organic compounds
(2E,5E)-2,5-Bis(3,4,5-trimethoxybenzylidene)cyclopentanone
aAdvanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 210096 Nanjing, Jiangsu, People's Republic of China, bDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and cLibrary, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: sunyf505@hotmail.com
The title compound, C25H28O7, was prepared by the base-catalysed reaction of 3,4,5-trimethoxybenzaldehyde with cyclopentanone. The molecule has crystallographic twofold rotation symmetry and adopts an E-configuration about the central olefinic bonds. The two benzene rings and the central cyclopentanone ring are almost coplanar [dihedral angle = 4.7 (2)°].
Related literature
For background literature, see: Guilford et al. (1999); Xue et al. (2008); Wu et al. (2008); Das et al. (2008). For related crystal structures, see: Sun & Cui (2007); Du et al. (2007); Wei et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808029474/fj2151sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029474/fj2151Isup2.hkl
The title compound was synthesized from cyclopenthexanone and 3,4,5-trimethoxybenzaldehyde as reported (Sun et al., 2007).Yellow block crystals suitable for an X-ray structural analysis were obtained by slowly evaporating an ethanol solution at room temperature.
All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C25H28O7 | F(000) = 936 |
Mr = 440.47 | Dx = 1.280 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 18.573 (4) Å | θ = 10–13° |
b = 15.231 (3) Å | µ = 0.09 mm−1 |
c = 8.8460 (18) Å | T = 293 K |
β = 113.99 (3)° | Block, yellow |
V = 2286.2 (10) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1422 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 25.2°, θmin = 1.8° |
ω/2θ scans | h = −22→20 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→18 |
Tmin = 0.973, Tmax = 0.982 | l = 0→10 |
2123 measured reflections | 3 standard reflections every 200 reflections |
2058 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.080P)2 + 2.P] where P = (Fo2 + 2Fc2)/3 |
2058 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C25H28O7 | V = 2286.2 (10) Å3 |
Mr = 440.47 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.573 (4) Å | µ = 0.09 mm−1 |
b = 15.231 (3) Å | T = 293 K |
c = 8.8460 (18) Å | 0.30 × 0.20 × 0.20 mm |
β = 113.99 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1422 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.048 |
Tmin = 0.973, Tmax = 0.982 | 3 standard reflections every 200 reflections |
2123 measured reflections | intensity decay: none |
2058 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.21 e Å−3 |
2058 reflections | Δρmin = −0.27 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5000 | 0.43398 (16) | 0.2500 | 0.0707 (8) | |
C1 | 0.5000 | 0.3537 (2) | 0.2500 | 0.0510 (8) | |
C2 | 0.47174 (14) | 0.29645 (15) | 0.3510 (3) | 0.0480 (6) | |
O2 | 0.36310 (14) | 0.07554 (11) | 0.6941 (3) | 0.0806 (7) | |
O3 | 0.32676 (10) | 0.18198 (11) | 0.89316 (19) | 0.0592 (5) | |
C3 | 0.47864 (15) | 0.20225 (14) | 0.3086 (3) | 0.0512 (6) | |
H3A | 0.4268 | 0.1760 | 0.2546 | 0.061* | |
H3B | 0.5085 | 0.1690 | 0.4080 | 0.061* | |
O4 | 0.33734 (12) | 0.35568 (11) | 0.8758 (2) | 0.0683 (6) | |
C4 | 0.44589 (14) | 0.33133 (16) | 0.4587 (3) | 0.0517 (6) | |
H4A | 0.4489 | 0.3922 | 0.4665 | 0.062* | |
C5 | 0.41371 (14) | 0.28904 (15) | 0.5662 (3) | 0.0473 (6) | |
C6 | 0.39179 (15) | 0.34335 (15) | 0.6677 (3) | 0.0526 (6) | |
H6A | 0.3979 | 0.4038 | 0.6648 | 0.063* | |
C7 | 0.36086 (14) | 0.30734 (16) | 0.7728 (3) | 0.0504 (6) | |
C8 | 0.35313 (13) | 0.21799 (15) | 0.7816 (3) | 0.0478 (6) | |
C9 | 0.37410 (15) | 0.16327 (15) | 0.6797 (3) | 0.0542 (6) | |
C10 | 0.40400 (15) | 0.19887 (16) | 0.5729 (3) | 0.0555 (6) | |
H10A | 0.4177 | 0.1620 | 0.5050 | 0.067* | |
C11 | 0.3772 (3) | 0.01797 (19) | 0.5835 (5) | 0.1075 (13) | |
H11A | 0.3679 | −0.0414 | 0.6071 | 0.161* | |
H11B | 0.4309 | 0.0240 | 0.5965 | 0.161* | |
H11C | 0.3425 | 0.0323 | 0.4718 | 0.161* | |
C12 | 0.24333 (17) | 0.1766 (2) | 0.8306 (4) | 0.0739 (8) | |
H12A | 0.2284 | 0.1507 | 0.9126 | 0.111* | |
H12B | 0.2239 | 0.1410 | 0.7326 | 0.111* | |
H12C | 0.2212 | 0.2345 | 0.8044 | 0.111* | |
C13 | 0.3430 (2) | 0.44758 (18) | 0.8706 (4) | 0.0886 (11) | |
H13A | 0.3249 | 0.4735 | 0.9478 | 0.133* | |
H13B | 0.3111 | 0.4681 | 0.7611 | 0.133* | |
H13C | 0.3969 | 0.4639 | 0.8995 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.118 (2) | 0.0480 (15) | 0.0791 (18) | 0.000 | 0.0745 (17) | 0.000 |
C1 | 0.074 (2) | 0.048 (2) | 0.0498 (18) | 0.000 | 0.0438 (17) | 0.000 |
C2 | 0.0656 (14) | 0.0492 (13) | 0.0459 (12) | −0.0033 (10) | 0.0397 (11) | −0.0017 (10) |
O2 | 0.1371 (18) | 0.0460 (11) | 0.0952 (15) | −0.0030 (10) | 0.0846 (14) | 0.0043 (9) |
O3 | 0.0752 (12) | 0.0681 (11) | 0.0527 (10) | −0.0055 (9) | 0.0450 (9) | 0.0105 (8) |
C3 | 0.0719 (16) | 0.0494 (13) | 0.0494 (13) | −0.0013 (11) | 0.0422 (12) | 0.0001 (10) |
O4 | 0.1063 (14) | 0.0569 (11) | 0.0782 (12) | −0.0088 (9) | 0.0749 (12) | −0.0123 (9) |
C4 | 0.0734 (16) | 0.0497 (14) | 0.0515 (13) | 0.0006 (11) | 0.0452 (12) | 0.0011 (10) |
C5 | 0.0631 (14) | 0.0482 (13) | 0.0463 (12) | −0.0029 (10) | 0.0384 (11) | −0.0005 (10) |
C6 | 0.0770 (16) | 0.0447 (13) | 0.0575 (14) | −0.0010 (11) | 0.0493 (13) | 0.0004 (10) |
C7 | 0.0666 (15) | 0.0550 (14) | 0.0474 (12) | −0.0045 (11) | 0.0414 (12) | −0.0058 (10) |
C8 | 0.0585 (14) | 0.0542 (14) | 0.0433 (12) | −0.0037 (11) | 0.0336 (11) | 0.0049 (10) |
C9 | 0.0779 (17) | 0.0449 (13) | 0.0564 (14) | −0.0038 (11) | 0.0443 (13) | 0.0040 (11) |
C10 | 0.0807 (17) | 0.0506 (14) | 0.0556 (14) | 0.0013 (12) | 0.0487 (13) | −0.0018 (11) |
C11 | 0.188 (4) | 0.0482 (18) | 0.130 (3) | −0.005 (2) | 0.109 (3) | −0.0127 (18) |
C12 | 0.0775 (19) | 0.085 (2) | 0.0795 (19) | −0.0150 (15) | 0.0526 (16) | 0.0035 (16) |
C13 | 0.149 (3) | 0.0538 (17) | 0.108 (2) | −0.0021 (18) | 0.098 (2) | −0.0120 (16) |
O1—C1 | 1.222 (4) | C5—C6 | 1.398 (3) |
C1—C2 | 1.489 (3) | C6—C7 | 1.389 (3) |
C1—C2i | 1.489 (3) | C6—H6A | 0.9300 |
C2—C4 | 1.339 (3) | C7—C8 | 1.374 (3) |
C2—C3 | 1.501 (3) | C8—C9 | 1.395 (3) |
O2—C9 | 1.365 (3) | C9—C10 | 1.386 (3) |
O2—C11 | 1.415 (3) | C10—H10A | 0.9300 |
O3—C8 | 1.381 (2) | C11—H11A | 0.9600 |
O3—C12 | 1.420 (3) | C11—H11B | 0.9600 |
C3—C3i | 1.541 (4) | C11—H11C | 0.9600 |
C3—H3A | 0.9700 | C12—H12A | 0.9600 |
C3—H3B | 0.9700 | C12—H12B | 0.9600 |
O4—C7 | 1.373 (3) | C12—H12C | 0.9600 |
O4—C13 | 1.406 (3) | C13—H13A | 0.9600 |
C4—C5 | 1.462 (3) | C13—H13B | 0.9600 |
C4—H4A | 0.9300 | C13—H13C | 0.9600 |
C5—C10 | 1.390 (3) | ||
O1—C1—C2 | 125.87 (13) | C7—C8—O3 | 120.62 (19) |
O1—C1—C2i | 125.87 (13) | C7—C8—C9 | 119.49 (19) |
C2—C1—C2i | 108.3 (3) | O3—C8—C9 | 119.9 (2) |
C4—C2—C1 | 120.7 (2) | O2—C9—C10 | 124.2 (2) |
C4—C2—C3 | 130.4 (2) | O2—C9—C8 | 115.7 (2) |
C1—C2—C3 | 108.86 (18) | C10—C9—C8 | 120.1 (2) |
C9—O2—C11 | 117.7 (2) | C9—C10—C5 | 120.7 (2) |
C8—O3—C12 | 113.10 (19) | C9—C10—H10A | 119.7 |
C2—C3—C3i | 106.72 (11) | C5—C10—H10A | 119.7 |
C2—C3—H3A | 110.4 | O2—C11—H11A | 109.5 |
C3i—C3—H3A | 110.4 | O2—C11—H11B | 109.5 |
C2—C3—H3B | 110.4 | H11A—C11—H11B | 109.5 |
C3i—C3—H3B | 110.4 | O2—C11—H11C | 109.5 |
H3A—C3—H3B | 108.6 | H11A—C11—H11C | 109.5 |
C7—O4—C13 | 117.66 (19) | H11B—C11—H11C | 109.5 |
C2—C4—C5 | 130.4 (2) | O3—C12—H12A | 109.5 |
C2—C4—H4A | 114.8 | O3—C12—H12B | 109.5 |
C5—C4—H4A | 114.8 | H12A—C12—H12B | 109.5 |
C10—C5—C6 | 118.77 (19) | O3—C12—H12C | 109.5 |
C10—C5—C4 | 123.87 (19) | H12A—C12—H12C | 109.5 |
C6—C5—C4 | 117.4 (2) | H12B—C12—H12C | 109.5 |
C7—C6—C5 | 120.3 (2) | O4—C13—H13A | 109.5 |
C7—C6—H6A | 119.9 | O4—C13—H13B | 109.5 |
C5—C6—H6A | 119.9 | H13A—C13—H13B | 109.5 |
O4—C7—C8 | 115.13 (18) | O4—C13—H13C | 109.5 |
O4—C7—C6 | 124.2 (2) | H13A—C13—H13C | 109.5 |
C8—C7—C6 | 120.7 (2) | H13B—C13—H13C | 109.5 |
O1—C1—C2—C4 | −2.7 (3) | O4—C7—C8—O3 | −2.8 (3) |
C2i—C1—C2—C4 | 177.3 (3) | C6—C7—C8—O3 | 176.1 (2) |
O1—C1—C2—C3 | 177.49 (12) | O4—C7—C8—C9 | 178.8 (2) |
C2i—C1—C2—C3 | −2.51 (12) | C6—C7—C8—C9 | −2.2 (4) |
C4—C2—C3—C3i | −173.4 (3) | C12—O3—C8—C7 | 86.9 (3) |
C1—C2—C3—C3i | 6.4 (3) | C12—O3—C8—C9 | −94.7 (3) |
C1—C2—C4—C5 | 178.0 (2) | C11—O2—C9—C10 | −5.3 (4) |
C3—C2—C4—C5 | −2.2 (5) | C11—O2—C9—C8 | 174.8 (3) |
C2—C4—C5—C10 | −0.3 (4) | C7—C8—C9—O2 | −178.8 (2) |
C2—C4—C5—C6 | 179.6 (3) | O3—C8—C9—O2 | 2.9 (4) |
C10—C5—C6—C7 | 0.0 (4) | C7—C8—C9—C10 | 1.3 (4) |
C4—C5—C6—C7 | −180.0 (2) | O3—C8—C9—C10 | −177.0 (2) |
C13—O4—C7—C8 | −179.2 (3) | O2—C9—C10—C5 | −179.7 (2) |
C13—O4—C7—C6 | 1.8 (4) | C8—C9—C10—C5 | 0.2 (4) |
C5—C6—C7—O4 | −179.6 (2) | C6—C5—C10—C9 | −0.8 (4) |
C5—C6—C7—C8 | 1.6 (4) | C4—C5—C10—C9 | 179.1 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H28O7 |
Mr | 440.47 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 18.573 (4), 15.231 (3), 8.8460 (18) |
β (°) | 113.99 (3) |
V (Å3) | 2286.2 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.973, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2123, 2058, 1422 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.164, 1.00 |
No. of reflections | 2058 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.27 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
O1—C1—C2—C4 | −2.7 (3) | C13—O4—C7—C6 | 1.8 (4) |
C1—C2—C4—C5 | 178.0 (2) | C12—O3—C8—C7 | 86.9 (3) |
C2—C4—C5—C6 | 179.6 (3) | C11—O2—C9—C8 | 174.8 (3) |
Acknowledgements
This project was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (No.0701001B) and the Foundation of Taishan University.
References
Das, U., Kawase, M., Sakagami, H., Ideo, A., Shimada, J., Molnar, J., Barath, Z., Bata, Z. & Dimmock, J. R. (2008). Bioorg. Med. Chem. 15, 3373–3380. Web of Science CrossRef Google Scholar
Du, Z.-Y., Zhang, K. & Ng, S. W. (2007). Acta Cryst. E63, o2595–o2596. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425. Web of Science CrossRef PubMed CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, o1932–o1933. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wei, J., Liang, G., Gai, Y. & Lu, J. (2008). Acta Cryst. E64, o1755. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wu, J., Shi, M. Q., Zhao, Y. X. & Wu, F. P. (2008). Dyes Pigments, 76, 690-695. Web of Science CrossRef CAS Google Scholar
Xue, J. Q., Zhao, Y. X., Wu, J. & Wu, F. P. (2008). J. Photochem. Photobiol. A: Chem. 195, 261–266. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bis(arylmethylidene)cycloalkanones are widely used as building blocks for the synthesis of biologically active heterocycles (Guilford et al., 1999), and reported to exhibit promising two-photon absorption (TPA) property (Xue et al., 2008; Wu et al., 2008). Moreover, it has been reported that some compounds containing the 3-(3,4,5-trimethoxyphenyl)-2-propenoyl group displayed potent multidrug resistance (MDR) reversal properties in cancer chemotherapy. In particular, 2,5-bis(3,4,5-trimethoxybenzylidene)cyclopentanone was 31 times more potent than verapamil as a MDR revertant (Das et al., 2008). In this contribution, we report the crystal structure of the title compound, 2,5-bis(3,4,5-trimethoxybenzylidene) cyclopentanone, Fig.1.
The molecule possesses normal geometric parameters and adopts an E configuration about the central olefinic bonds (Fig. 1). The cyclopentanone ring and the two benzene rings are almost coplanar which allows conjugation. Among the six methoxy groups, only O3/C12 and O3A/C12A deviate from the molecule mean plane on the opposite side, the others are nearly coplanar with their attached benzene ring (Table 1).
Similar structures have been observed in the related substituted cyclohexanone and cyclopentanone analogues reported by Sun & Cui (2007), Du et al. (2007) and Wei et al. (2008).