.93Å and Uiso(H)= 1.2Ueq(C)].Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).C10H6ClNO2 | F(000) = 424 |
Mr = 207.61 | Dx = 1.550 Mg m−3 |
Monoclinic, P21/c | Melting point: 384(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 10.6504 (7) Å | Cell parameters from 11729 reflections |
b = 3.8589 (2) Å | θ = 2.9–25.4° |
c = 22.0308 (14) Å | µ = 0.40 mm−1 |
β = 100.741 (3)° | T = 150 K |
V = 889.57 (9) Å3 | Needle, pale-yellow |
Z = 4 | 0.18 × 0.04 × 0.03 mm |
Bruker–Nonius KappaCCD diffractometer | 1646 independent reflections |
Radiation source: fine-focus sealed tube | 1231 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.089 |
ϕ and ω scans | θmax = 25.4°, θmin = 3.0° |
Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997) | h = −12→12 |
Tmin = 0.951, Tmax = 0.982 | k = −4→4 |
11729 measured reflections | l = −24→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.491P] where P = (Fo2 + 2Fc2)/3 |
1646 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C10H6ClNO2 | V = 889.57 (9) Å3 |
Mr = 207.61 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.6504 (7) Å | µ = 0.40 mm−1 |
b = 3.8589 (2) Å | T = 150 K |
c = 22.0308 (14) Å | 0.18 × 0.04 × 0.03 mm |
β = 100.741 (3)° |
Bruker–Nonius KappaCCD diffractometer | 1646 independent reflections |
Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997) | 1231 reflections with I > 2σ(I) |
Tmin = 0.951, Tmax = 0.982 | Rint = 0.089 |
11729 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.21 e Å−3 |
1646 reflections | Δρmin = −0.31 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.26337 (8) | 0.6828 (2) | 0.13972 (3) | 0.0486 (3) | |
O1 | 0.04581 (16) | 0.6461 (5) | 0.40894 (8) | 0.0419 (5) | |
O2 | 0.45773 (15) | 0.2532 (5) | 0.43624 (8) | 0.0342 (5) | |
N1 | 0.25175 (18) | 0.4677 (5) | 0.40446 (9) | 0.0278 (5) | |
C1 | 0.2590 (2) | 0.6168 (6) | 0.21732 (11) | 0.0303 (6) | |
C2 | 0.1564 (2) | 0.4474 (7) | 0.23409 (11) | 0.0314 (6) | |
H2 | 0.0899 | 0.3657 | 0.2040 | 0.038* | |
C3 | 0.1537 (2) | 0.4004 (6) | 0.29608 (11) | 0.0282 (6) | |
H3 | 0.0852 | 0.2870 | 0.3081 | 0.034* | |
C4 | 0.2542 (2) | 0.5240 (6) | 0.34041 (11) | 0.0269 (6) | |
C5 | 0.3567 (2) | 0.6933 (6) | 0.32329 (12) | 0.0283 (6) | |
H5 | 0.4237 | 0.7748 | 0.3532 | 0.034* | |
C6 | 0.3585 (2) | 0.7399 (6) | 0.26132 (12) | 0.0303 (6) | |
H6 | 0.4266 | 0.8541 | 0.2492 | 0.036* | |
C7 | 0.1462 (2) | 0.5170 (7) | 0.43329 (12) | 0.0323 (6) | |
C8 | 0.1852 (2) | 0.3901 (7) | 0.49762 (11) | 0.0340 (6) | |
H8 | 0.1336 | 0.3862 | 0.5273 | 0.041* | |
C9 | 0.3057 (2) | 0.2833 (7) | 0.50601 (12) | 0.0317 (6) | |
H9 | 0.3524 | 0.1958 | 0.5427 | 0.038* | |
C10 | 0.3538 (2) | 0.3260 (6) | 0.44722 (11) | 0.0291 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0730 (6) | 0.0459 (5) | 0.0305 (4) | 0.0071 (4) | 0.0186 (4) | 0.0053 (3) |
O1 | 0.0297 (10) | 0.0600 (13) | 0.0376 (11) | 0.0126 (9) | 0.0101 (8) | 0.0056 (9) |
O2 | 0.0285 (10) | 0.0420 (11) | 0.0320 (10) | 0.0049 (8) | 0.0055 (8) | −0.0004 (8) |
N1 | 0.0251 (11) | 0.0339 (12) | 0.0249 (11) | 0.0031 (9) | 0.0061 (9) | 0.0013 (9) |
C1 | 0.0401 (15) | 0.0260 (14) | 0.0262 (14) | 0.0073 (11) | 0.0102 (11) | 0.0018 (11) |
C2 | 0.0325 (14) | 0.0296 (14) | 0.0304 (15) | 0.0052 (11) | 0.0009 (11) | −0.0018 (11) |
C3 | 0.0242 (13) | 0.0275 (14) | 0.0337 (14) | 0.0016 (10) | 0.0074 (11) | 0.0025 (11) |
C4 | 0.0274 (13) | 0.0262 (13) | 0.0277 (13) | 0.0047 (10) | 0.0064 (10) | 0.0008 (10) |
C5 | 0.0278 (13) | 0.0252 (13) | 0.0316 (14) | 0.0035 (10) | 0.0045 (10) | −0.0025 (11) |
C6 | 0.0301 (13) | 0.0260 (14) | 0.0382 (16) | 0.0034 (11) | 0.0151 (12) | 0.0020 (11) |
C7 | 0.0286 (14) | 0.0368 (15) | 0.0329 (15) | 0.0005 (12) | 0.0097 (11) | −0.0052 (12) |
C8 | 0.0361 (15) | 0.0392 (16) | 0.0288 (14) | −0.0014 (12) | 0.0121 (11) | −0.0005 (12) |
C9 | 0.0346 (15) | 0.0338 (14) | 0.0260 (14) | −0.0009 (12) | 0.0036 (11) | −0.0013 (11) |
C10 | 0.0311 (14) | 0.0261 (13) | 0.0292 (14) | 0.0017 (11) | 0.0036 (11) | −0.0025 (11) |
Cl1—C1 | 1.738 (2) | C3—H3 | 0.9300 |
O1—C7 | 1.210 (3) | C4—C5 | 1.384 (3) |
O2—C10 | 1.209 (3) | C5—C6 | 1.380 (4) |
N1—C7 | 1.404 (3) | C5—H5 | 0.9300 |
N1—C10 | 1.410 (3) | C6—H6 | 0.9300 |
N1—C4 | 1.433 (3) | C7—C8 | 1.484 (4) |
C1—C6 | 1.380 (4) | C8—C9 | 1.327 (4) |
C1—C2 | 1.381 (4) | C8—H8 | 0.9300 |
C2—C3 | 1.383 (3) | C9—C10 | 1.489 (4) |
C2—H2 | 0.9300 | C9—H9 | 0.9300 |
C3—C4 | 1.392 (3) | ||
C7—N1—C10 | 109.5 (2) | C4—C5—H5 | 120.4 |
C7—N1—C4 | 126.0 (2) | C1—C6—C5 | 120.0 (2) |
C10—N1—C4 | 124.3 (2) | C1—C6—H6 | 120.0 |
C6—C1—C2 | 121.1 (2) | C5—C6—H6 | 120.0 |
C6—C1—Cl1 | 118.86 (19) | O1—C7—N1 | 124.8 (2) |
C2—C1—Cl1 | 120.01 (19) | O1—C7—C8 | 128.8 (2) |
C1—C2—C3 | 119.3 (2) | N1—C7—C8 | 106.4 (2) |
C1—C2—H2 | 120.4 | C9—C8—C7 | 109.1 (2) |
C3—C2—H2 | 120.4 | C9—C8—H8 | 125.5 |
C2—C3—C4 | 119.5 (2) | C7—C8—H8 | 125.5 |
C2—C3—H3 | 120.2 | C8—C9—C10 | 109.0 (2) |
C4—C3—H3 | 120.2 | C8—C9—H9 | 125.5 |
C5—C4—C3 | 120.9 (2) | C10—C9—H9 | 125.5 |
C5—C4—N1 | 120.0 (2) | O2—C10—N1 | 125.3 (2) |
C3—C4—N1 | 119.1 (2) | O2—C10—C9 | 128.7 (2) |
C6—C5—C4 | 119.2 (2) | N1—C10—C9 | 106.0 (2) |
C6—C5—H5 | 120.4 | ||
C6—C1—C2—C3 | 0.0 (4) | C10—N1—C7—O1 | 177.3 (3) |
Cl1—C1—C2—C3 | −179.27 (18) | C4—N1—C7—O1 | −7.5 (4) |
C1—C2—C3—C4 | −0.1 (4) | C10—N1—C7—C8 | −1.2 (3) |
C2—C3—C4—C5 | 0.0 (4) | C4—N1—C7—C8 | 174.0 (2) |
C2—C3—C4—N1 | −178.7 (2) | O1—C7—C8—C9 | −177.0 (3) |
C7—N1—C4—C5 | 136.1 (3) | N1—C7—C8—C9 | 1.5 (3) |
C10—N1—C4—C5 | −49.4 (3) | C7—C8—C9—C10 | −1.1 (3) |
C7—N1—C4—C3 | −45.1 (3) | C7—N1—C10—O2 | 179.8 (2) |
C10—N1—C4—C3 | 129.4 (3) | C4—N1—C10—O2 | 4.4 (4) |
C3—C4—C5—C6 | 0.1 (4) | C7—N1—C10—C9 | 0.6 (3) |
N1—C4—C5—C6 | 178.9 (2) | C4—N1—C10—C9 | −174.7 (2) |
C2—C1—C6—C5 | 0.2 (4) | C8—C9—C10—O2 | −178.8 (3) |
Cl1—C1—C6—C5 | 179.46 (18) | C8—C9—C10—N1 | 0.3 (3) |
C4—C5—C6—C1 | −0.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.58 | 3.493 (3) | 169 |
C2—H2···O1ii | 0.93 | 2.77 | 3.659 (3) | 161 |
C5—H5···O2iii | 0.93 | 2.58 | 3.319 (3) | 137 |
C9—H9···O2iv | 0.93 | 2.64 | 3.326 (3) | 131 |
C9—H9···Cl1v | 0.93 | 2.89 | 3.551 (3) | 129 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+1, −y, −z+1; (v) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H6ClNO2 |
Mr | 207.61 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 10.6504 (7), 3.8589 (2), 22.0308 (14) |
β (°) | 100.741 (3) |
V (Å3) | 889.57 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.18 × 0.04 × 0.03 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.951, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11729, 1646, 1231 |
Rint | 0.089 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.116, 1.07 |
No. of reflections | 1646 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.31 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius,2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.58 | 3.493 (3) | 169 |
C2—H2···O1ii | 0.93 | 2.77 | 3.659 (3) | 161 |
C5—H5···O2iii | 0.93 | 2.58 | 3.319 (3) | 137 |
C9—H9···O2iv | 0.93 | 2.64 | 3.326 (3) | 131 |
C9—H9···Cl1v | 0.93 | 2.89 | 3.551 (3) | 129 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+1, −y, −z+1; (v) x, −y+1/2, z+1/2. |
Acknowledgements
RMF dedicates this work to the memory of Professor J. Valderrama. RMF is grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of the license of Cambridge Structural Database System (Allen, 2002). This work was partially supported by the Universidad del Valle, Colombia.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Howell, B. & Zhang, J. (2006). J. Therm. Anal. Calorim. 83, 83–86. Web of Science CrossRef CAS Google Scholar
Miller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Cryst. 30, 9, 563–571. Google Scholar
Miller, C. W., Jönsson, E. S., Hoyle, C. E., Viswanathan, K. & Valente, E. J. (2001). J. Phys. Chem. B, 105, 2707–2717. Web of Science CrossRef CAS Google Scholar
Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717–o1718. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222–228. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is known that cyclic unsaturated dicarbonyl compounds such as N-substituted maleimides can be used in free-radical-initiated polymerization processes upon exposure to light (Howell & Zhang, 2006). In order to study the possible application of N-(p-chlorophenylmaleimide) (I) in polymerization processes, and to explain its hydrogen bonding patterns, the synthesis and the study of the crystal structure are reported in this work. N-(p-nitrophenylmaleimide) (4NPMI) (Moreno-Fuquen et al., 2003), N-(o-chlorophenylmaleimide) (2ClPMI) systems (Miller et al., 2001) show a close analogy to the title compounds and are thus employed as a basic reference for comparison. Perspective view of (I), showing the atomic numbering scheme, can be seen in Fig.1. In the arylmaleimide systems the value of the dihedral angle between the benzene and imidic rings influences on the polimerization process, and the presence of different substituents in the benzene ring change the value of this angle (Miller et al., 2000). The photochemical properties of arylmaleimide systems depend on the value of this angle. The dihedral angle between benzene and maleimide planes is 42.98 (5)° for 4NPMI, 66.10 (4) ° for 2ClPMI and 47.54 (9)° for (I). The chlorine atoms, which are pending on the aromatic nucleus, tend to steer the crystal structure to a state characterized by a short axis (Sarma & Desiraju, 1986). For (I), the b axis has a small value [3.8589 (2) Å] and a Cl···Cl nonbonded contact is observed at the same distance. The crystal structure of (I) is stabilized by weak intermolecular C—H···O and C—H···Cl hydrogen-bonds (Nardelli, 1995) (Table 1). The molecules of (I) are linked into a three-dimensional framework by a combination of C—H···O and C—H···Cl hydrogen bonds. The formation of the framework can be explained in terms of three-one substructures. In the first substructure, atom C8 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O1 in the molecule at (-x,1 - y,1 - z) and atom C9 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O2 in the molecule at (1 - x,1 - y,1 - z). Both interactions generate dimers containing centrosymmetric rings with graph motif R22(8) (Etter, 1990) (Fig. 2, supp. material). These dimers are linked by C(5) chains which are running parallel to [100] direction. In the second substructure, atom C9 in the molecule at (x,1/2 - y,-1/2 + z) acts as a hydrogen-bond donor to atom Cl1 in the molecule at (x,y,z), similarly, atom C5 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O2 in the molecule at (x,1 + y,z) so generating a chain of edge-fused R44(24) rings along [001] (Fig. 3, supp. material). The third one-dimensional substructure is built by C—H···O hydrogen bonds. Atom C2 in the molecule at (x,y,z) acts as hydrogen bond donor to maleimidic O1 in the molecule at (-x,-1/2 + y,1/2 - z) so generating a C(7) chains in the [010] direction (Fig.4, supp. material). The low value of the dihedral angle between benzene and maleimide planes, allows to conclude that (I) is not a good candidate to use in a photopolymerization process.