organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-N′-(2-hy­droxy­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and bCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
*Correspondence e-mail: sanjunpeng@163.com

(Received 13 August 2008; accepted 26 August 2008; online 6 September 2008)

The title compound, C14H12N2O3, was synthesized by the condensation of salicylaldehyde with 3-hydroxy­benzo­hydrazide. The dihedral angle between the two benzene rings is 12.4 (2)°. The 2-hydr­oxy group forms an intra­molecular O—H⋯N hydrogen bond with the imide N atom. Mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into a two-dimensional polymeric structure parallel to the ab plane.

Related literature

For related literature, see: Ali et al. (2005[Ali, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433-m434.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m912-m913.]); Habibi et al. (2007[Habibi, M. H., Montazerozohori, M., Lalegani, A., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, m2933-m2934.]); Jing et al. (2006[Jing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087-o4088.]); Ling et al. (2008[Ling, C.-H., Chen, Y.-B., Huang, J.-A., Ji, C. & Liu, P. (2008). Acta Cryst. E64, o948.]); Peng & You (2007[Peng, S.-J. & You, Z.-L. (2007). J. Chem. Crystallogr. 37, 415-419.]); Peng & Zhou (2007[Peng, S.-J. & Zhou, C.-S. (2007). Acta Cryst. E63, m3185.]); Peng, Ping & Song (2007[Peng, S.-J., Ping, W.-J. & Song, L.-B. (2007). Z. Kristallogr. New Cryst. Struct. 222, 425-426.]); Peng, Yang & Zhou (2006[Peng, S.-J., Yang, T. & Zhou, C.-S. (2006). Acta Cryst. E62, m235-m236.]); Peng, Zhou & Yang (2006[Peng, S.-J., Zhou, C.-S. & Yang, T. (2006). Acta Cryst. E62, m1147-m1149.]); Yehye et al. (2008a[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008a). Acta Cryst. E64, o960.],b[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008b). Acta Cryst. E64, o1452.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O3

  • Mr = 256.26

  • Orthorhombic, P b c a

  • a = 14.405 (2) Å

  • b = 9.661 (1) Å

  • c = 17.905 (2) Å

  • V = 2491.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.981

  • 13415 measured reflections

  • 2720 independent reflections

  • 1869 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.03

  • 2720 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.6010 (19) 146
O3—H3⋯O2i 0.82 1.81 2.5946 (16) 159
N2—H2⋯O3ii 0.895 (9) 2.119 (10) 3.0062 (18) 171.0 (18)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases derived from the condensation of aldehydes with primary amines play an important role in coordination chemistry (Ali et al., 2005; Eltayeb et al., 2008; Habibi et al., 2007). Recently, we have reported synthesis and crystal structure of some Schiff base complexes (Peng, Yang & Zhou, 2006; Peng, Zhou & Yang, 2006; Peng et al., 2007; Peng & You, 2007; Peng & Zhou, 2007). We report herein the crystal structure of the title compound, Fig. 1.

All the bond lengths are comparable to those observed in other similar compounds (Yehye et al., 2008a,b; Jing et al., 2006; Ling et al., 2008). The molecule is not planar and the dihedral angle between the two benzene rings is 12.4 (2)°. There is an intramolecular O–H···N hydrogen bond (Table 1) in each molecule of the compound. The molecules are linked through intermolecular O–H···O and N–H···O hydrogen bonds (Table 1), forming layers parallel to the ab plane (Fig. 2).

Related literature top

For related literature, see: Ali et al. (2005); Eltayeb et al. (2008); Habibi et al. (2007); Jing et al. (2006); Ling et al. (2008); Peng & You (2007); Peng & Zhou (2007); Peng, Ping & Song (2007); Peng, Yang & Zhou (2006); Peng, Zhou & Yang (2006); Yehye et al. (2008a,b).

Experimental top

3-Hydroxybenzohydrazide (0.1 mmol, 15.2 mg) and salicylaldehyde (0.1 mmol, 12.2 mg) were stirred at 318 K in methanol (10 ml) for 30 min. The filtrate was kept open to slowly evaporate for a few days, depositing colorless block-like crystals of the title compound.

Refinement top

The atom H2 attached to N2 was located in a difference Fourier map and refined with N–H distance restrained to 0.90 (1) Å, and with Uiso set to 0.08 Å2. All H atoms bound to carbon and oxygen were refined using riding models with d(C–H) = 0.93 Å, d(O–H) = 0.82 Å, Uiso = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
3-Hydroxy-N'-(2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H12N2O3F(000) = 1072
Mr = 256.26Dx = 1.366 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3092 reflections
a = 14.405 (2) Åθ = 2.7–26.0°
b = 9.661 (1) ŵ = 0.10 mm1
c = 17.905 (2) ÅT = 298 K
V = 2491.8 (5) Å3Block, colorless
Z = 80.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2720 independent reflections
Radiation source: fine-focus sealed tube1869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1518
Tmin = 0.978, Tmax = 0.981k = 1112
13415 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3997P]
where P = (Fo2 + 2Fc2)/3
2720 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C14H12N2O3V = 2491.8 (5) Å3
Mr = 256.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.405 (2) ŵ = 0.10 mm1
b = 9.661 (1) ÅT = 298 K
c = 17.905 (2) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2720 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1869 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.981Rint = 0.039
13415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.13 e Å3
2720 reflectionsΔρmin = 0.18 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16163 (8)1.20579 (14)0.04590 (8)0.0677 (4)
H10.18291.14270.07130.102*
O20.33625 (7)0.98665 (12)0.15618 (6)0.0524 (3)
O30.56381 (7)0.66767 (12)0.27314 (7)0.0548 (3)
H30.58260.60360.29910.082*
N10.15527 (8)0.98711 (13)0.13048 (7)0.0419 (3)
N20.19669 (8)0.88568 (13)0.17276 (8)0.0436 (3)
C10.01929 (10)1.09152 (16)0.08195 (8)0.0409 (4)
C20.06764 (12)1.19810 (18)0.04586 (9)0.0493 (4)
C30.01833 (15)1.3000 (2)0.00834 (11)0.0668 (5)
H3A0.05011.37160.01520.080*
C40.07686 (16)1.2964 (2)0.00557 (11)0.0709 (6)
H40.10891.36530.02000.085*
C50.12534 (13)1.1922 (2)0.04022 (11)0.0663 (6)
H50.18981.19000.03800.080*
C60.07735 (11)1.0909 (2)0.07839 (9)0.0533 (4)
H60.11021.02070.10220.064*
C70.06694 (10)0.98419 (16)0.12381 (9)0.0423 (4)
H70.03310.91310.14580.051*
C80.28882 (10)0.89504 (16)0.18561 (8)0.0411 (4)
C90.32990 (9)0.78911 (16)0.23665 (9)0.0396 (4)
C100.42602 (10)0.77388 (16)0.23447 (9)0.0402 (4)
H100.46120.83020.20330.048*
C110.46926 (9)0.67575 (16)0.27832 (9)0.0407 (4)
C120.41777 (11)0.59119 (18)0.32492 (9)0.0474 (4)
H120.44680.52400.35380.057*
C130.32267 (11)0.6079 (2)0.32798 (10)0.0561 (5)
H130.28780.55190.35960.067*
C140.27860 (11)0.70631 (19)0.28484 (9)0.0517 (4)
H140.21460.71720.28800.062*
H20.1622 (12)0.8175 (16)0.1921 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0516 (7)0.0702 (10)0.0815 (10)0.0133 (6)0.0067 (6)0.0162 (7)
O20.0375 (6)0.0518 (7)0.0680 (8)0.0079 (5)0.0066 (5)0.0050 (6)
O30.0286 (5)0.0524 (7)0.0835 (9)0.0054 (5)0.0026 (5)0.0072 (6)
N10.0331 (6)0.0436 (8)0.0488 (7)0.0030 (5)0.0044 (5)0.0028 (6)
N20.0297 (6)0.0423 (8)0.0586 (8)0.0007 (5)0.0060 (6)0.0025 (6)
C10.0378 (8)0.0462 (9)0.0387 (8)0.0039 (7)0.0007 (6)0.0018 (7)
C20.0507 (10)0.0523 (10)0.0448 (9)0.0009 (8)0.0011 (7)0.0004 (8)
C30.0846 (15)0.0592 (12)0.0566 (11)0.0036 (10)0.0013 (10)0.0144 (9)
C40.0794 (14)0.0749 (14)0.0583 (12)0.0259 (11)0.0111 (11)0.0105 (10)
C50.0491 (10)0.0885 (15)0.0614 (12)0.0206 (10)0.0073 (9)0.0031 (11)
C60.0401 (9)0.0672 (12)0.0525 (10)0.0064 (8)0.0014 (7)0.0054 (9)
C70.0359 (8)0.0434 (9)0.0476 (9)0.0005 (6)0.0000 (7)0.0001 (7)
C80.0312 (7)0.0424 (9)0.0497 (9)0.0003 (7)0.0027 (6)0.0081 (7)
C90.0286 (7)0.0440 (9)0.0461 (8)0.0005 (6)0.0040 (6)0.0075 (7)
C100.0296 (7)0.0395 (8)0.0516 (9)0.0022 (6)0.0002 (6)0.0050 (7)
C110.0275 (7)0.0417 (8)0.0529 (9)0.0026 (6)0.0050 (7)0.0113 (7)
C120.0414 (8)0.0540 (10)0.0467 (9)0.0054 (7)0.0046 (7)0.0004 (8)
C130.0394 (9)0.0740 (13)0.0548 (10)0.0012 (8)0.0048 (7)0.0130 (9)
C140.0282 (7)0.0729 (12)0.0541 (10)0.0016 (7)0.0006 (7)0.0026 (9)
Geometric parameters (Å, º) top
O1—C21.356 (2)C4—H40.9300
O1—H10.8200C5—C61.380 (3)
O2—C81.2360 (18)C5—H50.9300
O3—C111.3673 (17)C6—H60.9300
O3—H30.8200C7—H70.9300
N1—C71.2784 (18)C8—C91.494 (2)
N1—N21.3745 (18)C9—C141.389 (2)
N2—C81.3499 (18)C9—C101.3928 (19)
N2—H20.895 (9)C10—C111.379 (2)
C1—C61.394 (2)C10—H100.9300
C1—C21.401 (2)C11—C121.383 (2)
C1—C71.452 (2)C12—C131.380 (2)
C2—C31.388 (2)C12—H120.9300
C3—C41.373 (3)C13—C141.380 (2)
C3—H3A0.9300C13—H130.9300
C4—C51.373 (3)C14—H140.9300
C2—O1—H1109.5N1—C7—C1120.20 (14)
C11—O3—H3109.5N1—C7—H7119.9
C7—N1—N2117.88 (13)C1—C7—H7119.9
C8—N2—N1118.21 (13)O2—C8—N2121.25 (14)
C8—N2—H2122.0 (13)O2—C8—C9122.15 (13)
N1—N2—H2119.8 (13)N2—C8—C9116.60 (13)
C6—C1—C2118.60 (15)C14—C9—C10119.03 (14)
C6—C1—C7119.53 (15)C14—C9—C8124.29 (13)
C2—C1—C7121.86 (14)C10—C9—C8116.68 (13)
O1—C2—C3118.19 (16)C11—C10—C9120.37 (14)
O1—C2—C1122.45 (15)C11—C10—H10119.8
C3—C2—C1119.36 (17)C9—C10—H10119.8
C4—C3—C2120.71 (19)O3—C11—C10116.77 (14)
C4—C3—H3A119.6O3—C11—C12122.77 (14)
C2—C3—H3A119.6C10—C11—C12120.46 (13)
C3—C4—C5120.68 (18)C13—C12—C11119.15 (15)
C3—C4—H4119.7C13—C12—H12120.4
C5—C4—H4119.7C11—C12—H12120.4
C4—C5—C6119.29 (18)C14—C13—C12120.98 (16)
C4—C5—H5120.4C14—C13—H13119.5
C6—C5—H5120.4C12—C13—H13119.5
C5—C6—C1121.34 (18)C13—C14—C9119.98 (14)
C5—C6—H6119.3C13—C14—H14120.0
C1—C6—H6119.3C9—C14—H14120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.6010 (19)146
O3—H3···O2i0.821.812.5946 (16)159
N2—H2···O3ii0.90 (1)2.12 (1)3.0062 (18)171 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O3
Mr256.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)14.405 (2), 9.661 (1), 17.905 (2)
V3)2491.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.978, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13415, 2720, 1869
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.03
No. of reflections2720
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.6010 (19)145.8
O3—H3···O2i0.821.812.5946 (16)159.0
N2—H2···O3ii0.895 (9)2.119 (10)3.0062 (18)171.0 (18)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1/2, y, z+1/2.
 

Acknowledgements

We acknowledge Changsha University of Science and Technology for research grants.

References

First citationAli, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433–m434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m912–m913.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Montazerozohori, M., Lalegani, A., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, m2933–m2934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087–o4088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLing, C.-H., Chen, Y.-B., Huang, J.-A., Ji, C. & Liu, P. (2008). Acta Cryst. E64, o948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J., Ping, W.-J. & Song, L.-B. (2007). Z. Kristallogr. New Cryst. Struct. 222, 425–426.  CAS Google Scholar
First citationPeng, S.-J., Yang, T. & Zhou, C.-S. (2006). Acta Cryst. E62, m235–m236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & You, Z.-L. (2007). J. Chem. Crystallogr. 37, 415–419.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, S.-J. & Zhou, C.-S. (2007). Acta Cryst. E63, m3185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J., Zhou, C.-S. & Yang, T. (2006). Acta Cryst. E62, m1147–m1149.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008a). Acta Cryst. E64, o960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008b). Acta Cryst. E64, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds