metal-organic compounds
catena-Poly[[manganese(II)-tris(μ-betaine-κ2O:O′)] tetrabromidomanganate(IV)
aUniversität Wien – Geozentrum, Institut für Mineralogie und Kristallographie, Althanstrasse 14, A-1090 Wien, Austria, and bUniversität zu Köln, Institut für Kristallographie, Zülpicher Strasse 49b, D-50674 Köln, Germany
*Correspondence e-mail: maria.kocadag@hotmail.com
The title compound, [Mn(C5H11NO2)3]·MnBr4, contains polymeric cationic chains of distorted MnO6 octahedra and bridging betaine molecules, running parallel to the a axis. There are two distinct Mn2+ cations in the chain, both with . Distorted [MnBr4]2− tetrahedra occupy the spaces between the chains.
Related literature
For related literature, see: Chen & Mak (1994); Haussühl (1988, 1989); Haussühl & Schreuer (2001); Haussühl & Wang (1989); Mak (1990); Viertorinne et al. (1999); Wang et al. (1986); Wiehl et al. (2006a,b)); Chen & Mak (1991); Schreuer & Haussühl (1993).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SMART; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808028912/hb2779sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028912/hb2779Isup2.hkl
The title compound crystallizes from 3:2 stoichiometry aqueous solutions of betaine and MnBr2 in the temperature range 290 to 300 K in thick tabular prismatic crystals of sulfur-yellow colour. Crystals of optical quality with dimensions up to 25 × 7 × 3 mm were grown from a solution of 167 g betaine and 272 g MnBr2.4H2O by very slow evaporation at 295 K during a period of 11 months.
Data collection: SMART (Bruker, 2004); cell
SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Mn(C5H11NO2)3]·MnBr4 | Z = 2 |
Mr = 780.96 | F(000) = 764 |
Triclinic, P1 | Dx = 1.897 Mg m−3 |
Hall symbol: -P 1 | Melting point: not determined K |
a = 9.140 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.700 (2) Å | Cell parameters from 1294 reflections |
c = 12.871 (3) Å | θ = 2.8–26.4° |
α = 66.557 (6)° | µ = 6.80 mm−1 |
β = 86.063 (7)° | T = 293 K |
γ = 89.249 (7)° | Prism, yellow |
V = 1367.3 (4) Å3 | 0.50 × 0.30 × 0.30 mm |
Bruker SMART CCD diffractometer | 7836 independent reflections |
Radiation source: fine-focus sealed tube | 5085 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 0.1 pixels mm-1 | θmax = 30°, θmin = 1.8° |
ϕ–scan and ω–scans | h = −13→13 |
Absorption correction: multi-scan (Otwinowski & Minor, 1997) | k = −18→18 |
Tmin = 0.073, Tmax = 0.130 | l = −15→18 |
17423 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0151P)2 + 6.4946P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
7836 reflections | Δρmax = 1.77 e Å−3 |
326 parameters | Δρmin = −1.88 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0015 (3) |
[Mn(C5H11NO2)3]·MnBr4 | γ = 89.249 (7)° |
Mr = 780.96 | V = 1367.3 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.140 (2) Å | Mo Kα radiation |
b = 12.700 (2) Å | µ = 6.80 mm−1 |
c = 12.871 (3) Å | T = 293 K |
α = 66.557 (6)° | 0.50 × 0.30 × 0.30 mm |
β = 86.063 (7)° |
Bruker SMART CCD diffractometer | 7836 independent reflections |
Absorption correction: multi-scan (Otwinowski & Minor, 1997) | 5085 reflections with I > 2σ(I) |
Tmin = 0.073, Tmax = 0.130 | Rint = 0.030 |
17423 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 1.77 e Å−3 |
7836 reflections | Δρmin = −1.88 e Å−3 |
326 parameters |
Experimental. Single-crystal X-ray intensity data were collected at 293 K on a Nonius APEXII diffractometer with CCD-area detector, using 673 frames with phi- and omega-increments of 1 degree and a counting time of 60 s per frame. The crystal-to-detector-distance was 30 mm. The whole ewald sphere was measured. The reflection data were processed with the Nonius program suite DENZO-SMN and corrected for Lorentz, polarization, background and absorption effects (Otwinowski and Minor, 1997). The crystal structure was determined by Direct methods (SHELXS97, Sheldrick, 2008) and subsequent Fourier and difference Fourier syntheses, followed by full-matrix least-squares refinements on F2 (SHELXL97, Sheldrick, 2008). All hydrogen atoms were treated as riding. Using anisotropic treatment of the non-H atoms and unrestrained isotropic treatment of the H atoms, the refinement converged at an R-value of 0.053. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 1.0000 | 0.0000 | 1.0000 | 0.0226 (2) | |
Mn2 | 0.5000 | 0.0000 | 1.0000 | 0.0234 (2) | |
Mn3 | 0.77120 (8) | 0.62332 (7) | 0.69412 (7) | 0.0388 (2) | |
Br1 | 0.72670 (6) | 0.62971 (5) | 0.88548 (5) | 0.04926 (17) | |
Br2 | 0.73289 (7) | 0.43013 (5) | 0.69615 (7) | 0.05729 (19) | |
Br3 | 1.03439 (7) | 0.68376 (6) | 0.62887 (6) | 0.05688 (19) | |
Br4 | 0.60829 (11) | 0.76456 (8) | 0.56062 (8) | 0.0922 (3) | |
O1A | 0.1462 (3) | 0.1052 (3) | 0.8505 (3) | 0.0338 (8) | |
O2A | 0.3773 (3) | 0.0449 (3) | 0.8480 (3) | 0.0301 (7) | |
C1A | 0.2801 (4) | 0.1200 (4) | 0.8221 (4) | 0.0256 (9) | |
C2A | 0.3415 (5) | 0.2387 (4) | 0.7460 (6) | 0.0372 (12) | |
H2A1 | 0.426 (6) | 0.258 (5) | 0.781 (5) | 0.046 (16)* | |
H2A2 | 0.375 (7) | 0.234 (5) | 0.682 (6) | 0.06 (2)* | |
N3A | 0.2438 (4) | 0.3404 (3) | 0.7206 (4) | 0.0366 (10) | |
C4A | 0.1914 (11) | 0.3524 (6) | 0.8271 (7) | 0.082 (3) | |
H4A1 | 0.1203 | 0.4122 | 0.8106 | 0.10 (3)* | |
H4A2 | 0.2728 | 0.3715 | 0.8600 | 0.13 (4)* | |
H4A3 | 0.1472 | 0.2813 | 0.8797 | 0.11 (3)* | |
C5A | 0.3320 (7) | 0.4447 (5) | 0.6441 (8) | 0.068 (2) | |
H5A1 | 0.3296 | 0.4528 | 0.5668 | 0.17 (5)* | |
H5A2 | 0.4316 | 0.4364 | 0.6650 | 0.11 (3)* | |
H5A3 | 0.2912 | 0.5116 | 0.6515 | 0.09 (3)* | |
C6A | 0.1167 (7) | 0.3324 (6) | 0.6576 (7) | 0.067 (2) | |
H6A1 | 0.0802 | 0.4078 | 0.6166 | 0.08 (2)* | |
H6A2 | 0.0406 | 0.2857 | 0.7104 | 0.10 (3)* | |
H6A3 | 0.1474 | 0.2984 | 0.6053 | 0.14 (4)* | |
O1B | 0.8835 (3) | −0.0491 (3) | 0.8839 (3) | 0.0326 (7) | |
O2B | 0.6524 (3) | −0.1059 (3) | 0.9500 (3) | 0.0333 (7) | |
C1B | 0.7526 (4) | −0.0671 (3) | 0.8728 (4) | 0.0265 (9) | |
C2B | 0.7027 (6) | −0.0439 (5) | 0.7562 (5) | 0.0423 (13) | |
H2B1 | 0.718 (5) | −0.112 (5) | 0.743 (5) | 0.036 (14)* | |
H2B2 | 0.601 (8) | −0.024 (6) | 0.750 (7) | 0.08 (2)* | |
N3B | 0.7830 (4) | 0.0477 (3) | 0.6558 (4) | 0.0329 (9) | |
C4B | 0.9394 (6) | 0.0214 (7) | 0.6382 (6) | 0.0612 (19) | |
H4B1 | 0.9462 | −0.0541 | 0.6382 | 0.11 (3)* | |
H4B2 | 0.9934 | 0.0246 | 0.6983 | 0.10 (3)* | |
H4B3 | 0.9798 | 0.0767 | 0.5667 | 0.08 (2)* | |
C5B | 0.7081 (8) | 0.0607 (7) | 0.5518 (6) | 0.069 (2) | |
H5B1 | 0.7560 | 0.1207 | 0.4868 | 0.07 (2)* | |
H5B2 | 0.6073 | 0.0799 | 0.5602 | 0.10 (3)* | |
H5B3 | 0.7131 | −0.0101 | 0.5415 | 0.12 (4)* | |
C6B | 0.7741 (9) | 0.1589 (5) | 0.6699 (6) | 0.0625 (19) | |
H6B1 | 0.8302 | 0.2167 | 0.6083 | 0.07 (2)* | |
H6B2 | 0.8128 | 0.1496 | 0.7405 | 0.08 (2)* | |
H6B3 | 0.6736 | 0.1817 | 0.6701 | 0.14 (4)* | |
O1C | 0.6456 (3) | 0.1430 (3) | 0.9163 (3) | 0.0290 (7) | |
O2C | 0.8693 (3) | 0.1519 (3) | 0.9718 (3) | 0.0323 (7) | |
C1C | 0.7365 (4) | 0.1769 (3) | 0.9644 (4) | 0.0248 (9) | |
C2C | 0.6737 (5) | 0.2597 (4) | 1.0147 (5) | 0.0322 (11) | |
H2C1 | 0.668 (6) | 0.336 (5) | 0.954 (5) | 0.041 (15)* | |
H2C2 | 0.579 (5) | 0.235 (4) | 1.044 (4) | 0.030 (13)* | |
N3C | 0.7558 (4) | 0.2747 (3) | 1.1054 (4) | 0.0313 (9) | |
C4C | 0.6680 (6) | 0.3497 (5) | 1.1501 (6) | 0.0476 (14) | |
H4C1 | 0.5749 | 0.3134 | 1.1829 | 0.06 (2)* | |
H4C2 | 0.6528 | 0.4223 | 1.0891 | 0.06 (2)* | |
H4C3 | 0.7200 | 0.3615 | 1.2070 | 0.061 (19)* | |
C5C | 0.7746 (7) | 0.1616 (5) | 1.2014 (5) | 0.0526 (15) | |
H5C1 | 0.8323 | 0.1127 | 1.1745 | 0.062 (19)* | |
H5C2 | 0.6802 | 0.1265 | 1.2316 | 0.08 (2)* | |
H5C3 | 0.8236 | 0.1731 | 1.2598 | 0.07 (2)* | |
C6C | 0.9027 (6) | 0.3312 (5) | 1.0602 (6) | 0.0526 (16) | |
H6C1 | 0.9568 | 0.3300 | 1.1219 | 0.09 (3)* | |
H6C2 | 0.8897 | 0.4093 | 1.0086 | 0.08 (2)* | |
H6C3 | 0.9557 | 0.2907 | 1.0209 | 0.063 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0179 (4) | 0.0249 (4) | 0.0249 (5) | 0.0018 (3) | −0.0021 (3) | −0.0098 (4) |
Mn2 | 0.0181 (4) | 0.0239 (4) | 0.0285 (6) | 0.0012 (3) | −0.0028 (3) | −0.0106 (4) |
Mn3 | 0.0387 (4) | 0.0352 (4) | 0.0424 (5) | 0.0046 (3) | −0.0074 (3) | −0.0146 (4) |
Br1 | 0.0429 (3) | 0.0614 (4) | 0.0466 (4) | 0.0068 (2) | −0.0049 (2) | −0.0247 (3) |
Br2 | 0.0566 (4) | 0.0403 (3) | 0.0771 (5) | −0.0048 (2) | −0.0039 (3) | −0.0255 (3) |
Br3 | 0.0526 (3) | 0.0688 (4) | 0.0461 (4) | −0.0236 (3) | 0.0062 (3) | −0.0204 (3) |
Br4 | 0.1235 (7) | 0.0924 (6) | 0.0730 (6) | 0.0703 (5) | −0.0529 (5) | −0.0408 (5) |
O1A | 0.0239 (15) | 0.0365 (17) | 0.033 (2) | −0.0015 (12) | 0.0014 (13) | −0.0057 (15) |
O2A | 0.0284 (15) | 0.0291 (15) | 0.032 (2) | 0.0063 (12) | −0.0075 (13) | −0.0110 (14) |
C1A | 0.0254 (19) | 0.030 (2) | 0.021 (2) | 0.0010 (16) | −0.0029 (16) | −0.0093 (18) |
C2A | 0.024 (2) | 0.031 (2) | 0.049 (4) | 0.0024 (17) | −0.001 (2) | −0.007 (2) |
N3A | 0.032 (2) | 0.0296 (19) | 0.043 (3) | 0.0016 (15) | −0.0035 (18) | −0.0094 (19) |
C4A | 0.142 (8) | 0.047 (4) | 0.059 (5) | 0.013 (4) | 0.014 (5) | −0.027 (4) |
C5A | 0.052 (4) | 0.031 (3) | 0.093 (7) | −0.007 (2) | 0.001 (3) | 0.005 (3) |
C6A | 0.043 (3) | 0.052 (4) | 0.087 (6) | 0.010 (3) | −0.031 (3) | −0.004 (4) |
O1B | 0.0256 (15) | 0.0440 (18) | 0.033 (2) | 0.0013 (13) | −0.0051 (13) | −0.0200 (16) |
O2B | 0.0291 (16) | 0.0305 (16) | 0.042 (2) | 0.0028 (12) | 0.0042 (14) | −0.0171 (15) |
C1B | 0.025 (2) | 0.0241 (19) | 0.033 (3) | 0.0046 (15) | −0.0050 (17) | −0.0139 (19) |
C2B | 0.040 (3) | 0.046 (3) | 0.036 (3) | −0.013 (2) | −0.009 (2) | −0.010 (2) |
N3B | 0.033 (2) | 0.036 (2) | 0.029 (2) | 0.0030 (16) | −0.0049 (16) | −0.0125 (18) |
C4B | 0.049 (3) | 0.089 (5) | 0.037 (4) | 0.026 (3) | 0.005 (3) | −0.018 (4) |
C5B | 0.074 (5) | 0.077 (5) | 0.037 (4) | −0.018 (4) | −0.024 (3) | −0.001 (3) |
C6B | 0.095 (5) | 0.038 (3) | 0.050 (5) | 0.003 (3) | 0.016 (4) | −0.016 (3) |
O1C | 0.0289 (15) | 0.0280 (15) | 0.029 (2) | −0.0044 (12) | −0.0020 (13) | −0.0105 (13) |
O2C | 0.0261 (15) | 0.0288 (15) | 0.045 (2) | 0.0060 (12) | −0.0052 (14) | −0.0168 (15) |
C1C | 0.0258 (19) | 0.0199 (18) | 0.026 (3) | −0.0009 (14) | −0.0003 (16) | −0.0070 (17) |
C2C | 0.021 (2) | 0.039 (3) | 0.042 (3) | 0.0059 (18) | −0.0085 (19) | −0.022 (2) |
N3C | 0.0264 (18) | 0.0337 (19) | 0.039 (3) | 0.0031 (15) | −0.0048 (16) | −0.0196 (18) |
C4C | 0.042 (3) | 0.059 (4) | 0.058 (4) | 0.011 (3) | −0.005 (3) | −0.040 (3) |
C5C | 0.073 (4) | 0.044 (3) | 0.044 (4) | 0.008 (3) | −0.017 (3) | −0.019 (3) |
C6C | 0.031 (3) | 0.060 (4) | 0.082 (5) | −0.011 (2) | 0.003 (3) | −0.044 (4) |
Mn1—O2Ci | 2.173 (3) | O2B—C1B | 1.252 (5) |
Mn1—O2C | 2.173 (3) | C1B—C2B | 1.512 (7) |
Mn1—O1B | 2.176 (3) | C2B—N3B | 1.503 (7) |
Mn1—O1Bi | 2.176 (3) | C2B—H2B1 | 0.95 (5) |
Mn1—O1Aii | 2.219 (3) | C2B—H2B2 | 0.96 (7) |
Mn1—O1Aiii | 2.219 (3) | N3B—C4B | 1.487 (6) |
Mn2—O1Cii | 2.131 (3) | N3B—C6B | 1.493 (7) |
Mn2—O1C | 2.131 (3) | N3B—C5B | 1.495 (7) |
Mn2—O2B | 2.163 (3) | C4B—H4B1 | 0.9600 |
Mn2—O2Bii | 2.163 (3) | C4B—H4B2 | 0.9600 |
Mn2—O2Aii | 2.192 (3) | C4B—H4B3 | 0.9600 |
Mn2—O2A | 2.192 (3) | C5B—H5B1 | 0.9600 |
Mn3—Br2 | 2.4724 (11) | C5B—H5B2 | 0.9600 |
Mn3—Br4 | 2.4932 (11) | C5B—H5B3 | 0.9600 |
Mn3—Br1 | 2.5019 (12) | C6B—H6B1 | 0.9600 |
Mn3—Br3 | 2.5179 (11) | C6B—H6B2 | 0.9600 |
O1A—C1A | 1.247 (5) | C6B—H6B3 | 0.9600 |
O2A—C1A | 1.255 (5) | O1C—C1C | 1.245 (5) |
C1A—C2A | 1.522 (6) | O2C—C1C | 1.251 (5) |
C2A—N3A | 1.499 (6) | C1C—C2C | 1.527 (6) |
C2A—H2A1 | 1.00 (6) | C2C—N3C | 1.505 (6) |
C2A—H2A2 | 0.89 (7) | C2C—H2C1 | 0.97 (6) |
N3A—C4A | 1.485 (8) | C2C—H2C2 | 0.92 (5) |
N3A—C6A | 1.488 (7) | N3C—C5C | 1.493 (7) |
N3A—C5A | 1.502 (7) | N3C—C4C | 1.495 (6) |
C4A—H4A1 | 0.9600 | N3C—C6C | 1.497 (6) |
C4A—H4A2 | 0.9600 | C4C—H4C1 | 0.9600 |
C4A—H4A3 | 0.9600 | C4C—H4C2 | 0.9600 |
C5A—H5A1 | 0.9600 | C4C—H4C3 | 0.9600 |
C5A—H5A2 | 0.9600 | C5C—H5C1 | 0.9600 |
C5A—H5A3 | 0.9600 | C5C—H5C2 | 0.9600 |
C6A—H6A1 | 0.9600 | C5C—H5C3 | 0.9600 |
C6A—H6A2 | 0.9600 | C6C—H6C1 | 0.9600 |
C6A—H6A3 | 0.9600 | C6C—H6C2 | 0.9600 |
O1B—C1B | 1.249 (5) | C6C—H6C3 | 0.9600 |
O2Ci—Mn1—O2C | 180.0 | C1B—O1B—Mn1 | 135.7 (3) |
O2Ci—Mn1—O1B | 86.19 (12) | C1B—O2B—Mn2 | 124.0 (3) |
O2C—Mn1—O1B | 93.81 (12) | O1B—C1B—O2B | 127.1 (5) |
O2Ci—Mn1—O1Bi | 93.81 (12) | O1B—C1B—C2B | 119.7 (4) |
O2C—Mn1—O1Bi | 86.19 (12) | O2B—C1B—C2B | 113.1 (4) |
O1B—Mn1—O1Bi | 180.0 | N3B—C2B—C1B | 117.9 (4) |
O2Ci—Mn1—O1Aii | 88.25 (12) | N3B—C2B—H2B1 | 104 (3) |
O2C—Mn1—O1Aii | 91.75 (12) | C1B—C2B—H2B1 | 107 (3) |
O1B—Mn1—O1Aii | 93.30 (13) | N3B—C2B—H2B2 | 105 (5) |
O1Bi—Mn1—O1Aii | 86.70 (13) | C1B—C2B—H2B2 | 113 (5) |
O2Ci—Mn1—O1Aiii | 91.75 (12) | H2B1—C2B—H2B2 | 109 (5) |
O2C—Mn1—O1Aiii | 88.25 (12) | C4B—N3B—C6B | 109.3 (5) |
O1B—Mn1—O1Aiii | 86.70 (13) | C4B—N3B—C5B | 107.8 (5) |
O1Bi—Mn1—O1Aiii | 93.30 (13) | C6B—N3B—C5B | 108.5 (5) |
O1Aii—Mn1—O1Aiii | 180.0 | C4B—N3B—C2B | 113.8 (4) |
O1Cii—Mn2—O1C | 180.0 | C6B—N3B—C2B | 109.1 (4) |
O1Cii—Mn2—O2B | 90.79 (12) | C5B—N3B—C2B | 108.2 (4) |
O1C—Mn2—O2B | 89.21 (12) | N3B—C4B—H4B1 | 109.5 |
O1Cii—Mn2—O2Bii | 89.21 (12) | N3B—C4B—H4B2 | 109.5 |
O1C—Mn2—O2Bii | 90.79 (12) | H4B1—C4B—H4B2 | 109.5 |
O2B—Mn2—O2Bii | 180.0 | N3B—C4B—H4B3 | 109.5 |
O1Cii—Mn2—O2Aii | 91.45 (12) | H4B1—C4B—H4B3 | 109.5 |
O1C—Mn2—O2Aii | 88.55 (12) | H4B2—C4B—H4B3 | 109.5 |
O2B—Mn2—O2Aii | 86.67 (12) | N3B—C5B—H5B1 | 109.5 |
O2Bii—Mn2—O2Aii | 93.33 (12) | N3B—C5B—H5B2 | 109.5 |
O1Cii—Mn2—O2A | 88.55 (12) | H5B1—C5B—H5B2 | 109.5 |
O1C—Mn2—O2A | 91.45 (12) | N3B—C5B—H5B3 | 109.5 |
O2B—Mn2—O2A | 93.33 (12) | H5B1—C5B—H5B3 | 109.5 |
O2Bii—Mn2—O2A | 86.67 (12) | H5B2—C5B—H5B3 | 109.5 |
O2Aii—Mn2—O2A | 180.0 | N3B—C6B—H6B1 | 109.5 |
Br2—Mn3—Br4 | 110.42 (4) | N3B—C6B—H6B2 | 109.5 |
Br2—Mn3—Br1 | 113.26 (4) | H6B1—C6B—H6B2 | 109.5 |
Br4—Mn3—Br1 | 108.64 (4) | N3B—C6B—H6B3 | 109.5 |
Br2—Mn3—Br3 | 108.51 (4) | H6B1—C6B—H6B3 | 109.5 |
Br4—Mn3—Br3 | 108.99 (5) | H6B2—C6B—H6B3 | 109.5 |
Br1—Mn3—Br3 | 106.89 (4) | C1C—O1C—Mn2 | 124.6 (3) |
C1A—O1A—Mn1iv | 138.8 (3) | C1C—O2C—Mn1 | 136.7 (3) |
C1A—O2A—Mn2 | 123.0 (3) | O1C—C1C—O2C | 126.7 (4) |
O1A—C1A—O2A | 127.0 (4) | O1C—C1C—C2C | 113.7 (4) |
O1A—C1A—C2A | 120.5 (4) | O2C—C1C—C2C | 119.5 (4) |
O2A—C1A—C2A | 112.5 (4) | N3C—C2C—C1C | 117.5 (4) |
N3A—C2A—C1A | 119.0 (4) | N3C—C2C—H2C1 | 106 (3) |
N3A—C2A—H2A1 | 104 (3) | C1C—C2C—H2C1 | 109 (3) |
C1A—C2A—H2A1 | 110 (3) | N3C—C2C—H2C2 | 108 (3) |
N3A—C2A—H2A2 | 110 (4) | C1C—C2C—H2C2 | 108 (3) |
C1A—C2A—H2A2 | 106 (4) | H2C1—C2C—H2C2 | 108 (4) |
H2A1—C2A—H2A2 | 108 (5) | C5C—N3C—C4C | 108.2 (5) |
C4A—N3A—C6A | 110.1 (6) | C5C—N3C—C6C | 109.6 (4) |
C4A—N3A—C2A | 110.4 (5) | C4C—N3C—C6C | 108.0 (4) |
C6A—N3A—C2A | 111.7 (5) | C5C—N3C—C2C | 110.5 (4) |
C4A—N3A—C5A | 110.2 (6) | C4C—N3C—C2C | 108.4 (4) |
C6A—N3A—C5A | 106.9 (5) | C6C—N3C—C2C | 112.0 (4) |
C2A—N3A—C5A | 107.4 (4) | N3C—C4C—H4C1 | 109.5 |
N3A—C4A—H4A1 | 109.5 | N3C—C4C—H4C2 | 109.5 |
N3A—C4A—H4A2 | 109.5 | H4C1—C4C—H4C2 | 109.5 |
H4A1—C4A—H4A2 | 109.5 | N3C—C4C—H4C3 | 109.5 |
N3A—C4A—H4A3 | 109.5 | H4C1—C4C—H4C3 | 109.5 |
H4A1—C4A—H4A3 | 109.5 | H4C2—C4C—H4C3 | 109.5 |
H4A2—C4A—H4A3 | 109.5 | N3C—C5C—H5C1 | 109.5 |
N3A—C5A—H5A1 | 109.5 | N3C—C5C—H5C2 | 109.5 |
N3A—C5A—H5A2 | 109.5 | H5C1—C5C—H5C2 | 109.5 |
H5A1—C5A—H5A2 | 109.5 | N3C—C5C—H5C3 | 109.5 |
N3A—C5A—H5A3 | 109.5 | H5C1—C5C—H5C3 | 109.5 |
H5A1—C5A—H5A3 | 109.5 | H5C2—C5C—H5C3 | 109.5 |
H5A2—C5A—H5A3 | 109.5 | N3C—C6C—H6C1 | 109.5 |
N3A—C6A—H6A1 | 109.5 | N3C—C6C—H6C2 | 109.5 |
N3A—C6A—H6A2 | 109.5 | H6C1—C6C—H6C2 | 109.5 |
H6A1—C6A—H6A2 | 109.5 | N3C—C6C—H6C3 | 109.5 |
N3A—C6A—H6A3 | 109.5 | H6C1—C6C—H6C3 | 109.5 |
H6A1—C6A—H6A3 | 109.5 | H6C2—C6C—H6C3 | 109.5 |
H6A2—C6A—H6A3 | 109.5 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) x+1, y, z; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C5H11NO2)3]·MnBr4 |
Mr | 780.96 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.140 (2), 12.700 (2), 12.871 (3) |
α, β, γ (°) | 66.557 (6), 86.063 (7), 89.249 (7) |
V (Å3) | 1367.3 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.80 |
Crystal size (mm) | 0.50 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.073, 0.130 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17423, 7836, 5085 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.115, 1.05 |
No. of reflections | 7836 |
No. of parameters | 326 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.77, −1.88 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bergerhoff et al., 1996).
Mn1—O2C | 2.173 (3) | Mn2—O2A | 2.192 (3) |
Mn1—O1B | 2.176 (3) | Mn3—Br2 | 2.4724 (11) |
Mn1—O1Ai | 2.219 (3) | Mn3—Br4 | 2.4932 (11) |
Mn2—O1C | 2.131 (3) | Mn3—Br1 | 2.5019 (12) |
Mn2—O2B | 2.163 (3) | Mn3—Br3 | 2.5179 (11) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The author thanks the International Centre for Diffraction Data for financial assistance of this work (grant No. 90-03 ET).
References
Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221–225. CrossRef CAS Web of Science Google Scholar
Bruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X.-M. & Mak, T. C. W. (1991). Inorg. Chim. Acta, 189, 3–5. CAS Google Scholar
Chen, X.-M. & Mak, T. C. W. (1994). Inorg. Chem. 33, 2444–2447. CSD CrossRef CAS Web of Science Google Scholar
Haussühl, S. (1988). Solid State Commun. 68, 963–966. Google Scholar
Haussühl, S. (1989). Z. Kristallogr. 188, 311–320. Google Scholar
Haussühl, E. & Schreuer, J. (2001). Z. Kristallogr. 216, 616–620. Google Scholar
Haussühl, S. & Wang, J. (1989). Z. Kristallogr. 187, 249–251. Google Scholar
Mak, T. C. W. (1990). J. Mol. Struct. 220, 13–18. CSD CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Schreuer, J. & Haussühl, S. (1993). Z. Kristallogr. 205, 309–310. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Viertorinne, M., Valkonen, J., Pitkänen, I., Mathlouthi, M. & Nurmi, J. (1999). J. Mol. Struct. 477, 23–29. Web of Science CSD CrossRef CAS Google Scholar
Wang, J., Gnanam, F. D. & Haussühl, S. (1986). Z. Kristallogr. 175, 155–158. Google Scholar
Wiehl, L., Schreuer, J. & Haussühl, E. (2006a). Z. Kristallogr. New Cryst. Struct. 221, 77–79. CAS Google Scholar
Wiehl, L., Schreuer, J., Haussühl, E., Winkler, B., Removic-Langer, K., Wolf, B., Lang, M. & Milman, V. (2006b). J. Phys. Condens. Matter, 18, 11067–11079. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The physical properties of compounds of metal salts with the zwitterionic ligand betaine have been investigated intensively in the past (Haussühl & Schreuer, 2001; Haussühl & Wang, 1989; Haussühl, 1989; Haussühl, 1988; Wang et al., 1986; Chen & Mak, 1994, and references therein).
In particular, the low-dimensional magnetic properties of the isomorphic trigonal group of betaine manganese metal chlorides [(C5H11NO2)3Mn].MCl4 (M = Mn, Co, Zn, space group P3) has been analysed in detail (Wiehl et al., 2006b). In these crystals, the betaine ligands operate as µ-(O,O') bridges between Mn2+ cations thus forming chains of the octahedrally coordinated mangnetic cations (S = 5/2). A model of an antiferromagnetic Heisenberg spin fits well the magnetic proerties of these crystals (Wiehl et al., 2006b).
Here, we present the crystal structure of the title compound, (I) (Fig. 1). The crystal structure of (I) contains three crystallographically non-equivalent mangenese atoms. Two of them, Mn1 and Mn2, located on centres of inversion, are sixfold coordinated by oxygen atoms of the carboxylate groups of betaine molecules, which act as bridging ligands to form an one-dimensional tris(carboxylato-O,O')-bridged Mn2+ complex (Table 1). The cationic chains are oriented along the a axis and possess approximately the rod symmetry P3 (Fig. 2). In the interstices between these chains, anionic distorted tetrahedral groups [Mn(3)Br4]2- are located.
Apart from the triclinic symmetry, the structural features of (I) are analogous to those of the trigonal chlorides [(C5H11NO2)3Mn].MCl4 [M = Mn (Chen & Mak, 1991; Schreuer & Haussühl, 1993), Co (Wiehl et al., 2006a) and Zn (Wiehl et al., 2006b)]. The type of structural units [(C5H11NO2)3Mn]∞ and [MnBr4], and the structural packing of these chains and tetrahedra are analogous to the atomic arrangement in the structure of the chloride compounds. Both, the translation period in the direction of the chain axis [a in (I), c ≈ 9.08 Å in the chloride compounds] as well as the interchain distances [b and c in (I), a = b ≈ 12.8 Å in the chloride compounds] correspond well. The interatomic distances and angles within the betaine molecules agree well with the values given in the literature (Viertorinne et al., 1999; Mak, 1990), the carboxylate C—O distances indicate the delocalization of the electrons to a mesomeric state [C—O-distances range from 1.245 (5) to 1.255 (5) Å].