metal-organic compounds
catena-Poly[[[triaquacopper(II)]-μ-pyridine-2,3-dicarboxylato-κ3N,O2:O3] monohydrate]
aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn
In the title compound, {[Cu(C7H3NO4)(H2O)3]·H2O}n, the CuII ion is bonded to three water molecules, one N,O-bidentate pyridine-2,3-dicarboxylate dianion and one O-bonded symmetry-generated dianion, resulting in a distorted CuNO5 octahedral geometry. The bridging ligand results in an infinite chain. A network of O—H⋯O hydrogen bonds helps to establish the crystal structure.
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808025439/hb2747sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808025439/hb2747Isup2.hkl
A mixture of copper(II) chloride (0.5 mmol), pyridine-2,3-dicarboxylic acid (1 mmol), sodium hydroxide (1 mmol), H2O (8 ml), and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 423 K for three days. Blue blocks of (I) were obtained after cooling to room temperature with a yield of 16%. Anal calc. for C7H11CuNO8: C 27.93, H 2.99, N 4.66%; found: C 27.89, H 2.92, N 4.63%.
The O-bound H atoms were located in a difference map and their positions were freely refined with a fixed Uiso value. This has led to some extremely short intermolecular H···H contacts and the location of the water H atoms should be regarded as less certain. All the C-bound H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. Atoms labeled with i are at the symmetry position (x - 1/2,-y + 1/2,z - 1/2). | |
Fig. 2. Part of a polymeric chain in (I). |
[Cu(C7H3NO4)(H2O)3]·H2O | F(000) = 612 |
Mr = 300.71 | Dx = 1.913 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 2692 reflections |
a = 8.513 (3) Å | θ = 2.9–28.1° |
b = 17.983 (3) Å | µ = 2.13 mm−1 |
c = 7.493 (3) Å | T = 296 K |
β = 114.486 (10)° | Block, blue |
V = 1043.9 (6) Å3 | 0.40 × 0.28 × 0.22 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 1322 independent reflections |
Radiation source: fine-focus sealed tube | 1310 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 26.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −10→10 |
Tmin = 0.484, Tmax = 0.652 | k = −22→22 |
2686 measured reflections | l = −4→9 |
Refinement on F2 | Hydrogen site location: difmap and geom |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.079P)2 + 0.0702P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.089 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.61 e Å−3 |
1322 reflections | Δρmin = −0.60 e Å−3 |
180 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
14 restraints | Extinction coefficient: 0.018 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 290 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.05 (3) |
[Cu(C7H3NO4)(H2O)3]·H2O | V = 1043.9 (6) Å3 |
Mr = 300.71 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 8.513 (3) Å | µ = 2.13 mm−1 |
b = 17.983 (3) Å | T = 296 K |
c = 7.493 (3) Å | 0.40 × 0.28 × 0.22 mm |
β = 114.486 (10)° |
Bruker APEXII CCD diffractometer | 1322 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1310 reflections with I > 2σ(I) |
Tmin = 0.484, Tmax = 0.652 | Rint = 0.028 |
2686 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | Δρmax = 0.61 e Å−3 |
S = 1.00 | Δρmin = −0.60 e Å−3 |
1322 reflections | Absolute structure: Flack (1983), 290 Friedel pairs |
180 parameters | Absolute structure parameter: 0.05 (3) |
14 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.00453 (5) | 0.118674 (19) | 0.25189 (5) | 0.0226 (2) | |
C1 | −0.1893 (6) | 0.1125 (2) | −0.2173 (8) | 0.0257 (10) | |
C2 | 0.0162 (7) | 0.2776 (2) | 0.2417 (8) | 0.0261 (9) | |
C3 | 0.1909 (5) | 0.2542 (2) | 0.2398 (6) | 0.0220 (8) | |
C4 | 0.3188 (5) | 0.3044 (2) | 0.2468 (6) | 0.0224 (8) | |
C5 | 0.4612 (5) | 0.2816 (2) | 0.2256 (6) | 0.0222 (9) | |
H5 | 0.5443 | 0.3154 | 0.2266 | 0.027* | |
C6 | 0.4781 (6) | 0.2094 (3) | 0.2034 (7) | 0.0325 (10) | |
H6 | 0.5747 | 0.1922 | 0.1878 | 0.039* | |
C7 | 0.3554 (7) | 0.1592 (3) | 0.2028 (8) | 0.0350 (10) | |
H7 | 0.3719 | 0.1088 | 0.1890 | 0.042* | |
N1 | 0.2118 (5) | 0.18178 (19) | 0.2218 (6) | 0.0262 (7) | |
O1 | −0.1400 (5) | 0.0911 (2) | −0.0470 (5) | 0.0356 (8) | |
O2 | −0.2392 (5) | 0.07157 (19) | −0.3667 (5) | 0.0363 (7) | |
O3 | −0.0834 (4) | 0.22671 (17) | 0.2399 (6) | 0.0323 (7) | |
O4 | −0.0130 (6) | 0.34452 (16) | 0.2387 (9) | 0.0401 (8) | |
O5 | 0.1420 (5) | 0.12328 (17) | 0.5699 (7) | 0.0311 (9) | |
O6 | 0.1266 (5) | 0.01799 (18) | 0.2664 (7) | 0.0427 (9) | |
O7 | −0.2021 (4) | 0.07356 (18) | 0.2898 (5) | 0.0309 (7) | |
O8 | 0.4601 (7) | −0.0181 (3) | 0.4257 (10) | 0.0777 (18) | |
H1W | 0.553 (6) | −0.004 (6) | 0.515 (11) | 0.093* | |
H2W | 0.377 (7) | −0.006 (6) | 0.451 (14) | 0.093* | |
H4W | 0.105 (10) | 0.080 (2) | 0.551 (16) | 0.093* | |
H5W | 0.092 (12) | −0.008 (5) | 0.167 (10) | 0.093* | |
H6W | 0.229 (5) | 0.011 (5) | 0.340 (12) | 0.093* | |
H7W | −0.214 (15) | 0.067 (5) | 0.393 (9) | 0.093* | |
H8W | −0.195 (16) | 0.034 (3) | 0.238 (13) | 0.093* | |
H3W | 0.248 (3) | 0.126 (4) | 0.620 (19) | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0221 (3) | 0.0153 (3) | 0.0307 (3) | −0.0014 (2) | 0.0111 (2) | 0.0008 (2) |
C1 | 0.024 (2) | 0.021 (2) | 0.033 (3) | 0.0026 (14) | 0.013 (2) | 0.0011 (15) |
C2 | 0.0229 (19) | 0.0210 (17) | 0.0315 (18) | 0.0045 (18) | 0.0084 (15) | −0.0004 (19) |
C3 | 0.0223 (19) | 0.0198 (18) | 0.0229 (18) | 0.0031 (15) | 0.0083 (15) | 0.0014 (14) |
C4 | 0.0208 (18) | 0.0218 (19) | 0.0220 (17) | 0.0000 (14) | 0.0064 (15) | 0.0016 (15) |
C5 | 0.026 (2) | 0.0141 (17) | 0.032 (2) | 0.0009 (13) | 0.017 (2) | 0.0013 (15) |
C6 | 0.034 (3) | 0.027 (2) | 0.042 (3) | 0.0042 (18) | 0.022 (2) | 0.0008 (16) |
C7 | 0.045 (3) | 0.0219 (18) | 0.044 (2) | 0.0067 (19) | 0.025 (2) | 0.0011 (18) |
N1 | 0.0284 (18) | 0.0215 (16) | 0.0293 (17) | 0.0018 (14) | 0.0125 (15) | −0.0001 (14) |
O1 | 0.0475 (19) | 0.0275 (18) | 0.0292 (16) | −0.0008 (15) | 0.0133 (15) | 0.0000 (14) |
O2 | 0.055 (2) | 0.0236 (14) | 0.0343 (16) | −0.0049 (14) | 0.0230 (16) | −0.0069 (13) |
O3 | 0.0226 (17) | 0.0253 (16) | 0.0519 (19) | 0.0004 (12) | 0.0185 (14) | 0.0011 (14) |
O4 | 0.0274 (17) | 0.0214 (15) | 0.073 (2) | 0.0041 (14) | 0.0220 (17) | −0.0029 (19) |
O5 | 0.0266 (16) | 0.0281 (19) | 0.033 (2) | −0.0011 (11) | 0.0062 (16) | −0.0014 (12) |
O6 | 0.0362 (17) | 0.0247 (16) | 0.056 (2) | 0.0078 (15) | 0.0077 (15) | −0.0088 (16) |
O7 | 0.0313 (16) | 0.0262 (15) | 0.0355 (16) | −0.0074 (13) | 0.0142 (14) | −0.0040 (14) |
O8 | 0.035 (2) | 0.054 (3) | 0.108 (4) | 0.0047 (18) | −0.006 (3) | −0.023 (3) |
Cu1—O7 | 2.061 (3) | C4—C1ii | 1.525 (5) |
Cu1—O6 | 2.068 (3) | C5—C6 | 1.325 (6) |
Cu1—O3 | 2.071 (3) | C5—H5 | 0.9300 |
Cu1—O1 | 2.119 (4) | C6—C7 | 1.379 (7) |
Cu1—O5 | 2.178 (5) | C6—H6 | 0.9300 |
Cu1—N1 | 2.187 (4) | C7—N1 | 1.350 (6) |
C1—O1 | 1.228 (7) | C7—H7 | 0.9300 |
C1—O2 | 1.258 (6) | O5—H4W | 0.82 (2) |
C1—C4i | 1.525 (5) | O5—H3W | 0.82 (9) |
C2—O4 | 1.227 (5) | O6—H5W | 0.82 (7) |
C2—O3 | 1.244 (6) | O6—H6W | 0.83 (7) |
C2—C3 | 1.552 (6) | O7—H7W | 0.83 (8) |
C3—N1 | 1.328 (5) | O7—H8W | 0.83 (8) |
C3—C4 | 1.399 (6) | O8—H1W | 0.84 (8) |
C4—C5 | 1.349 (6) | O8—H2W | 0.83 (8) |
O7—Cu1—O6 | 95.00 (16) | C3—C4—C1ii | 123.2 (4) |
O7—Cu1—O3 | 93.52 (13) | C6—C5—C4 | 117.5 (4) |
O6—Cu1—O3 | 171.34 (14) | C6—C5—H5 | 121.2 |
O7—Cu1—O1 | 84.19 (14) | C4—C5—H5 | 121.2 |
O6—Cu1—O1 | 84.83 (16) | C5—C6—C7 | 121.3 (5) |
O3—Cu1—O1 | 97.60 (15) | C5—C6—H6 | 119.3 |
O7—Cu1—O5 | 88.09 (15) | C7—C6—H6 | 119.3 |
O6—Cu1—O5 | 86.87 (16) | N1—C7—C6 | 121.4 (4) |
O3—Cu1—O5 | 91.87 (14) | N1—C7—H7 | 119.3 |
O1—Cu1—O5 | 168.12 (14) | C6—C7—H7 | 119.3 |
O7—Cu1—N1 | 171.80 (13) | C3—N1—C7 | 118.0 (4) |
O6—Cu1—N1 | 92.89 (17) | C3—N1—Cu1 | 110.5 (3) |
O3—Cu1—N1 | 78.54 (13) | C7—N1—Cu1 | 131.3 (3) |
O1—Cu1—N1 | 98.75 (15) | C1—O1—Cu1 | 145.4 (3) |
O5—Cu1—N1 | 90.13 (15) | C2—O3—Cu1 | 117.2 (3) |
O1—C1—O2 | 125.8 (4) | Cu1—O5—H4W | 77 (8) |
O1—C1—C4i | 118.0 (4) | Cu1—O5—H3W | 119 (10) |
O2—C1—C4i | 116.1 (4) | H4W—O5—H3W | 114 (4) |
O4—C2—O3 | 126.1 (5) | Cu1—O6—H5W | 118 (7) |
O4—C2—C3 | 117.0 (5) | Cu1—O6—H6W | 122 (7) |
O3—C2—C3 | 116.8 (4) | H5W—O6—H6W | 114 (9) |
N1—C3—C4 | 120.1 (4) | Cu1—O7—H7W | 129 (8) |
N1—C3—C2 | 115.9 (4) | Cu1—O7—H8W | 92 (8) |
C4—C3—C2 | 123.9 (4) | H7W—O7—H8W | 112 (9) |
C5—C4—C3 | 121.5 (4) | H1W—O8—H2W | 111 (4) |
C5—C4—C1ii | 115.3 (4) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H3W···O4ii | 0.82 (9) | 1.93 (8) | 2.735 (6) | 167 (8) |
O5—H4W···O6iii | 0.82 (2) | 2.35 (8) | 2.966 (5) | 132 (10) |
O6—H5W···O5iv | 0.82 (7) | 2.29 (7) | 2.966 (5) | 140 (9) |
O7—H7W···O2v | 0.83 (8) | 1.90 (9) | 2.720 (5) | 169 (8) |
O7—H8W···O2iii | 0.83 (8) | 2.03 (4) | 2.825 (5) | 162 (11) |
Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) x, −y, z+1/2; (iv) x, −y, z−1/2; (v) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H3NO4)(H2O)3]·H2O |
Mr | 300.71 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 296 |
a, b, c (Å) | 8.513 (3), 17.983 (3), 7.493 (3) |
β (°) | 114.486 (10) |
V (Å3) | 1043.9 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.13 |
Crystal size (mm) | 0.40 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.484, 0.652 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2686, 1322, 1310 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.089, 1.00 |
No. of reflections | 1322 |
No. of parameters | 180 |
No. of restraints | 14 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.61, −0.60 |
Absolute structure | Flack (1983), 290 Friedel pairs |
Absolute structure parameter | 0.05 (3) |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O7 | 2.061 (3) | Cu1—O1 | 2.119 (4) |
Cu1—O6 | 2.068 (3) | Cu1—O5 | 2.178 (5) |
Cu1—O3 | 2.071 (3) | Cu1—N1 | 2.187 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H3W···O4i | 0.82 (9) | 1.93 (8) | 2.735 (6) | 167 (8) |
O5—H4W···O6ii | 0.82 (2) | 2.35 (8) | 2.966 (5) | 132 (10) |
O6—H5W···O5iii | 0.82 (7) | 2.29 (7) | 2.966 (5) | 140 (9) |
O7—H7W···O2iv | 0.83 (8) | 1.90 (9) | 2.720 (5) | 169 (8) |
O7—H8W···O2ii | 0.83 (8) | 2.03 (4) | 2.825 (5) | 162 (11) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y, z+1/2; (iii) x, −y, z−1/2; (iv) x, y, z+1. |
Acknowledgements
This work is supported by the Natural Science Foundation of Shandong Province (grant Nos. Y2007D39).
References
Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–658. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties in biological systems (e.g. Serre et al., 2005). Herein, we report the synthesis and structure of the title compound, (I).
As shown in Fig. 1, the CuII ion in (I) is hexacoordinated with five oxygen atoms and one nitrogen atom, exhibiting a slightly distorted octahedral geometry (Table 1). The pyridine-2,3-dicarboxyalto ligand affords the pyridine N and one carboxylato oxygen atom in chelating coordination mode and a symmetry-generated ligand bonds from its carboxylate O-atom. The bridging ligand links neighboring copper(II) ions into a chain (Fig. 2). Extensive hydrogen bonding (Table 2) via hydrogen bonds between carboxylate oxygen atoms of pyridine-2,3-dicarboxyalte and the uncoordinated water molecules or coordinated aqua ligands, giving rise to a three-dimensional network.