metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1273-m1274

catena-Poly[[manganese(II)-tris­­(μ-bet­aine-κ2O:O′)] tetra­bromido­manganate(IV)

aUniversität Wien – Geozentrum, Institut für Mineralogie und Kristallographie, Althanstrasse 14, A-1090 Wien, Austria, and bUniversität zu Köln, Institut für Kristallographie, Zülpicher Strasse 49b, D-50674 Köln, Germany
*Correspondence e-mail: maria.kocadag@hotmail.com

(Received 11 August 2008; accepted 9 September 2008; online 17 September 2008)

The title compound, [Mn(C5H11NO2)3]·MnBr4, contains polymeric cationic chains of distorted MnO6 octa­hedra and bridging betaine mol­ecules, running parallel to the a axis. There are two distinct Mn2+ cations in the chain, both with site symmetry [\overline{1}]. Distorted [MnBr4]2− tetra­hedra occupy the spaces between the chains.

Related literature

For related literature, see: Chen & Mak (1994[Chen, X.-M. & Mak, T. C. W. (1994). Inorg. Chem. 33, 2444-2447.]); Haussühl (1988[Haussühl, S. (1988). Solid State Commun. 68, 963-966.], 1989[Haussühl, S. (1989). Z. Kristallogr. 188, 311-320.]); Haussühl & Schreuer (2001[Haussühl, E. & Schreuer, J. (2001). Z. Kristallogr. 216, 616-620.]); Haussühl & Wang (1989[Haussühl, S. & Wang, J. (1989). Z. Kristallogr. 187, 249-251.]); Mak (1990[Mak, T. C. W. (1990). J. Mol. Struct. 220, 13-18.]); Viertorinne et al. (1999[Viertorinne, M., Valkonen, J., Pitkänen, I., Mathlouthi, M. & Nurmi, J. (1999). J. Mol. Struct. 477, 23-29.]); Wang et al. (1986[Wang, J., Gnanam, F. D. & Haussühl, S. (1986). Z. Kristallogr. 175, 155-158.]); Wiehl et al. (2006a[Wiehl, L., Schreuer, J. & Haussühl, E. (2006a). Z. Kristallogr. New Cryst. Struct. 221, 77-79.],b[Wiehl, L., Schreuer, J., Haussühl, E., Winkler, B., Removic-Langer, K., Wolf, B., Lang, M. & Milman, V. (2006b). J. Phys. Condens. Matter, 18, 11067-11079.])); Chen & Mak (1991[Chen, X.-M. & Mak, T. C. W. (1991). Inorg. Chim. Acta, 189, 3-5.]); Schreuer & Haussühl (1993[Schreuer, J. & Haussühl, S. (1993). Z. Kristallogr. 205, 309-310.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H11NO2)3]·MnBr4

  • Mr = 780.96

  • Triclinic, [P \overline 1]

  • a = 9.140 (2) Å

  • b = 12.700 (2) Å

  • c = 12.871 (3) Å

  • α = 66.557 (6)°

  • β = 86.063 (7)°

  • γ = 89.249 (7)°

  • V = 1367.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.80 mm−1

  • T = 293 (2) K

  • 0.50 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.073, Tmax = 0.130

  • 17423 measured reflections

  • 7836 independent reflections

  • 5085 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.115

  • S = 1.05

  • 7836 reflections

  • 326 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.77 e Å−3

  • Δρmin = −1.88 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2C 2.173 (3)
Mn1—O1B 2.176 (3)
Mn1—O1Ai 2.219 (3)
Mn2—O1C 2.131 (3)
Mn2—O2B 2.163 (3)
Mn2—O2A 2.192 (3)
Mn3—Br2 2.4724 (11)
Mn3—Br4 2.4932 (11)
Mn3—Br1 2.5019 (12)
Mn3—Br3 2.5179 (11)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bergerhoff et al., 1996[Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221-225.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The physical properties of compounds of metal salts with the zwitterionic ligand betaine have been investigated intensively in the past (Haussühl & Schreuer, 2001; Haussühl & Wang, 1989; Haussühl, 1989; Haussühl, 1988; Wang et al., 1986; Chen & Mak, 1994, and references therein).

In particular, the low-dimensional magnetic properties of the isomorphic trigonal group of betaine manganese metal chlorides [(C5H11NO2)3Mn].MCl4 (M = Mn, Co, Zn, space group P3) has been analysed in detail (Wiehl et al., 2006b). In these crystals, the betaine ligands operate as µ-(O,O') bridges between Mn2+ cations thus forming chains of the octahedrally coordinated mangnetic cations (S = 5/2). A model of an antiferromagnetic Heisenberg spin fits well the magnetic proerties of these crystals (Wiehl et al., 2006b).

Here, we present the crystal structure of the title compound, (I) (Fig. 1). The crystal structure of (I) contains three crystallographically non-equivalent mangenese atoms. Two of them, Mn1 and Mn2, located on centres of inversion, are sixfold coordinated by oxygen atoms of the carboxylate groups of betaine molecules, which act as bridging ligands to form an one-dimensional tris(carboxylato-O,O')-bridged Mn2+ complex (Table 1). The cationic chains are oriented along the a axis and possess approximately the rod symmetry P3 (Fig. 2). In the interstices between these chains, anionic distorted tetrahedral groups [Mn(3)Br4]2- are located.

Apart from the triclinic symmetry, the structural features of (I) are analogous to those of the trigonal chlorides [(C5H11NO2)3Mn].MCl4 [M = Mn (Chen & Mak, 1991; Schreuer & Haussühl, 1993), Co (Wiehl et al., 2006a) and Zn (Wiehl et al., 2006b)]. The type of structural units [(C5H11NO2)3Mn] and [MnBr4], and the structural packing of these chains and tetrahedra are analogous to the atomic arrangement in the structure of the chloride compounds. Both, the translation period in the direction of the chain axis [a in (I), c 9.08 Å in the chloride compounds] as well as the interchain distances [b and c in (I), a = b 12.8 Å in the chloride compounds] correspond well. The interatomic distances and angles within the betaine molecules agree well with the values given in the literature (Viertorinne et al., 1999; Mak, 1990), the carboxylate C—O distances indicate the delocalization of the electrons to a mesomeric state [C—O-distances range from 1.245 (5) to 1.255 (5) Å].

Related literature top

For related literature, see: Chen & Mak (1994); Haussühl (1988, 1989); Haussühl & Schreuer (2001); Haussühl & Wang (1989); Mak (1990); Viertorinne et al. (1999); Wang et al. (1986); Wiehl et al. (2006a,b)); Chen & Mak (1991); Schreuer & Haussühl (1993).

Experimental top

The title compound crystallizes from 3:2 stoichiometry aqueous solutions of betaine and MnBr2 in the temperature range 290 to 300 K in thick tabular prismatic crystals of sulfur-yellow colour. Crystals of optical quality with dimensions up to 25 × 7 × 3 mm were grown from a solution of 167 g betaine and 272 g MnBr2.4H2O by very slow evaporation at 295 K during a period of 11 months.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), shown with displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram for (I) (left) in comparison with the structure of ([(betaine)3Mn](MCl4)] (Wiehl et al., 2006a, right), viewed along and perpendicular to the chains (top and bottom). Hydrogen atoms are omitted for clarity.
catena-Poly[[manganese(II)-tris(µ-betaine-κ2O:O')] tetrabromidomanganese(IV)] top
Crystal data top
[Mn(C5H11NO2)3]·MnBr4Z = 2
Mr = 780.96F(000) = 764
Triclinic, P1Dx = 1.897 Mg m3
Hall symbol: -P 1Melting point: not determined K
a = 9.140 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.700 (2) ÅCell parameters from 1294 reflections
c = 12.871 (3) Åθ = 2.8–26.4°
α = 66.557 (6)°µ = 6.80 mm1
β = 86.063 (7)°T = 293 K
γ = 89.249 (7)°Prism, yellow
V = 1367.3 (4) Å30.50 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
7836 independent reflections
Radiation source: fine-focus sealed tube5085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0.1 pixels mm-1θmax = 30°, θmin = 1.8°
ϕ–scan and ω–scansh = 1313
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
k = 1818
Tmin = 0.073, Tmax = 0.130l = 1518
17423 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0151P)2 + 6.4946P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7836 reflectionsΔρmax = 1.77 e Å3
326 parametersΔρmin = 1.88 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (3)
Crystal data top
[Mn(C5H11NO2)3]·MnBr4γ = 89.249 (7)°
Mr = 780.96V = 1367.3 (4) Å3
Triclinic, P1Z = 2
a = 9.140 (2) ÅMo Kα radiation
b = 12.700 (2) ŵ = 6.80 mm1
c = 12.871 (3) ÅT = 293 K
α = 66.557 (6)°0.50 × 0.30 × 0.30 mm
β = 86.063 (7)°
Data collection top
Bruker SMART CCD
diffractometer
7836 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
5085 reflections with I > 2σ(I)
Tmin = 0.073, Tmax = 0.130Rint = 0.030
17423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.77 e Å3
7836 reflectionsΔρmin = 1.88 e Å3
326 parameters
Special details top

Experimental. Single-crystal X-ray intensity data were collected at 293 K on a Nonius APEXII diffractometer with CCD-area detector, using 673 frames with phi- and omega-increments of 1 degree and a counting time of 60 s per frame. The crystal-to-detector-distance was 30 mm. The whole ewald sphere was measured. The reflection data were processed with the Nonius program suite DENZO-SMN and corrected for Lorentz, polarization, background and absorption effects (Otwinowski and Minor, 1997). The crystal structure was determined by Direct methods (SHELXS97, Sheldrick, 2008) and subsequent Fourier and difference Fourier syntheses, followed by full-matrix least-squares refinements on F2 (SHELXL97, Sheldrick, 2008). All hydrogen atoms were treated as riding. Using anisotropic treatment of the non-H atoms and unrestrained isotropic treatment of the H atoms, the refinement converged at an R-value of 0.053.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.00001.00000.0226 (2)
Mn20.50000.00001.00000.0234 (2)
Mn30.77120 (8)0.62332 (7)0.69412 (7)0.0388 (2)
Br10.72670 (6)0.62971 (5)0.88548 (5)0.04926 (17)
Br20.73289 (7)0.43013 (5)0.69615 (7)0.05729 (19)
Br31.03439 (7)0.68376 (6)0.62887 (6)0.05688 (19)
Br40.60829 (11)0.76456 (8)0.56062 (8)0.0922 (3)
O1A0.1462 (3)0.1052 (3)0.8505 (3)0.0338 (8)
O2A0.3773 (3)0.0449 (3)0.8480 (3)0.0301 (7)
C1A0.2801 (4)0.1200 (4)0.8221 (4)0.0256 (9)
C2A0.3415 (5)0.2387 (4)0.7460 (6)0.0372 (12)
H2A10.426 (6)0.258 (5)0.781 (5)0.046 (16)*
H2A20.375 (7)0.234 (5)0.682 (6)0.06 (2)*
N3A0.2438 (4)0.3404 (3)0.7206 (4)0.0366 (10)
C4A0.1914 (11)0.3524 (6)0.8271 (7)0.082 (3)
H4A10.12030.41220.81060.10 (3)*
H4A20.27280.37150.86000.13 (4)*
H4A30.14720.28130.87970.11 (3)*
C5A0.3320 (7)0.4447 (5)0.6441 (8)0.068 (2)
H5A10.32960.45280.56680.17 (5)*
H5A20.43160.43640.66500.11 (3)*
H5A30.29120.51160.65150.09 (3)*
C6A0.1167 (7)0.3324 (6)0.6576 (7)0.067 (2)
H6A10.08020.40780.61660.08 (2)*
H6A20.04060.28570.71040.10 (3)*
H6A30.14740.29840.60530.14 (4)*
O1B0.8835 (3)0.0491 (3)0.8839 (3)0.0326 (7)
O2B0.6524 (3)0.1059 (3)0.9500 (3)0.0333 (7)
C1B0.7526 (4)0.0671 (3)0.8728 (4)0.0265 (9)
C2B0.7027 (6)0.0439 (5)0.7562 (5)0.0423 (13)
H2B10.718 (5)0.112 (5)0.743 (5)0.036 (14)*
H2B20.601 (8)0.024 (6)0.750 (7)0.08 (2)*
N3B0.7830 (4)0.0477 (3)0.6558 (4)0.0329 (9)
C4B0.9394 (6)0.0214 (7)0.6382 (6)0.0612 (19)
H4B10.94620.05410.63820.11 (3)*
H4B20.99340.02460.69830.10 (3)*
H4B30.97980.07670.56670.08 (2)*
C5B0.7081 (8)0.0607 (7)0.5518 (6)0.069 (2)
H5B10.75600.12070.48680.07 (2)*
H5B20.60730.07990.56020.10 (3)*
H5B30.71310.01010.54150.12 (4)*
C6B0.7741 (9)0.1589 (5)0.6699 (6)0.0625 (19)
H6B10.83020.21670.60830.07 (2)*
H6B20.81280.14960.74050.08 (2)*
H6B30.67360.18170.67010.14 (4)*
O1C0.6456 (3)0.1430 (3)0.9163 (3)0.0290 (7)
O2C0.8693 (3)0.1519 (3)0.9718 (3)0.0323 (7)
C1C0.7365 (4)0.1769 (3)0.9644 (4)0.0248 (9)
C2C0.6737 (5)0.2597 (4)1.0147 (5)0.0322 (11)
H2C10.668 (6)0.336 (5)0.954 (5)0.041 (15)*
H2C20.579 (5)0.235 (4)1.044 (4)0.030 (13)*
N3C0.7558 (4)0.2747 (3)1.1054 (4)0.0313 (9)
C4C0.6680 (6)0.3497 (5)1.1501 (6)0.0476 (14)
H4C10.57490.31341.18290.06 (2)*
H4C20.65280.42231.08910.06 (2)*
H4C30.72000.36151.20700.061 (19)*
C5C0.7746 (7)0.1616 (5)1.2014 (5)0.0526 (15)
H5C10.83230.11271.17450.062 (19)*
H5C20.68020.12651.23160.08 (2)*
H5C30.82360.17311.25980.07 (2)*
C6C0.9027 (6)0.3312 (5)1.0602 (6)0.0526 (16)
H6C10.95680.33001.12190.09 (3)*
H6C20.88970.40931.00860.08 (2)*
H6C30.95570.29071.02090.063 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0179 (4)0.0249 (4)0.0249 (5)0.0018 (3)0.0021 (3)0.0098 (4)
Mn20.0181 (4)0.0239 (4)0.0285 (6)0.0012 (3)0.0028 (3)0.0106 (4)
Mn30.0387 (4)0.0352 (4)0.0424 (5)0.0046 (3)0.0074 (3)0.0146 (4)
Br10.0429 (3)0.0614 (4)0.0466 (4)0.0068 (2)0.0049 (2)0.0247 (3)
Br20.0566 (4)0.0403 (3)0.0771 (5)0.0048 (2)0.0039 (3)0.0255 (3)
Br30.0526 (3)0.0688 (4)0.0461 (4)0.0236 (3)0.0062 (3)0.0204 (3)
Br40.1235 (7)0.0924 (6)0.0730 (6)0.0703 (5)0.0529 (5)0.0408 (5)
O1A0.0239 (15)0.0365 (17)0.033 (2)0.0015 (12)0.0014 (13)0.0057 (15)
O2A0.0284 (15)0.0291 (15)0.032 (2)0.0063 (12)0.0075 (13)0.0110 (14)
C1A0.0254 (19)0.030 (2)0.021 (2)0.0010 (16)0.0029 (16)0.0093 (18)
C2A0.024 (2)0.031 (2)0.049 (4)0.0024 (17)0.001 (2)0.007 (2)
N3A0.032 (2)0.0296 (19)0.043 (3)0.0016 (15)0.0035 (18)0.0094 (19)
C4A0.142 (8)0.047 (4)0.059 (5)0.013 (4)0.014 (5)0.027 (4)
C5A0.052 (4)0.031 (3)0.093 (7)0.007 (2)0.001 (3)0.005 (3)
C6A0.043 (3)0.052 (4)0.087 (6)0.010 (3)0.031 (3)0.004 (4)
O1B0.0256 (15)0.0440 (18)0.033 (2)0.0013 (13)0.0051 (13)0.0200 (16)
O2B0.0291 (16)0.0305 (16)0.042 (2)0.0028 (12)0.0042 (14)0.0171 (15)
C1B0.025 (2)0.0241 (19)0.033 (3)0.0046 (15)0.0050 (17)0.0139 (19)
C2B0.040 (3)0.046 (3)0.036 (3)0.013 (2)0.009 (2)0.010 (2)
N3B0.033 (2)0.036 (2)0.029 (2)0.0030 (16)0.0049 (16)0.0125 (18)
C4B0.049 (3)0.089 (5)0.037 (4)0.026 (3)0.005 (3)0.018 (4)
C5B0.074 (5)0.077 (5)0.037 (4)0.018 (4)0.024 (3)0.001 (3)
C6B0.095 (5)0.038 (3)0.050 (5)0.003 (3)0.016 (4)0.016 (3)
O1C0.0289 (15)0.0280 (15)0.029 (2)0.0044 (12)0.0020 (13)0.0105 (13)
O2C0.0261 (15)0.0288 (15)0.045 (2)0.0060 (12)0.0052 (14)0.0168 (15)
C1C0.0258 (19)0.0199 (18)0.026 (3)0.0009 (14)0.0003 (16)0.0070 (17)
C2C0.021 (2)0.039 (3)0.042 (3)0.0059 (18)0.0085 (19)0.022 (2)
N3C0.0264 (18)0.0337 (19)0.039 (3)0.0031 (15)0.0048 (16)0.0196 (18)
C4C0.042 (3)0.059 (4)0.058 (4)0.011 (3)0.005 (3)0.040 (3)
C5C0.073 (4)0.044 (3)0.044 (4)0.008 (3)0.017 (3)0.019 (3)
C6C0.031 (3)0.060 (4)0.082 (5)0.011 (2)0.003 (3)0.044 (4)
Geometric parameters (Å, º) top
Mn1—O2Ci2.173 (3)O2B—C1B1.252 (5)
Mn1—O2C2.173 (3)C1B—C2B1.512 (7)
Mn1—O1B2.176 (3)C2B—N3B1.503 (7)
Mn1—O1Bi2.176 (3)C2B—H2B10.95 (5)
Mn1—O1Aii2.219 (3)C2B—H2B20.96 (7)
Mn1—O1Aiii2.219 (3)N3B—C4B1.487 (6)
Mn2—O1Cii2.131 (3)N3B—C6B1.493 (7)
Mn2—O1C2.131 (3)N3B—C5B1.495 (7)
Mn2—O2B2.163 (3)C4B—H4B10.9600
Mn2—O2Bii2.163 (3)C4B—H4B20.9600
Mn2—O2Aii2.192 (3)C4B—H4B30.9600
Mn2—O2A2.192 (3)C5B—H5B10.9600
Mn3—Br22.4724 (11)C5B—H5B20.9600
Mn3—Br42.4932 (11)C5B—H5B30.9600
Mn3—Br12.5019 (12)C6B—H6B10.9600
Mn3—Br32.5179 (11)C6B—H6B20.9600
O1A—C1A1.247 (5)C6B—H6B30.9600
O2A—C1A1.255 (5)O1C—C1C1.245 (5)
C1A—C2A1.522 (6)O2C—C1C1.251 (5)
C2A—N3A1.499 (6)C1C—C2C1.527 (6)
C2A—H2A11.00 (6)C2C—N3C1.505 (6)
C2A—H2A20.89 (7)C2C—H2C10.97 (6)
N3A—C4A1.485 (8)C2C—H2C20.92 (5)
N3A—C6A1.488 (7)N3C—C5C1.493 (7)
N3A—C5A1.502 (7)N3C—C4C1.495 (6)
C4A—H4A10.9600N3C—C6C1.497 (6)
C4A—H4A20.9600C4C—H4C10.9600
C4A—H4A30.9600C4C—H4C20.9600
C5A—H5A10.9600C4C—H4C30.9600
C5A—H5A20.9600C5C—H5C10.9600
C5A—H5A30.9600C5C—H5C20.9600
C6A—H6A10.9600C5C—H5C30.9600
C6A—H6A20.9600C6C—H6C10.9600
C6A—H6A30.9600C6C—H6C20.9600
O1B—C1B1.249 (5)C6C—H6C30.9600
O2Ci—Mn1—O2C180.0C1B—O1B—Mn1135.7 (3)
O2Ci—Mn1—O1B86.19 (12)C1B—O2B—Mn2124.0 (3)
O2C—Mn1—O1B93.81 (12)O1B—C1B—O2B127.1 (5)
O2Ci—Mn1—O1Bi93.81 (12)O1B—C1B—C2B119.7 (4)
O2C—Mn1—O1Bi86.19 (12)O2B—C1B—C2B113.1 (4)
O1B—Mn1—O1Bi180.0N3B—C2B—C1B117.9 (4)
O2Ci—Mn1—O1Aii88.25 (12)N3B—C2B—H2B1104 (3)
O2C—Mn1—O1Aii91.75 (12)C1B—C2B—H2B1107 (3)
O1B—Mn1—O1Aii93.30 (13)N3B—C2B—H2B2105 (5)
O1Bi—Mn1—O1Aii86.70 (13)C1B—C2B—H2B2113 (5)
O2Ci—Mn1—O1Aiii91.75 (12)H2B1—C2B—H2B2109 (5)
O2C—Mn1—O1Aiii88.25 (12)C4B—N3B—C6B109.3 (5)
O1B—Mn1—O1Aiii86.70 (13)C4B—N3B—C5B107.8 (5)
O1Bi—Mn1—O1Aiii93.30 (13)C6B—N3B—C5B108.5 (5)
O1Aii—Mn1—O1Aiii180.0C4B—N3B—C2B113.8 (4)
O1Cii—Mn2—O1C180.0C6B—N3B—C2B109.1 (4)
O1Cii—Mn2—O2B90.79 (12)C5B—N3B—C2B108.2 (4)
O1C—Mn2—O2B89.21 (12)N3B—C4B—H4B1109.5
O1Cii—Mn2—O2Bii89.21 (12)N3B—C4B—H4B2109.5
O1C—Mn2—O2Bii90.79 (12)H4B1—C4B—H4B2109.5
O2B—Mn2—O2Bii180.0N3B—C4B—H4B3109.5
O1Cii—Mn2—O2Aii91.45 (12)H4B1—C4B—H4B3109.5
O1C—Mn2—O2Aii88.55 (12)H4B2—C4B—H4B3109.5
O2B—Mn2—O2Aii86.67 (12)N3B—C5B—H5B1109.5
O2Bii—Mn2—O2Aii93.33 (12)N3B—C5B—H5B2109.5
O1Cii—Mn2—O2A88.55 (12)H5B1—C5B—H5B2109.5
O1C—Mn2—O2A91.45 (12)N3B—C5B—H5B3109.5
O2B—Mn2—O2A93.33 (12)H5B1—C5B—H5B3109.5
O2Bii—Mn2—O2A86.67 (12)H5B2—C5B—H5B3109.5
O2Aii—Mn2—O2A180.0N3B—C6B—H6B1109.5
Br2—Mn3—Br4110.42 (4)N3B—C6B—H6B2109.5
Br2—Mn3—Br1113.26 (4)H6B1—C6B—H6B2109.5
Br4—Mn3—Br1108.64 (4)N3B—C6B—H6B3109.5
Br2—Mn3—Br3108.51 (4)H6B1—C6B—H6B3109.5
Br4—Mn3—Br3108.99 (5)H6B2—C6B—H6B3109.5
Br1—Mn3—Br3106.89 (4)C1C—O1C—Mn2124.6 (3)
C1A—O1A—Mn1iv138.8 (3)C1C—O2C—Mn1136.7 (3)
C1A—O2A—Mn2123.0 (3)O1C—C1C—O2C126.7 (4)
O1A—C1A—O2A127.0 (4)O1C—C1C—C2C113.7 (4)
O1A—C1A—C2A120.5 (4)O2C—C1C—C2C119.5 (4)
O2A—C1A—C2A112.5 (4)N3C—C2C—C1C117.5 (4)
N3A—C2A—C1A119.0 (4)N3C—C2C—H2C1106 (3)
N3A—C2A—H2A1104 (3)C1C—C2C—H2C1109 (3)
C1A—C2A—H2A1110 (3)N3C—C2C—H2C2108 (3)
N3A—C2A—H2A2110 (4)C1C—C2C—H2C2108 (3)
C1A—C2A—H2A2106 (4)H2C1—C2C—H2C2108 (4)
H2A1—C2A—H2A2108 (5)C5C—N3C—C4C108.2 (5)
C4A—N3A—C6A110.1 (6)C5C—N3C—C6C109.6 (4)
C4A—N3A—C2A110.4 (5)C4C—N3C—C6C108.0 (4)
C6A—N3A—C2A111.7 (5)C5C—N3C—C2C110.5 (4)
C4A—N3A—C5A110.2 (6)C4C—N3C—C2C108.4 (4)
C6A—N3A—C5A106.9 (5)C6C—N3C—C2C112.0 (4)
C2A—N3A—C5A107.4 (4)N3C—C4C—H4C1109.5
N3A—C4A—H4A1109.5N3C—C4C—H4C2109.5
N3A—C4A—H4A2109.5H4C1—C4C—H4C2109.5
H4A1—C4A—H4A2109.5N3C—C4C—H4C3109.5
N3A—C4A—H4A3109.5H4C1—C4C—H4C3109.5
H4A1—C4A—H4A3109.5H4C2—C4C—H4C3109.5
H4A2—C4A—H4A3109.5N3C—C5C—H5C1109.5
N3A—C5A—H5A1109.5N3C—C5C—H5C2109.5
N3A—C5A—H5A2109.5H5C1—C5C—H5C2109.5
H5A1—C5A—H5A2109.5N3C—C5C—H5C3109.5
N3A—C5A—H5A3109.5H5C1—C5C—H5C3109.5
H5A1—C5A—H5A3109.5H5C2—C5C—H5C3109.5
H5A2—C5A—H5A3109.5N3C—C6C—H6C1109.5
N3A—C6A—H6A1109.5N3C—C6C—H6C2109.5
N3A—C6A—H6A2109.5H6C1—C6C—H6C2109.5
H6A1—C6A—H6A2109.5N3C—C6C—H6C3109.5
N3A—C6A—H6A3109.5H6C1—C6C—H6C3109.5
H6A1—C6A—H6A3109.5H6C2—C6C—H6C3109.5
H6A2—C6A—H6A3109.5
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C5H11NO2)3]·MnBr4
Mr780.96
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.140 (2), 12.700 (2), 12.871 (3)
α, β, γ (°)66.557 (6), 86.063 (7), 89.249 (7)
V3)1367.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)6.80
Crystal size (mm)0.50 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(Otwinowski & Minor, 1997)
Tmin, Tmax0.073, 0.130
No. of measured, independent and
observed [I > 2σ(I)] reflections
17423, 7836, 5085
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.115, 1.05
No. of reflections7836
No. of parameters326
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.77, 1.88

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bergerhoff et al., 1996).

Selected bond lengths (Å) top
Mn1—O2C2.173 (3)Mn2—O2A2.192 (3)
Mn1—O1B2.176 (3)Mn3—Br22.4724 (11)
Mn1—O1Ai2.219 (3)Mn3—Br42.4932 (11)
Mn2—O1C2.131 (3)Mn3—Br12.5019 (12)
Mn2—O2B2.163 (3)Mn3—Br32.5179 (11)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The author thanks the International Centre for Diffraction Data for financial assistance of this work (grant No. 90-03 ET).

References

First citationBergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221–225.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M. & Mak, T. C. W. (1991). Inorg. Chim. Acta, 189, 3–5.  CAS Google Scholar
First citationChen, X.-M. & Mak, T. C. W. (1994). Inorg. Chem. 33, 2444–2447.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaussühl, S. (1988). Solid State Commun. 68, 963–966.  Google Scholar
First citationHaussühl, S. (1989). Z. Kristallogr. 188, 311–320.  Google Scholar
First citationHaussühl, E. & Schreuer, J. (2001). Z. Kristallogr. 216, 616–620.  Google Scholar
First citationHaussühl, S. & Wang, J. (1989). Z. Kristallogr. 187, 249–251.  Google Scholar
First citationMak, T. C. W. (1990). J. Mol. Struct. 220, 13–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchreuer, J. & Haussühl, S. (1993). Z. Kristallogr. 205, 309–310.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViertorinne, M., Valkonen, J., Pitkänen, I., Mathlouthi, M. & Nurmi, J. (1999). J. Mol. Struct. 477, 23–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J., Gnanam, F. D. & Haussühl, S. (1986). Z. Kristallogr. 175, 155–158.  Google Scholar
First citationWiehl, L., Schreuer, J. & Haussühl, E. (2006a). Z. Kristallogr. New Cryst. Struct. 221, 77–79.  CAS Google Scholar
First citationWiehl, L., Schreuer, J., Haussühl, E., Winkler, B., Removic-Langer, K., Wolf, B., Lang, M. & Milman, V. (2006b). J. Phys. Condens. Matter, 18, 11067–11079.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1273-m1274
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds