metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­methyl­phenyl isocyanide-κC)gold(I) tetra­fluorido­borate

aUniversity of California in San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
*Correspondence e-mail: ckubiak@ucsd.edu

(Received 20 August 2008; accepted 22 August 2008; online 6 September 2008)

In the title compound, [Au(C9H9N)2]BF4, the AuI cation adopts an almost linear AuC2 geometry. The cation is bowed due to crystal packing effects, and the dihedral angle between the xylyl rings is 52.3 (7)°.

Related literature

For related literature, see: Balch & Parks (1973[Balch, A. & Parks, J. E. (1973). J. Organomet. Chem. 57, C103-C106.], 1974[Balch, A. & Parks, J. E. (1974). J. Organomet. Chem. 71, 453-463.]); Bonati & Minghetti (1973[Bonati, F. & Minghetti, G. (1973). Gazz. Chim. Ital. 103, 373-386.]); Schmidbaur et al. (1997[Schmidbaur, H., Angermaier, K., Bauer, A., Sladek, A. & Schneider, W. (1997). Z. Naturforsch. 52, 53-56.], 2002[Schmidbaur, H., Ehlich, H. & Schier, A. (2002). Z. Naturforsch. Teil B, 57, 890-894.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9N)2]BF4

  • Mr = 546.15

  • Monoclinic, P 21 /n

  • a = 13.1930 (15) Å

  • b = 10.7840 (13) Å

  • c = 13.6260 (15) Å

  • β = 105.034 (2)°

  • V = 1872.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.90 mm−1

  • T = 208 (2) K

  • 0.20 × 0.12 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.301, Tmax = 0.608 (expected range = 0.285–0.575)

  • 18352 measured reflections

  • 3302 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.174

  • S = 1.10

  • 3302 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 2.19 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Selected bond lengths (Å)

Au1—C1 2.068 (9)
Au1—C10 2.035 (8)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Gold bis-isocyanide complexes of the type (RNC)2AuI have been studied as precursors to the related carbene complexes of gold (Balch & Parks, 1973; Bonati & Minghetti, 1973; Balch & Parks, 1974). These early examples were characterized by NMR, IR, elemental analysis, and conductivity studies. More recently bis(tert-butyl isocyanide)gold(I) (Schmidbaur et al., 2002) and various aromatic isocyanide complexes of gold (Schmidbaur et al., 1997) have been studied by x-ray crystallography. Here, the title compound, (I), has been structurally characterised (Fig. 1).

The structure of the cation in (I) is nearly linear, with the C—Au—C bond angle at 171.2 (7)°. The bow in the structure is due to the crystal packing, and has been observed in bis(isonitrile) gold cations containing methyl, tert-butyl, phenyl, or mesistyl groups attached to the isonitrile groups (Schmidbaur et al., 1997). The Au—C distances in (I) are given in Table 1. Both these bond lengths are slightly longer than the gold-carbon bond distances given for the phenyl and mesityl analogues of (I) (Schmidbaur et al., 1997). The bond length between C1—N1 is 1.124 (11)Å, and the length between C10 and N2 is 1.154 (11)Å. These length are, again, slightly longer than those reported for the phenyl and mesityl analogues, but the difference between the C1—N1 bond and the C10—N2 bond in (I) is also present in the isocyanide complexes studied (Schmidbaur et al., 1997, Schmidbaur et al., 2002). The slightly longer bond lengths in (I) could be due to decreased electron density in the C1—N1 and C10—N2 bonds. That electron density would be shifted toward the xylyl ring through resonance stabilization. The xylyl groups of the cation in (I) define planes that are orientated at an angle of 52.3 (7)°.

Related literature top

For related literature, see: Balch & Parks (1973, 1974); Bonati & Minghetti (1973); Schmidbaur et al. (1997, 2002).

Experimental top

HAuCl4.H2O (Acros Organics, 0.5 g) was dissolved in ethyl acetate resulting in a pale yellow solution. The dimethyl phenyl isocyanide (Aldrich, 0.5 g) was added following the complete dissolution of the HAuCl4.H2O. Upon addition, the solution immediately became cloudy and brown in color. Methanol was added drop-wise until the precipitate was dissolved. AgBF4 (Aldrich, 0.25 g) was added resulting in the product formation and precipitation of AgCl. The solvent was removed in vacuo and reddish-brown crystals were obtained (90% yield, crude product). The solid was suspended in diethyl ether and allowed to stir for an hour. The solid was filtered, then dissolved in dichloromethane and subsequent recrystallisations yielded pure white powder (12% yield). Colourless blocks of (I) were obtained through the slow diffusion of diethyl ether into a dichloromethane solution. IR (KBr) \vCN 2224 cm-1; 1H NMR, acetone-d6, CH3 singlet 2.51ppm, Ar—H mult 7.34ppm; Molecular ion peak, ESI positive mode 459.06 m/z

Refinement top

The H atoms were geometrically placed (C—H = 0.94-0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.
Bis(2,6-dimethylphenyl isocyanide-κC)gold(I) tetrafluoroborate top
Crystal data top
[Au(C9H9N)2]BF4F(000) = 1040
Mr = 546.15Dx = 1.938 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6164 reflections
a = 13.1930 (15) Åθ = 2.5–28.2°
b = 10.7840 (13) ŵ = 7.90 mm1
c = 13.6260 (15) ÅT = 208 K
β = 105.034 (2)°Block, colorless
V = 1872.3 (4) Å30.20 × 0.12 × 0.07 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3302 independent reflections
Radiation source: fine-focus sealed tube3011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.301, Tmax = 0.608k = 1212
18352 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1125P)2 + 10.5769P]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 2.19 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Au(C9H9N)2]BF4V = 1872.3 (4) Å3
Mr = 546.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1930 (15) ŵ = 7.90 mm1
b = 10.7840 (13) ÅT = 208 K
c = 13.6260 (15) Å0.20 × 0.12 × 0.07 mm
β = 105.034 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3011 reflections with I > 2σ(I)
Tmin = 0.301, Tmax = 0.608Rint = 0.028
18352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1125P)2 + 10.5769P]
where P = (Fo2 + 2Fc2)/3
3302 reflectionsΔρmax = 2.19 e Å3
241 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9280 (7)0.0807 (7)0.3856 (6)0.0336 (17)
C20.8668 (5)0.1409 (6)0.5405 (5)0.0222 (13)
C30.7920 (6)0.0703 (7)0.5708 (7)0.0355 (18)
C40.7599 (6)0.1149 (9)0.6546 (6)0.043 (2)
H40.70890.07060.67730.051*
C50.8002 (6)0.2200 (9)0.7038 (6)0.044 (2)
H50.77600.24800.75900.053*
C60.8765 (6)0.2866 (8)0.6739 (6)0.0399 (18)
H60.90520.35790.71040.048*
C70.9112 (5)0.2494 (7)0.5905 (5)0.0285 (14)
C80.7478 (9)0.0460 (10)0.5127 (11)0.067 (3)
H8A0.79950.11190.52910.101*
H8B0.73080.02930.44030.101*
H8C0.68480.07120.53150.101*
C90.9954 (7)0.3209 (9)0.5590 (7)0.049 (2)
H9A1.01510.39260.60280.073*
H9B0.96920.34810.48910.073*
H9C1.05620.26810.56470.073*
C101.0572 (6)0.0646 (6)0.1430 (6)0.0292 (16)
C111.1341 (5)0.1056 (7)0.0065 (5)0.0229 (13)
C121.2073 (5)0.0216 (7)0.0291 (6)0.0288 (15)
C131.2437 (6)0.0482 (8)0.1132 (7)0.0386 (19)
H131.29220.00520.13110.046*
C141.2092 (6)0.1533 (8)0.1714 (6)0.0375 (17)
H141.23590.17100.22740.045*
C151.1366 (6)0.2318 (7)0.1482 (6)0.0335 (16)
H151.11320.30120.18960.040*
C161.0972 (5)0.2104 (6)0.0645 (5)0.0268 (14)
C171.2444 (8)0.0907 (9)0.0365 (8)0.050 (2)
H17A1.18420.13710.04490.075*
H17B1.28670.06420.10250.075*
H17C1.28630.14300.00430.075*
C181.0179 (6)0.2961 (8)0.0383 (6)0.0393 (17)
H18A1.00340.36440.08630.059*
H18B1.04560.32830.02990.059*
H18C0.95350.25090.04160.059*
B10.9656 (9)0.3821 (9)0.2329 (7)0.044 (2)
N10.9001 (5)0.1048 (6)0.4545 (5)0.0264 (12)
N21.0945 (5)0.0817 (6)0.0764 (5)0.0270 (13)
F10.9014 (4)0.2940 (4)0.1733 (4)0.0481 (12)
F21.0249 (6)0.4422 (6)0.1808 (6)0.075 (2)
F30.9000 (8)0.4761 (9)0.2512 (10)0.128 (4)
F41.0161 (12)0.3331 (11)0.3187 (7)0.190 (8)
Au10.98971 (3)0.06293 (4)0.26147 (3)0.0551 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (4)0.031 (4)0.028 (4)0.002 (3)0.008 (3)0.004 (3)
C20.018 (3)0.032 (3)0.016 (3)0.000 (2)0.004 (2)0.003 (2)
C30.028 (4)0.045 (5)0.035 (4)0.007 (3)0.011 (3)0.012 (3)
C40.019 (3)0.074 (6)0.040 (4)0.009 (4)0.017 (3)0.028 (5)
C50.036 (4)0.075 (6)0.025 (4)0.023 (4)0.015 (3)0.016 (4)
C60.044 (4)0.048 (5)0.026 (4)0.006 (4)0.007 (3)0.006 (3)
C70.026 (3)0.038 (4)0.023 (3)0.006 (3)0.010 (3)0.002 (3)
C80.063 (7)0.061 (6)0.083 (8)0.039 (5)0.029 (6)0.014 (6)
C90.046 (5)0.052 (5)0.053 (5)0.030 (4)0.024 (4)0.012 (4)
C100.022 (3)0.035 (4)0.030 (4)0.005 (3)0.006 (3)0.000 (3)
C110.018 (3)0.035 (3)0.019 (3)0.004 (3)0.010 (2)0.006 (3)
C120.020 (3)0.036 (4)0.031 (4)0.006 (3)0.007 (3)0.001 (3)
C130.028 (4)0.053 (5)0.040 (5)0.004 (3)0.017 (3)0.008 (4)
C140.032 (4)0.057 (5)0.028 (4)0.004 (3)0.016 (3)0.001 (3)
C150.035 (4)0.041 (4)0.026 (3)0.005 (3)0.010 (3)0.003 (3)
C160.021 (3)0.032 (3)0.027 (3)0.001 (3)0.006 (3)0.006 (3)
C170.045 (5)0.050 (5)0.058 (6)0.020 (4)0.020 (4)0.016 (4)
C180.039 (4)0.044 (4)0.038 (4)0.010 (3)0.015 (3)0.003 (3)
B10.071 (6)0.039 (5)0.034 (5)0.022 (5)0.037 (5)0.011 (4)
N10.031 (3)0.026 (3)0.023 (3)0.000 (2)0.009 (2)0.002 (2)
N20.022 (3)0.033 (3)0.025 (3)0.001 (2)0.004 (3)0.003 (2)
F10.052 (3)0.035 (2)0.047 (3)0.000 (2)0.006 (2)0.006 (2)
F20.083 (5)0.083 (5)0.083 (5)0.011 (3)0.064 (4)0.005 (3)
F30.130 (7)0.099 (6)0.200 (11)0.054 (6)0.125 (8)0.093 (7)
F40.266 (14)0.155 (9)0.072 (6)0.145 (10)0.096 (8)0.055 (6)
Au10.0669 (3)0.0573 (3)0.0455 (3)0.00923 (16)0.0225 (2)0.00368 (15)
Geometric parameters (Å, º) top
Au1—C12.068 (9)C11—N21.387 (10)
Au1—C102.035 (8)C11—C161.392 (10)
C1—N11.124 (11)C11—C121.414 (10)
C2—C31.391 (10)C12—C131.382 (12)
C2—C71.403 (10)C12—C171.510 (11)
C2—N11.409 (9)C13—C141.390 (12)
C3—C41.403 (13)C13—H130.9400
C3—C81.517 (12)C14—C151.375 (11)
C4—C51.353 (14)C14—H140.9400
C4—H40.9400C15—C161.390 (10)
C5—C61.381 (13)C15—H150.9400
C5—H50.9400C16—C181.507 (10)
C6—C71.391 (11)C17—H17A0.9700
C6—H60.9400C17—H17B0.9700
C7—C91.503 (10)C17—H17C0.9700
C8—H8A0.9700C18—H18A0.9700
C8—H8B0.9700C18—H18B0.9700
C8—H8C0.9700C18—H18C0.9700
C9—H9A0.9700B1—F41.299 (14)
C9—H9B0.9700B1—F21.351 (11)
C9—H9C0.9700B1—F11.386 (11)
C10—N21.154 (11)B1—F31.397 (15)
N1—C1—Au1171.2 (7)C13—C12—C17121.9 (7)
C3—C2—C7123.5 (7)C11—C12—C17121.3 (7)
C3—C2—N1119.6 (7)C12—C13—C14120.6 (7)
C7—C2—N1116.9 (6)C12—C13—H13119.7
C2—C3—C4116.2 (7)C14—C13—H13119.7
C2—C3—C8120.3 (8)C15—C14—C13121.0 (7)
C4—C3—C8123.5 (8)C15—C14—H14119.5
C5—C4—C3121.8 (7)C13—C14—H14119.5
C5—C4—H4119.1C14—C15—C16121.2 (7)
C3—C4—H4119.1C14—C15—H15119.4
C4—C5—C6120.8 (7)C16—C15—H15119.4
C4—C5—H5119.6C15—C16—C11116.7 (6)
C6—C5—H5119.6C15—C16—C18121.6 (7)
C5—C6—C7120.7 (8)C11—C16—C18121.7 (6)
C5—C6—H6119.6C12—C17—H17A109.5
C7—C6—H6119.6C12—C17—H17B109.5
C6—C7—C2116.9 (6)H17A—C17—H17B109.5
C6—C7—C9120.6 (7)C12—C17—H17C109.5
C2—C7—C9122.4 (7)H17A—C17—H17C109.5
C3—C8—H8A109.5H17B—C17—H17C109.5
C3—C8—H8B109.5C16—C18—H18A109.5
H8A—C8—H8B109.5C16—C18—H18B109.5
C3—C8—H8C109.5H18A—C18—H18B109.5
H8A—C8—H8C109.5C16—C18—H18C109.5
H8B—C8—H8C109.5H18A—C18—H18C109.5
C7—C9—H9A109.5H18B—C18—H18C109.5
C7—C9—H9B109.5F4—B1—F2115.9 (12)
H9A—C9—H9B109.5F4—B1—F1110.0 (8)
C7—C9—H9C109.5F2—B1—F1111.8 (8)
H9A—C9—H9C109.5F4—B1—F3109.4 (12)
H9B—C9—H9C109.5F2—B1—F3102.4 (8)
N2—C10—Au1171.3 (6)F1—B1—F3106.8 (9)
N2—C11—C16117.5 (6)C1—N1—C2177.2 (7)
N2—C11—C12118.8 (6)C10—N2—C11176.8 (7)
C16—C11—C12123.7 (6)C10—Au1—C1173.7 (3)
C13—C12—C11116.8 (7)

Experimental details

Crystal data
Chemical formula[Au(C9H9N)2]BF4
Mr546.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)208
a, b, c (Å)13.1930 (15), 10.7840 (13), 13.6260 (15)
β (°) 105.034 (2)
V3)1872.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.90
Crystal size (mm)0.20 × 0.12 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.301, 0.608
No. of measured, independent and
observed [I > 2σ(I)] reflections
18352, 3302, 3011
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.174, 1.10
No. of reflections3302
No. of parameters241
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1125P)2 + 10.5769P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.19, 1.02

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2006), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Au1—C12.068 (9)Au1—C102.035 (8)
 

Acknowledgements

This work was supported by funding from the NSF, and conducted at the University of California, San Diego.

References

First citationBalch, A. & Parks, J. E. (1973). J. Organomet. Chem. 57, C103–C106.  Google Scholar
First citationBalch, A. & Parks, J. E. (1974). J. Organomet. Chem. 71, 453–463.  Google Scholar
First citationBonati, F. & Minghetti, G. (1973). Gazz. Chim. Ital. 103, 373–386.  CAS Google Scholar
First citationBruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSchmidbaur, H., Angermaier, K., Bauer, A., Sladek, A. & Schneider, W. (1997). Z. Naturforsch. 52, 53–56.  Google Scholar
First citationSchmidbaur, H., Ehlich, H. & Schier, A. (2002). Z. Naturforsch. Teil B, 57, 890–894.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds