organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,5E)-2,5-Bis(3,4,5-tri­meth­oxy­benzyl­­idene)cyclo­penta­none

aAdvanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 210096 Nanjing, Jiangsu, People's Republic of China, bDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and cLibrary, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: sunyf505@hotmail.com

(Received 3 September 2008; accepted 15 September 2008; online 20 September 2008)

The title compound, C25H28O7, was prepared by the base-catalysed reaction of 3,4,5-trimethoxy­benzaldehyde with cyclo­penta­none. The mol­ecule has crystallographic twofold rotation symmetry and adopts an E-configuration about the central olefinic bonds. The two benzene rings and the central cyclo­penta­none ring are almost coplanar [dihedral angle = 4.7 (2)°].

Related literature

For background literature, see: Guilford et al. (1999[Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415-5425.]); Xue et al. (2008[Xue, J. Q., Zhao, Y. X., Wu, J. & Wu, F. P. (2008). J. Photochem. Photobiol. A: Chem. 195, 261-266.]); Wu et al. (2008[Wu, J., Shi, M. Q., Zhao, Y. X. & Wu, F. P. (2008). Dyes Pigments, 76, 690-695.]); Das et al. (2008[Das, U., Kawase, M., Sakagami, H., Ideo, A., Shimada, J., Molnar, J., Barath, Z., Bata, Z. & Dimmock, J. R. (2008). Bioorg. Med. Chem. 15, 3373-3380.]). For related crystal structures, see: Sun & Cui (2007[Sun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, o1932-o1933.]); Du et al. (2007[Du, Z.-Y., Zhang, K. & Ng, S. W. (2007). Acta Cryst. E63, o2595-o2596.]); Wei et al. (2008[Wei, J., Liang, G., Gai, Y. & Lu, J. (2008). Acta Cryst. E64, o1755.]).

[Scheme 1]

Experimental

Crystal data
  • C25H28O7

  • Mr = 440.47

  • Monoclinic, C 2/c

  • a = 18.573 (4) Å

  • b = 15.231 (3) Å

  • c = 8.8460 (18) Å

  • β = 113.99 (3)°

  • V = 2286.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.982

  • 2123 measured reflections

  • 2058 independent reflections

  • 1422 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.164

  • S = 1.00

  • 2058 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected torsion angles (°)

O1—C1—C2—C4 −2.7 (3)
C1—C2—C4—C5 178.0 (2)
C2—C4—C5—C6 179.6 (3)
C13—O4—C7—C6 1.8 (4)
C12—O3—C8—C7 86.9 (3)
C11—O2—C9—C8 174.8 (3)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(arylmethylidene)cycloalkanones are widely used as building blocks for the synthesis of biologically active heterocycles (Guilford et al., 1999), and reported to exhibit promising two-photon absorption (TPA) property (Xue et al., 2008; Wu et al., 2008). Moreover, it has been reported that some compounds containing the 3-(3,4,5-trimethoxyphenyl)-2-propenoyl group displayed potent multidrug resistance (MDR) reversal properties in cancer chemotherapy. In particular, 2,5-bis(3,4,5-trimethoxybenzylidene)cyclopentanone was 31 times more potent than verapamil as a MDR revertant (Das et al., 2008). In this contribution, we report the crystal structure of the title compound, 2,5-bis(3,4,5-trimethoxybenzylidene) cyclopentanone, Fig.1.

The molecule possesses normal geometric parameters and adopts an E configuration about the central olefinic bonds (Fig. 1). The cyclopentanone ring and the two benzene rings are almost coplanar which allows conjugation. Among the six methoxy groups, only O3/C12 and O3A/C12A deviate from the molecule mean plane on the opposite side, the others are nearly coplanar with their attached benzene ring (Table 1).

Similar structures have been observed in the related substituted cyclohexanone and cyclopentanone analogues reported by Sun & Cui (2007), Du et al. (2007) and Wei et al. (2008).

Related literature top

For background literature, see: Guilford et al. (1999); Xue et al. (2008); Wu et al. (2008); Das et al. (2008). For related crystal structures, see: Sun & Cui (2007); Du et al. (2007); Wei et al. (2008).

Experimental top

The title compound was synthesized from cyclopenthexanone and 3,4,5-trimethoxybenzaldehyde as reported (Sun et al., 2007).Yellow block crystals suitable for an X-ray structural analysis were obtained by slowly evaporating an ethanol solution at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. Suffix A corresponds to symmetry code (-x+1, y, -z+1/2).
(2E,5E)-2,5-Bis(3,4,5-trimethoxybenzylidene)cyclopentanone top
Crystal data top
C25H28O7F(000) = 936
Mr = 440.47Dx = 1.280 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.573 (4) Åθ = 10–13°
b = 15.231 (3) ŵ = 0.09 mm1
c = 8.8460 (18) ÅT = 293 K
β = 113.99 (3)°Block, yellow
V = 2286.2 (10) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1422 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.2°, θmin = 1.8°
ω/2θ scansh = 2220
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.973, Tmax = 0.982l = 010
2123 measured reflections3 standard reflections every 200 reflections
2058 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
2058 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C25H28O7V = 2286.2 (10) Å3
Mr = 440.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.573 (4) ŵ = 0.09 mm1
b = 15.231 (3) ÅT = 293 K
c = 8.8460 (18) Å0.30 × 0.20 × 0.20 mm
β = 113.99 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1422 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.973, Tmax = 0.9823 standard reflections every 200 reflections
2123 measured reflections intensity decay: none
2058 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2058 reflectionsΔρmin = 0.27 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50000.43398 (16)0.25000.0707 (8)
C10.50000.3537 (2)0.25000.0510 (8)
C20.47174 (14)0.29645 (15)0.3510 (3)0.0480 (6)
O20.36310 (14)0.07554 (11)0.6941 (3)0.0806 (7)
O30.32676 (10)0.18198 (11)0.89316 (19)0.0592 (5)
C30.47864 (15)0.20225 (14)0.3086 (3)0.0512 (6)
H3A0.42680.17600.25460.061*
H3B0.50850.16900.40800.061*
O40.33734 (12)0.35568 (11)0.8758 (2)0.0683 (6)
C40.44589 (14)0.33133 (16)0.4587 (3)0.0517 (6)
H4A0.44890.39220.46650.062*
C50.41371 (14)0.28904 (15)0.5662 (3)0.0473 (6)
C60.39179 (15)0.34335 (15)0.6677 (3)0.0526 (6)
H6A0.39790.40380.66480.063*
C70.36086 (14)0.30734 (16)0.7728 (3)0.0504 (6)
C80.35313 (13)0.21799 (15)0.7816 (3)0.0478 (6)
C90.37410 (15)0.16327 (15)0.6797 (3)0.0542 (6)
C100.40400 (15)0.19887 (16)0.5729 (3)0.0555 (6)
H10A0.41770.16200.50500.067*
C110.3772 (3)0.01797 (19)0.5835 (5)0.1075 (13)
H11A0.36790.04140.60710.161*
H11B0.43090.02400.59650.161*
H11C0.34250.03230.47180.161*
C120.24333 (17)0.1766 (2)0.8306 (4)0.0739 (8)
H12A0.22840.15070.91260.111*
H12B0.22390.14100.73260.111*
H12C0.22120.23450.80440.111*
C130.3430 (2)0.44758 (18)0.8706 (4)0.0886 (11)
H13A0.32490.47350.94780.133*
H13B0.31110.46810.76110.133*
H13C0.39690.46390.89950.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.118 (2)0.0480 (15)0.0791 (18)0.0000.0745 (17)0.000
C10.074 (2)0.048 (2)0.0498 (18)0.0000.0438 (17)0.000
C20.0656 (14)0.0492 (13)0.0459 (12)0.0033 (10)0.0397 (11)0.0017 (10)
O20.1371 (18)0.0460 (11)0.0952 (15)0.0030 (10)0.0846 (14)0.0043 (9)
O30.0752 (12)0.0681 (11)0.0527 (10)0.0055 (9)0.0450 (9)0.0105 (8)
C30.0719 (16)0.0494 (13)0.0494 (13)0.0013 (11)0.0422 (12)0.0001 (10)
O40.1063 (14)0.0569 (11)0.0782 (12)0.0088 (9)0.0749 (12)0.0123 (9)
C40.0734 (16)0.0497 (14)0.0515 (13)0.0006 (11)0.0452 (12)0.0011 (10)
C50.0631 (14)0.0482 (13)0.0463 (12)0.0029 (10)0.0384 (11)0.0005 (10)
C60.0770 (16)0.0447 (13)0.0575 (14)0.0010 (11)0.0493 (13)0.0004 (10)
C70.0666 (15)0.0550 (14)0.0474 (12)0.0045 (11)0.0414 (12)0.0058 (10)
C80.0585 (14)0.0542 (14)0.0433 (12)0.0037 (11)0.0336 (11)0.0049 (10)
C90.0779 (17)0.0449 (13)0.0564 (14)0.0038 (11)0.0443 (13)0.0040 (11)
C100.0807 (17)0.0506 (14)0.0556 (14)0.0013 (12)0.0487 (13)0.0018 (11)
C110.188 (4)0.0482 (18)0.130 (3)0.005 (2)0.109 (3)0.0127 (18)
C120.0775 (19)0.085 (2)0.0795 (19)0.0150 (15)0.0526 (16)0.0035 (16)
C130.149 (3)0.0538 (17)0.108 (2)0.0021 (18)0.098 (2)0.0120 (16)
Geometric parameters (Å, º) top
O1—C11.222 (4)C5—C61.398 (3)
C1—C21.489 (3)C6—C71.389 (3)
C1—C2i1.489 (3)C6—H6A0.9300
C2—C41.339 (3)C7—C81.374 (3)
C2—C31.501 (3)C8—C91.395 (3)
O2—C91.365 (3)C9—C101.386 (3)
O2—C111.415 (3)C10—H10A0.9300
O3—C81.381 (2)C11—H11A0.9600
O3—C121.420 (3)C11—H11B0.9600
C3—C3i1.541 (4)C11—H11C0.9600
C3—H3A0.9700C12—H12A0.9600
C3—H3B0.9700C12—H12B0.9600
O4—C71.373 (3)C12—H12C0.9600
O4—C131.406 (3)C13—H13A0.9600
C4—C51.462 (3)C13—H13B0.9600
C4—H4A0.9300C13—H13C0.9600
C5—C101.390 (3)
O1—C1—C2125.87 (13)C7—C8—O3120.62 (19)
O1—C1—C2i125.87 (13)C7—C8—C9119.49 (19)
C2—C1—C2i108.3 (3)O3—C8—C9119.9 (2)
C4—C2—C1120.7 (2)O2—C9—C10124.2 (2)
C4—C2—C3130.4 (2)O2—C9—C8115.7 (2)
C1—C2—C3108.86 (18)C10—C9—C8120.1 (2)
C9—O2—C11117.7 (2)C9—C10—C5120.7 (2)
C8—O3—C12113.10 (19)C9—C10—H10A119.7
C2—C3—C3i106.72 (11)C5—C10—H10A119.7
C2—C3—H3A110.4O2—C11—H11A109.5
C3i—C3—H3A110.4O2—C11—H11B109.5
C2—C3—H3B110.4H11A—C11—H11B109.5
C3i—C3—H3B110.4O2—C11—H11C109.5
H3A—C3—H3B108.6H11A—C11—H11C109.5
C7—O4—C13117.66 (19)H11B—C11—H11C109.5
C2—C4—C5130.4 (2)O3—C12—H12A109.5
C2—C4—H4A114.8O3—C12—H12B109.5
C5—C4—H4A114.8H12A—C12—H12B109.5
C10—C5—C6118.77 (19)O3—C12—H12C109.5
C10—C5—C4123.87 (19)H12A—C12—H12C109.5
C6—C5—C4117.4 (2)H12B—C12—H12C109.5
C7—C6—C5120.3 (2)O4—C13—H13A109.5
C7—C6—H6A119.9O4—C13—H13B109.5
C5—C6—H6A119.9H13A—C13—H13B109.5
O4—C7—C8115.13 (18)O4—C13—H13C109.5
O4—C7—C6124.2 (2)H13A—C13—H13C109.5
C8—C7—C6120.7 (2)H13B—C13—H13C109.5
O1—C1—C2—C42.7 (3)O4—C7—C8—O32.8 (3)
C2i—C1—C2—C4177.3 (3)C6—C7—C8—O3176.1 (2)
O1—C1—C2—C3177.49 (12)O4—C7—C8—C9178.8 (2)
C2i—C1—C2—C32.51 (12)C6—C7—C8—C92.2 (4)
C4—C2—C3—C3i173.4 (3)C12—O3—C8—C786.9 (3)
C1—C2—C3—C3i6.4 (3)C12—O3—C8—C994.7 (3)
C1—C2—C4—C5178.0 (2)C11—O2—C9—C105.3 (4)
C3—C2—C4—C52.2 (5)C11—O2—C9—C8174.8 (3)
C2—C4—C5—C100.3 (4)C7—C8—C9—O2178.8 (2)
C2—C4—C5—C6179.6 (3)O3—C8—C9—O22.9 (4)
C10—C5—C6—C70.0 (4)C7—C8—C9—C101.3 (4)
C4—C5—C6—C7180.0 (2)O3—C8—C9—C10177.0 (2)
C13—O4—C7—C8179.2 (3)O2—C9—C10—C5179.7 (2)
C13—O4—C7—C61.8 (4)C8—C9—C10—C50.2 (4)
C5—C6—C7—O4179.6 (2)C6—C5—C10—C90.8 (4)
C5—C6—C7—C81.6 (4)C4—C5—C10—C9179.1 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H28O7
Mr440.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.573 (4), 15.231 (3), 8.8460 (18)
β (°) 113.99 (3)
V3)2286.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2123, 2058, 1422
Rint0.048
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.164, 1.00
No. of reflections2058
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
O1—C1—C2—C42.7 (3)C13—O4—C7—C61.8 (4)
C1—C2—C4—C5178.0 (2)C12—O3—C8—C786.9 (3)
C2—C4—C5—C6179.6 (3)C11—O2—C9—C8174.8 (3)
 

Acknowledgements

This project was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (No.0701001B) and the Foundation of Taishan University.

References

First citationDas, U., Kawase, M., Sakagami, H., Ideo, A., Shimada, J., Molnar, J., Barath, Z., Bata, Z. & Dimmock, J. R. (2008). Bioorg. Med. Chem. 15, 3373–3380.  Web of Science CrossRef Google Scholar
First citationDu, Z.-Y., Zhang, K. & Ng, S. W. (2007). Acta Cryst. E63, o2595–o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGuilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, o1932–o1933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, J., Liang, G., Gai, Y. & Lu, J. (2008). Acta Cryst. E64, o1755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, J., Shi, M. Q., Zhao, Y. X. & Wu, F. P. (2008). Dyes Pigments, 76, 690-695.  Web of Science CrossRef CAS Google Scholar
First citationXue, J. Q., Zhao, Y. X., Wu, J. & Wu, F. P. (2008). J. Photochem. Photobiol. A: Chem. 195, 261–266.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds