organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bi­naphthyl-2,2′-di­carboxylic acid–urea (1/1)

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Street 83, Tashkent 100125, Uzbekistan, and bInstitute für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: l_izotova@yahoo.com

(Received 1 September 2008; accepted 10 September 2008; online 17 September 2008)

In the title co-crystal, C22H14O4·CH4N2O, the 1,1′-binaphthyl-2,2′-dicarboxylic acid (BNDA) and urea mol­ecules are connected via a system of hydrogen bonds into a chiral two-dimensional polymeric structure parallel to the (001) plane. As the crystal is centrosymmetric, it consists of alternately stacked BNDA–urea layers of opposite chirality. The urea H atoms trans to the C=O group are bonded in a chelating mode [R12(6)] to the carbonyl O atom from one of the carboxylic acid groups which, in turn, acts as the donor of an O—H⋯O hydrogen bond to another urea mol­ecule. The [010] chains thus formed are further connected via an R22(8) hydrogen-bond motif formed between urea and the second carboxylic acid group of BNDA.

Related literature

For information on inclusion compounds of 1,1′-binaphthyl-2,2′-dicarboxylic acid, see: Weber (1996[Weber, E. (1996). Comprehensive Supramolecular Chemistry. Solid-State Supramolecular Chemistry: Crystal Engineering, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535-592. Oxford: Pergamon.]). For the synthesis of 1,1′-binaphthyl-2,2′-dicarboxylic acid, see: Weber et al. (1984[Weber, E., Csöregh, I., Stensland, B. & Czugler, M. (1984). J. Am. Chem. Soc. 106, 3297-3306.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14O4·CH4N2O

  • Mr = 402.39

  • Monoclinic, P 21 /c

  • a = 9.2560 (19) Å

  • b = 12.033 (2) Å

  • c = 17.958 (4) Å

  • β = 102.40 (3)°

  • V = 1953.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.21 × 0.17 × 0.12 mm

Data collection
  • Stoe STADI4 diffractometer

  • Absorption correction: none

  • 3416 measured reflections

  • 3416 independent reflections

  • 2874 reflections with I > 2σ(I)

  • 3 standard reflections every 100 reflections intensity decay: 2.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.09

  • 3416 reflections

  • 296 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.89 (3) 2.25 (3) 3.046 (3) 149 (2)
N1—H2N⋯O1i 0.96 (3) 2.10 (3) 3.048 (3) 166 (2)
O2—H2⋯O5ii 1.00 (3) 1.63 (3) 2.606 (2) 162 (2)
O3—H3⋯O5iii 0.98 (3) 1.70 (3) 2.637 (2) 160 (3)
N2—H3N⋯O4 0.88 (3) 2.17 (3) 3.001 (3) 157 (3)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal engineering involves design and synthesis of solid-state structures with desired properties, based on an understanding and exploitation of intermolecular interactions. 1,1'-Binaphthyl-2,2'-dicarboxylic acid (BNDA) (Weber, 1996) and urea are well known supramolecular substrates forming a large variety of multicomponent crystals. To study supramolecular interactions in the BNDA–urea system co-crystals were prepared and their structure determined by X-ray structure analysis. The two compounds co-crystallize in a 1:1 molar ratio with molecules located in general position (Fig. 1). The BNDA adopts its usual conformation with the two naphthyl units nearly perpendicular [dihedral angle of 79.77 (5)°].

In the crystal structure, the urea molecule is involved in five hydrogen bonds - twice as an acceptor and three times as a donor (Table 1). One of the cis hydrogen atoms does not take part in conventional hydrogen bonding but is involved in a weak interaction with the π system of one of the naphthalene units. The carboxylic group O1,C21,O2 is bonded to the urea molecule via the cyclic R22(8) motif. The other BNDA carboxylic group acts also as a donor to the urea carbonyl, however its O4 atom accepts two N—H···O hydrogen bonds which are a part of the R12(6) motif (Fig. 2). The hydrogen bonds between urea and BNDA assemble molecules into layers parallel to (001). The hydrogen-bonded BNDA–urea layers are chiral and consist of homochiral BNDA molecules. However, the crystal is centrosymmetric and thus it is built from alternate stacks of layers of opposite chirality.

Related literature top

For information on inclusion compounds of 1,1'-binaphthyl-2,2'-dicarboxylic acid, see: Weber (1996). For the synthesis of 1,1'-binaphthyl-2,2'-dicarboxylic acid, see: Weber et al. (1984).

Experimental top

1,1'-Binaphthyl-2,2'-dicarboxylic acid was synthesized according to Weber et al. (1984). Slow evaporation of acetone/water solution of equimolar mixture of BNDA and urea resulted in colourless crystals stable in air and suitable for X-ray analysis.

Refinement top

H atoms from the OH and NH2 groups were located from difference Fourier maps and fully refined. The remaining H atoms were positioned geometrically (C—H 0.93 Å) and refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit showing 40% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. BNDA–urea hydrogen-bond assembly viewed down the a axis. H atoms have been ommited for clarity. Hydrogen bonds are shown as dashed lines. Red: oxygen, blue: nitrogen.
1,1-binaphthyl-2,2'-dicarboxylic acid–urea (1/1) top
Crystal data top
C22H14O4·CH4N2OF(000) = 840
Mr = 402.39Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.2560 (19) Åθ = 10–25°
b = 12.033 (2) ŵ = 0.10 mm1
c = 17.958 (4) ÅT = 293 K
β = 102.40 (3)°Prism, colourless
V = 1953.5 (7) Å30.21 × 0.17 × 0.12 mm
Z = 4
Data collection top
Stoe STADI4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.8°
Graphite monochromatorh = 1110
ω/2θ scansk = 014
3416 measured reflectionsl = 021
3416 independent reflections3 standard reflections every 100 reflections
2874 reflections with I > 2σ(I) intensity decay: 2.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.050P)2 + 0.871P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3416 reflectionsΔρmax = 0.21 e Å3
296 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (11)
Crystal data top
C22H14O4·CH4N2OV = 1953.5 (7) Å3
Mr = 402.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2560 (19) ŵ = 0.10 mm1
b = 12.033 (2) ÅT = 293 K
c = 17.958 (4) Å0.21 × 0.17 × 0.12 mm
β = 102.40 (3)°
Data collection top
Stoe STADI4
diffractometer
Rint = 0.000
3416 measured reflections3 standard reflections every 100 reflections
3416 independent reflections intensity decay: 2.1%
2874 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.21 e Å3
3416 reflectionsΔρmin = 0.18 e Å3
296 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.04973 (17)0.78156 (13)0.14183 (10)0.0668 (5)
O21.08667 (16)0.61883 (12)0.19956 (9)0.0529 (4)
O30.6667 (2)1.06357 (13)0.10984 (10)0.0687 (5)
O40.6785 (2)0.89894 (13)0.16344 (10)0.0718 (5)
C10.74291 (19)0.71568 (14)0.08151 (10)0.0335 (4)
C20.84438 (19)0.65851 (14)0.13592 (10)0.0351 (4)
C30.7992 (2)0.56422 (15)0.17243 (11)0.0407 (4)
H3A0.86870.52520.20800.049*
C40.6563 (2)0.52994 (16)0.15642 (11)0.0450 (5)
H4A0.62880.46870.18180.054*
C50.3993 (2)0.55259 (17)0.08479 (13)0.0531 (5)
H5A0.36960.49310.11090.064*
C60.2983 (2)0.60591 (18)0.03102 (15)0.0587 (6)
H6A0.19990.58350.02110.070*
C70.3414 (2)0.69477 (17)0.00973 (14)0.0544 (6)
H7A0.27200.72970.04760.065*
C80.4844 (2)0.73021 (16)0.00577 (12)0.0448 (5)
H8A0.51120.78960.02150.054*
C90.5929 (2)0.67850 (14)0.06262 (10)0.0364 (4)
C100.5492 (2)0.58588 (15)0.10188 (11)0.0403 (4)
C110.78527 (18)0.80838 (14)0.03449 (10)0.0333 (4)
C120.75590 (19)0.91925 (15)0.04525 (10)0.0364 (4)
C130.7863 (2)1.00037 (15)0.00665 (11)0.0439 (5)
H13A0.76331.07440.00010.053*
C140.8480 (2)0.97206 (16)0.06573 (12)0.0465 (5)
H14A0.86811.02700.09850.056*
C150.9495 (2)0.82851 (19)0.13856 (11)0.0491 (5)
H15A0.97650.88280.16980.059*
C160.9756 (2)0.7203 (2)0.15173 (12)0.0546 (6)
H16A1.01960.70100.19180.065*
C170.9363 (2)0.63771 (19)0.10509 (12)0.0521 (5)
H17A0.95180.56340.11520.062*
C180.8756 (2)0.66547 (16)0.04486 (11)0.0423 (5)
H18A0.85240.60960.01360.051*
C190.84714 (18)0.77740 (15)0.02885 (10)0.0342 (4)
C200.88207 (19)0.86064 (16)0.07834 (10)0.0381 (4)
C211.0017 (2)0.69403 (15)0.15798 (10)0.0385 (4)
C220.6974 (2)0.95702 (15)0.11195 (11)0.0408 (4)
C230.4379 (2)0.74181 (17)0.24467 (11)0.0435 (5)
N10.3833 (2)0.81441 (17)0.18972 (12)0.0572 (5)
N20.5812 (2)0.7509 (2)0.27794 (14)0.0690 (6)
O50.35758 (16)0.67037 (14)0.26518 (9)0.0594 (4)
H1N0.445 (3)0.857 (2)0.1710 (13)0.063 (7)*
H2N0.280 (3)0.807 (2)0.1663 (16)0.087 (9)*
H21.189 (3)0.650 (2)0.2168 (15)0.083 (8)*
H30.641 (3)1.091 (3)0.1565 (18)0.100 (10)*
H3N0.633 (3)0.795 (2)0.2542 (17)0.083 (9)*
H4N0.615 (3)0.700 (3)0.3100 (19)0.093 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0498 (9)0.0573 (10)0.0848 (12)0.0176 (7)0.0043 (8)0.0312 (9)
O20.0416 (8)0.0458 (8)0.0690 (10)0.0008 (6)0.0066 (7)0.0127 (7)
O30.1151 (15)0.0404 (9)0.0566 (10)0.0209 (9)0.0317 (10)0.0009 (7)
O40.1210 (15)0.0406 (8)0.0708 (11)0.0034 (9)0.0585 (11)0.0006 (8)
C10.0404 (10)0.0274 (9)0.0344 (9)0.0037 (7)0.0121 (7)0.0020 (7)
C20.0403 (10)0.0317 (9)0.0350 (9)0.0020 (7)0.0120 (7)0.0011 (7)
C30.0473 (11)0.0363 (10)0.0384 (10)0.0021 (8)0.0091 (8)0.0055 (8)
C40.0519 (12)0.0359 (10)0.0491 (11)0.0097 (9)0.0153 (9)0.0079 (8)
C50.0490 (12)0.0401 (11)0.0712 (14)0.0126 (9)0.0153 (11)0.0033 (10)
C60.0412 (11)0.0461 (12)0.0859 (17)0.0108 (10)0.0073 (11)0.0033 (12)
C70.0447 (11)0.0411 (11)0.0705 (14)0.0001 (9)0.0028 (10)0.0010 (10)
C80.0447 (11)0.0336 (10)0.0539 (12)0.0021 (8)0.0058 (9)0.0017 (9)
C90.0404 (10)0.0294 (9)0.0411 (10)0.0028 (7)0.0126 (8)0.0027 (7)
C100.0424 (10)0.0326 (9)0.0484 (11)0.0067 (8)0.0149 (8)0.0020 (8)
C110.0344 (9)0.0306 (9)0.0346 (9)0.0048 (7)0.0069 (7)0.0010 (7)
C120.0387 (10)0.0311 (9)0.0395 (10)0.0030 (8)0.0086 (8)0.0004 (7)
C130.0524 (11)0.0293 (9)0.0511 (12)0.0001 (8)0.0134 (9)0.0049 (8)
C140.0566 (12)0.0386 (11)0.0460 (11)0.0028 (9)0.0150 (9)0.0139 (9)
C150.0494 (12)0.0611 (13)0.0392 (10)0.0014 (10)0.0151 (9)0.0077 (9)
C160.0555 (13)0.0698 (15)0.0427 (11)0.0060 (11)0.0199 (10)0.0055 (11)
C170.0571 (13)0.0484 (12)0.0536 (12)0.0049 (10)0.0181 (10)0.0100 (10)
C180.0471 (11)0.0360 (10)0.0453 (11)0.0026 (8)0.0130 (9)0.0021 (8)
C190.0328 (9)0.0343 (9)0.0346 (9)0.0029 (7)0.0050 (7)0.0006 (7)
C200.0367 (9)0.0435 (10)0.0334 (9)0.0024 (8)0.0061 (7)0.0043 (8)
C210.0421 (10)0.0381 (10)0.0362 (9)0.0038 (8)0.0100 (8)0.0022 (8)
C220.0442 (10)0.0318 (10)0.0473 (11)0.0023 (8)0.0117 (9)0.0026 (8)
C230.0412 (10)0.0495 (12)0.0415 (10)0.0041 (9)0.0124 (8)0.0005 (9)
N10.0524 (12)0.0565 (12)0.0638 (12)0.0064 (9)0.0149 (10)0.0165 (10)
N20.0466 (11)0.0865 (17)0.0713 (14)0.0114 (11)0.0071 (10)0.0190 (13)
O50.0469 (8)0.0691 (10)0.0601 (9)0.0124 (7)0.0067 (7)0.0239 (8)
Geometric parameters (Å, º) top
O1—C211.203 (2)C11—C121.383 (2)
O2—C211.320 (2)C11—C191.428 (2)
O2—H21.00 (3)C12—C131.419 (3)
O3—C221.312 (2)C12—C221.487 (3)
O3—H30.98 (3)C13—C141.352 (3)
O4—C221.202 (2)C13—H13A0.9300
C1—C21.384 (3)C14—C201.407 (3)
C1—C91.429 (3)C14—H14A0.9300
C1—C111.501 (2)C15—C161.354 (3)
C2—C31.418 (2)C15—C201.413 (3)
C2—C211.488 (3)C15—H15A0.9300
C3—C41.356 (3)C16—C171.397 (3)
C3—H3A0.9300C16—H16A0.9300
C4—C101.406 (3)C17—C181.364 (3)
C4—H4A0.9300C17—H17A0.9300
C5—C61.353 (3)C18—C191.414 (3)
C5—C101.414 (3)C18—H18A0.9300
C5—H5A0.9300C19—C201.422 (2)
C6—C71.401 (3)C23—O51.243 (2)
C6—H6A0.9300C23—N11.334 (3)
C7—C81.361 (3)C23—N21.337 (3)
C7—H7A0.9300N1—H1N0.89 (3)
C8—C91.413 (3)N1—H2N0.96 (3)
C8—H8A0.9300N2—H3N0.88 (3)
C9—C101.423 (3)N2—H4N0.85 (3)
C21—O2—H2109.1 (16)C14—C13—H13A119.4
C22—O3—H3113.5 (18)C12—C13—H13A119.4
C2—C1—C9119.32 (16)C13—C14—C20120.91 (17)
C2—C1—C11123.14 (16)C13—C14—H14A119.5
C9—C1—C11117.20 (15)C20—C14—H14A119.5
C1—C2—C3120.09 (16)C16—C15—C20121.41 (19)
C1—C2—C21121.49 (16)C16—C15—H15A119.3
C3—C2—C21118.42 (16)C20—C15—H15A119.3
C4—C3—C2121.10 (18)C15—C16—C17120.02 (19)
C4—C3—H3A119.5C15—C16—H16A120.0
C2—C3—H3A119.5C17—C16—H16A120.0
C3—C4—C10120.76 (17)C18—C17—C16120.4 (2)
C3—C4—H4A119.6C18—C17—H17A119.8
C10—C4—H4A119.6C16—C17—H17A119.8
C6—C5—C10121.1 (2)C17—C18—C19121.42 (19)
C6—C5—H5A119.5C17—C18—H18A119.3
C10—C5—H5A119.5C19—C18—H18A119.3
C5—C6—C7120.3 (2)C18—C19—C20117.83 (16)
C5—C6—H6A119.9C18—C19—C11122.32 (16)
C7—C6—H6A119.9C20—C19—C11119.85 (16)
C8—C7—C6120.4 (2)C14—C20—C15122.35 (18)
C8—C7—H7A119.8C14—C20—C19118.80 (17)
C6—C7—H7A119.8C15—C20—C19118.86 (18)
C7—C8—C9121.25 (19)O1—C21—O2122.05 (18)
C7—C8—H8A119.4O1—C21—C2125.36 (17)
C9—C8—H8A119.4O2—C21—C2112.58 (16)
C8—C9—C10117.99 (17)O4—C22—O3121.59 (19)
C8—C9—C1122.51 (16)O4—C22—C12125.48 (17)
C10—C9—C1119.51 (17)O3—C22—C12112.93 (17)
C4—C10—C5121.86 (18)O5—C23—N1121.08 (19)
C4—C10—C9119.16 (17)O5—C23—N2121.6 (2)
C5—C10—C9118.98 (18)N1—C23—N2117.3 (2)
C12—C11—C19119.17 (16)C23—N1—H1N118.9 (16)
C12—C11—C1123.72 (16)C23—N1—H2N116.6 (17)
C19—C11—C1116.86 (15)H1N—N1—H2N123 (2)
C11—C12—C13119.94 (17)C23—N2—H3N115.2 (19)
C11—C12—C22121.57 (16)C23—N2—H4N115 (2)
C13—C12—C22118.46 (16)H3N—N2—H4N127 (3)
C14—C13—C12121.26 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.89 (3)2.25 (3)3.046 (3)149 (2)
N1—H2N···O1i0.96 (3)2.10 (3)3.048 (3)166 (2)
O2—H2···O5ii1.00 (3)1.63 (3)2.606 (2)162 (2)
O3—H3···O5iii0.98 (3)1.70 (3)2.637 (2)160 (3)
N2—H3N···O40.88 (3)2.17 (3)3.001 (3)157 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H14O4·CH4N2O
Mr402.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2560 (19), 12.033 (2), 17.958 (4)
β (°) 102.40 (3)
V3)1953.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.17 × 0.12
Data collection
DiffractometerStoe STADI4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3416, 3416, 2874
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.09
No. of reflections3416
No. of parameters296
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.89 (3)2.25 (3)3.046 (3)149 (2)
N1—H2N···O1i0.96 (3)2.10 (3)3.048 (3)166 (2)
O2—H2···O5ii1.00 (3)1.63 (3)2.606 (2)162 (2)
O3—H3···O5iii0.98 (3)1.70 (3)2.637 (2)160 (3)
N2—H3N···O40.88 (3)2.17 (3)3.001 (3)157 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

Support of this research by the Uzbek Academy of Sciences (grant No. FA-F3-T141) is gratefully acknowledged.

References

First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWeber, E. (1996). Comprehensive Supramolecular Chemistry. Solid-State Supramolecular Chemistry: Crystal Engineering, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535–592. Oxford: Pergamon.  Google Scholar
First citationWeber, E., Csöregh, I., Stensland, B. & Czugler, M. (1984). J. Am. Chem. Soc. 106, 3297–3306.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds