metal-organic compounds
Bis(2,6-dimethylphenyl isocyanide-κC)gold(I) tetrafluoridoborate
aUniversity of California in San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
*Correspondence e-mail: ckubiak@ucsd.edu
In the title compound, [Au(C9H9N)2]BF4, the AuI cation adopts an almost linear AuC2 geometry. The cation is bowed due to crystal packing effects, and the dihedral angle between the xylyl rings is 52.3 (7)°.
Related literature
For related literature, see: Balch & Parks (1973, 1974); Bonati & Minghetti (1973); Schmidbaur et al. (1997, 2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808027116/hb2785sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808027116/hb2785Isup2.hkl
HAuCl4.H2O (Acros Organics, 0.5 g) was dissolved in ethyl acetate resulting in a pale yellow solution. The dimethyl phenyl isocyanide (Aldrich, 0.5 g) was added following the complete dissolution of the HAuCl4.H2O. Upon addition, the solution immediately became cloudy and brown in color. Methanol was added drop-wise until the precipitate was dissolved. AgBF4 (Aldrich, 0.25 g) was added resulting in the product formation and precipitation of AgCl. The solvent was removed in vacuo and reddish-brown crystals were obtained (90% yield, crude product). The solid was suspended in diethyl ether and allowed to stir for an hour. The solid was filtered, then dissolved in dichloromethane and subsequent recrystallisations yielded pure white powder (12% yield). Colourless blocks of (I) were obtained through the slow diffusion of diethyl ether into a dichloromethane solution. IR (KBr) \vCN 2224 cm-1; 1H NMR, acetone-d6, CH3 singlet 2.51ppm, Ar—H mult 7.34ppm; Molecular ion peak, ESI positive mode 459.06 m/z
The H atoms were geometrically placed (C—H = 0.94-0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. |
[Au(C9H9N)2]BF4 | F(000) = 1040 |
Mr = 546.15 | Dx = 1.938 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6164 reflections |
a = 13.1930 (15) Å | θ = 2.5–28.2° |
b = 10.7840 (13) Å | µ = 7.90 mm−1 |
c = 13.6260 (15) Å | T = 208 K |
β = 105.034 (2)° | Block, colorless |
V = 1872.3 (4) Å3 | 0.20 × 0.12 × 0.07 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 3302 independent reflections |
Radiation source: fine-focus sealed tube | 3011 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −15→15 |
Tmin = 0.301, Tmax = 0.608 | k = −12→12 |
18352 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.174 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.1125P)2 + 10.5769P] where P = (Fo2 + 2Fc2)/3 |
3302 reflections | (Δ/σ)max = 0.001 |
241 parameters | Δρmax = 2.19 e Å−3 |
0 restraints | Δρmin = −1.02 e Å−3 |
[Au(C9H9N)2]BF4 | V = 1872.3 (4) Å3 |
Mr = 546.15 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.1930 (15) Å | µ = 7.90 mm−1 |
b = 10.7840 (13) Å | T = 208 K |
c = 13.6260 (15) Å | 0.20 × 0.12 × 0.07 mm |
β = 105.034 (2)° |
Bruker SMART CCD diffractometer | 3302 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 3011 reflections with I > 2σ(I) |
Tmin = 0.301, Tmax = 0.608 | Rint = 0.028 |
18352 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.174 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.1125P)2 + 10.5769P] where P = (Fo2 + 2Fc2)/3 |
3302 reflections | Δρmax = 2.19 e Å−3 |
241 parameters | Δρmin = −1.02 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9280 (7) | 0.0807 (7) | 0.3856 (6) | 0.0336 (17) | |
C2 | 0.8668 (5) | 0.1409 (6) | 0.5405 (5) | 0.0222 (13) | |
C3 | 0.7920 (6) | 0.0703 (7) | 0.5708 (7) | 0.0355 (18) | |
C4 | 0.7599 (6) | 0.1149 (9) | 0.6546 (6) | 0.043 (2) | |
H4 | 0.7089 | 0.0706 | 0.6773 | 0.051* | |
C5 | 0.8002 (6) | 0.2200 (9) | 0.7038 (6) | 0.044 (2) | |
H5 | 0.7760 | 0.2480 | 0.7590 | 0.053* | |
C6 | 0.8765 (6) | 0.2866 (8) | 0.6739 (6) | 0.0399 (18) | |
H6 | 0.9052 | 0.3579 | 0.7104 | 0.048* | |
C7 | 0.9112 (5) | 0.2494 (7) | 0.5905 (5) | 0.0285 (14) | |
C8 | 0.7478 (9) | −0.0460 (10) | 0.5127 (11) | 0.067 (3) | |
H8A | 0.7995 | −0.1119 | 0.5291 | 0.101* | |
H8B | 0.7308 | −0.0293 | 0.4403 | 0.101* | |
H8C | 0.6848 | −0.0712 | 0.5315 | 0.101* | |
C9 | 0.9954 (7) | 0.3209 (9) | 0.5590 (7) | 0.049 (2) | |
H9A | 1.0151 | 0.3926 | 0.6028 | 0.073* | |
H9B | 0.9692 | 0.3481 | 0.4891 | 0.073* | |
H9C | 1.0562 | 0.2681 | 0.5647 | 0.073* | |
C10 | 1.0572 (6) | 0.0646 (6) | 0.1430 (6) | 0.0292 (16) | |
C11 | 1.1341 (5) | 0.1056 (7) | −0.0065 (5) | 0.0229 (13) | |
C12 | 1.2073 (5) | 0.0216 (7) | −0.0291 (6) | 0.0288 (15) | |
C13 | 1.2437 (6) | 0.0482 (8) | −0.1132 (7) | 0.0386 (19) | |
H13 | 1.2922 | −0.0052 | −0.1311 | 0.046* | |
C14 | 1.2092 (6) | 0.1533 (8) | −0.1714 (6) | 0.0375 (17) | |
H14 | 1.2359 | 0.1710 | −0.2274 | 0.045* | |
C15 | 1.1366 (6) | 0.2318 (7) | −0.1482 (6) | 0.0335 (16) | |
H15 | 1.1132 | 0.3012 | −0.1896 | 0.040* | |
C16 | 1.0972 (5) | 0.2104 (6) | −0.0645 (5) | 0.0268 (14) | |
C17 | 1.2444 (8) | −0.0907 (9) | 0.0365 (8) | 0.050 (2) | |
H17A | 1.1842 | −0.1371 | 0.0449 | 0.075* | |
H17B | 1.2867 | −0.0642 | 0.1025 | 0.075* | |
H17C | 1.2863 | −0.1430 | 0.0043 | 0.075* | |
C18 | 1.0179 (6) | 0.2961 (8) | −0.0383 (6) | 0.0393 (17) | |
H18A | 1.0034 | 0.3644 | −0.0863 | 0.059* | |
H18B | 1.0456 | 0.3283 | 0.0299 | 0.059* | |
H18C | 0.9535 | 0.2509 | −0.0416 | 0.059* | |
B1 | 0.9656 (9) | 0.3821 (9) | 0.2329 (7) | 0.044 (2) | |
N1 | 0.9001 (5) | 0.1048 (6) | 0.4545 (5) | 0.0264 (12) | |
N2 | 1.0945 (5) | 0.0817 (6) | 0.0764 (5) | 0.0270 (13) | |
F1 | 0.9014 (4) | 0.2940 (4) | 0.1733 (4) | 0.0481 (12) | |
F2 | 1.0249 (6) | 0.4422 (6) | 0.1808 (6) | 0.075 (2) | |
F3 | 0.9000 (8) | 0.4761 (9) | 0.2512 (10) | 0.128 (4) | |
F4 | 1.0161 (12) | 0.3331 (11) | 0.3187 (7) | 0.190 (8) | |
Au1 | 0.98971 (3) | 0.06293 (4) | 0.26147 (3) | 0.0551 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.041 (4) | 0.031 (4) | 0.028 (4) | −0.002 (3) | 0.008 (3) | 0.004 (3) |
C2 | 0.018 (3) | 0.032 (3) | 0.016 (3) | 0.000 (2) | 0.004 (2) | 0.003 (2) |
C3 | 0.028 (4) | 0.045 (5) | 0.035 (4) | −0.007 (3) | 0.011 (3) | 0.012 (3) |
C4 | 0.019 (3) | 0.074 (6) | 0.040 (4) | 0.009 (4) | 0.017 (3) | 0.028 (5) |
C5 | 0.036 (4) | 0.075 (6) | 0.025 (4) | 0.023 (4) | 0.015 (3) | 0.016 (4) |
C6 | 0.044 (4) | 0.048 (5) | 0.026 (4) | 0.006 (4) | 0.007 (3) | −0.006 (3) |
C7 | 0.026 (3) | 0.038 (4) | 0.023 (3) | −0.006 (3) | 0.010 (3) | 0.002 (3) |
C8 | 0.063 (7) | 0.061 (6) | 0.083 (8) | −0.039 (5) | 0.029 (6) | −0.014 (6) |
C9 | 0.046 (5) | 0.052 (5) | 0.053 (5) | −0.030 (4) | 0.024 (4) | −0.012 (4) |
C10 | 0.022 (3) | 0.035 (4) | 0.030 (4) | 0.005 (3) | 0.006 (3) | 0.000 (3) |
C11 | 0.018 (3) | 0.035 (3) | 0.019 (3) | −0.004 (3) | 0.010 (2) | −0.006 (3) |
C12 | 0.020 (3) | 0.036 (4) | 0.031 (4) | 0.006 (3) | 0.007 (3) | −0.001 (3) |
C13 | 0.028 (4) | 0.053 (5) | 0.040 (5) | 0.004 (3) | 0.017 (3) | −0.008 (4) |
C14 | 0.032 (4) | 0.057 (5) | 0.028 (4) | −0.004 (3) | 0.016 (3) | −0.001 (3) |
C15 | 0.035 (4) | 0.041 (4) | 0.026 (3) | −0.005 (3) | 0.010 (3) | 0.003 (3) |
C16 | 0.021 (3) | 0.032 (3) | 0.027 (3) | −0.001 (3) | 0.006 (3) | −0.006 (3) |
C17 | 0.045 (5) | 0.050 (5) | 0.058 (6) | 0.020 (4) | 0.020 (4) | 0.016 (4) |
C18 | 0.039 (4) | 0.044 (4) | 0.038 (4) | 0.010 (3) | 0.015 (3) | −0.003 (3) |
B1 | 0.071 (6) | 0.039 (5) | 0.034 (5) | −0.022 (5) | 0.037 (5) | −0.011 (4) |
N1 | 0.031 (3) | 0.026 (3) | 0.023 (3) | 0.000 (2) | 0.009 (2) | 0.002 (2) |
N2 | 0.022 (3) | 0.033 (3) | 0.025 (3) | −0.001 (2) | 0.004 (3) | −0.003 (2) |
F1 | 0.052 (3) | 0.035 (2) | 0.047 (3) | 0.000 (2) | −0.006 (2) | −0.006 (2) |
F2 | 0.083 (5) | 0.083 (5) | 0.083 (5) | −0.011 (3) | 0.064 (4) | 0.005 (3) |
F3 | 0.130 (7) | 0.099 (6) | 0.200 (11) | −0.054 (6) | 0.125 (8) | −0.093 (7) |
F4 | 0.266 (14) | 0.155 (9) | 0.072 (6) | −0.145 (10) | −0.096 (8) | 0.055 (6) |
Au1 | 0.0669 (3) | 0.0573 (3) | 0.0455 (3) | 0.00923 (16) | 0.0225 (2) | 0.00368 (15) |
Au1—C1 | 2.068 (9) | C11—N2 | 1.387 (10) |
Au1—C10 | 2.035 (8) | C11—C16 | 1.392 (10) |
C1—N1 | 1.124 (11) | C11—C12 | 1.414 (10) |
C2—C3 | 1.391 (10) | C12—C13 | 1.382 (12) |
C2—C7 | 1.403 (10) | C12—C17 | 1.510 (11) |
C2—N1 | 1.409 (9) | C13—C14 | 1.390 (12) |
C3—C4 | 1.403 (13) | C13—H13 | 0.9400 |
C3—C8 | 1.517 (12) | C14—C15 | 1.375 (11) |
C4—C5 | 1.353 (14) | C14—H14 | 0.9400 |
C4—H4 | 0.9400 | C15—C16 | 1.390 (10) |
C5—C6 | 1.381 (13) | C15—H15 | 0.9400 |
C5—H5 | 0.9400 | C16—C18 | 1.507 (10) |
C6—C7 | 1.391 (11) | C17—H17A | 0.9700 |
C6—H6 | 0.9400 | C17—H17B | 0.9700 |
C7—C9 | 1.503 (10) | C17—H17C | 0.9700 |
C8—H8A | 0.9700 | C18—H18A | 0.9700 |
C8—H8B | 0.9700 | C18—H18B | 0.9700 |
C8—H8C | 0.9700 | C18—H18C | 0.9700 |
C9—H9A | 0.9700 | B1—F4 | 1.299 (14) |
C9—H9B | 0.9700 | B1—F2 | 1.351 (11) |
C9—H9C | 0.9700 | B1—F1 | 1.386 (11) |
C10—N2 | 1.154 (11) | B1—F3 | 1.397 (15) |
N1—C1—Au1 | 171.2 (7) | C13—C12—C17 | 121.9 (7) |
C3—C2—C7 | 123.5 (7) | C11—C12—C17 | 121.3 (7) |
C3—C2—N1 | 119.6 (7) | C12—C13—C14 | 120.6 (7) |
C7—C2—N1 | 116.9 (6) | C12—C13—H13 | 119.7 |
C2—C3—C4 | 116.2 (7) | C14—C13—H13 | 119.7 |
C2—C3—C8 | 120.3 (8) | C15—C14—C13 | 121.0 (7) |
C4—C3—C8 | 123.5 (8) | C15—C14—H14 | 119.5 |
C5—C4—C3 | 121.8 (7) | C13—C14—H14 | 119.5 |
C5—C4—H4 | 119.1 | C14—C15—C16 | 121.2 (7) |
C3—C4—H4 | 119.1 | C14—C15—H15 | 119.4 |
C4—C5—C6 | 120.8 (7) | C16—C15—H15 | 119.4 |
C4—C5—H5 | 119.6 | C15—C16—C11 | 116.7 (6) |
C6—C5—H5 | 119.6 | C15—C16—C18 | 121.6 (7) |
C5—C6—C7 | 120.7 (8) | C11—C16—C18 | 121.7 (6) |
C5—C6—H6 | 119.6 | C12—C17—H17A | 109.5 |
C7—C6—H6 | 119.6 | C12—C17—H17B | 109.5 |
C6—C7—C2 | 116.9 (6) | H17A—C17—H17B | 109.5 |
C6—C7—C9 | 120.6 (7) | C12—C17—H17C | 109.5 |
C2—C7—C9 | 122.4 (7) | H17A—C17—H17C | 109.5 |
C3—C8—H8A | 109.5 | H17B—C17—H17C | 109.5 |
C3—C8—H8B | 109.5 | C16—C18—H18A | 109.5 |
H8A—C8—H8B | 109.5 | C16—C18—H18B | 109.5 |
C3—C8—H8C | 109.5 | H18A—C18—H18B | 109.5 |
H8A—C8—H8C | 109.5 | C16—C18—H18C | 109.5 |
H8B—C8—H8C | 109.5 | H18A—C18—H18C | 109.5 |
C7—C9—H9A | 109.5 | H18B—C18—H18C | 109.5 |
C7—C9—H9B | 109.5 | F4—B1—F2 | 115.9 (12) |
H9A—C9—H9B | 109.5 | F4—B1—F1 | 110.0 (8) |
C7—C9—H9C | 109.5 | F2—B1—F1 | 111.8 (8) |
H9A—C9—H9C | 109.5 | F4—B1—F3 | 109.4 (12) |
H9B—C9—H9C | 109.5 | F2—B1—F3 | 102.4 (8) |
N2—C10—Au1 | 171.3 (6) | F1—B1—F3 | 106.8 (9) |
N2—C11—C16 | 117.5 (6) | C1—N1—C2 | 177.2 (7) |
N2—C11—C12 | 118.8 (6) | C10—N2—C11 | 176.8 (7) |
C16—C11—C12 | 123.7 (6) | C10—Au1—C1 | 173.7 (3) |
C13—C12—C11 | 116.8 (7) |
Experimental details
Crystal data | |
Chemical formula | [Au(C9H9N)2]BF4 |
Mr | 546.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 208 |
a, b, c (Å) | 13.1930 (15), 10.7840 (13), 13.6260 (15) |
β (°) | 105.034 (2) |
V (Å3) | 1872.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.90 |
Crystal size (mm) | 0.20 × 0.12 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.301, 0.608 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18352, 3302, 3011 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.174, 1.10 |
No. of reflections | 3302 |
No. of parameters | 241 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.1125P)2 + 10.5769P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.19, −1.02 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2006), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by funding from the NSF, and conducted at the University of California, San Diego.
References
Balch, A. & Parks, J. E. (1973). J. Organomet. Chem. 57, C103–C106. Google Scholar
Balch, A. & Parks, J. E. (1974). J. Organomet. Chem. 71, 453–463. Google Scholar
Bonati, F. & Minghetti, G. (1973). Gazz. Chim. Ital. 103, 373–386. CAS Google Scholar
Bruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Schmidbaur, H., Angermaier, K., Bauer, A., Sladek, A. & Schneider, W. (1997). Z. Naturforsch. 52, 53–56. Google Scholar
Schmidbaur, H., Ehlich, H. & Schier, A. (2002). Z. Naturforsch. Teil B, 57, 890–894. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Gold bis-isocyanide complexes of the type (RNC)2AuI have been studied as precursors to the related carbene complexes of gold (Balch & Parks, 1973; Bonati & Minghetti, 1973; Balch & Parks, 1974). These early examples were characterized by NMR, IR, elemental analysis, and conductivity studies. More recently bis(tert-butyl isocyanide)gold(I) (Schmidbaur et al., 2002) and various aromatic isocyanide complexes of gold (Schmidbaur et al., 1997) have been studied by x-ray crystallography. Here, the title compound, (I), has been structurally characterised (Fig. 1).
The structure of the cation in (I) is nearly linear, with the C—Au—C bond angle at 171.2 (7)°. The bow in the structure is due to the crystal packing, and has been observed in bis(isonitrile) gold cations containing methyl, tert-butyl, phenyl, or mesistyl groups attached to the isonitrile groups (Schmidbaur et al., 1997). The Au—C distances in (I) are given in Table 1. Both these bond lengths are slightly longer than the gold-carbon bond distances given for the phenyl and mesityl analogues of (I) (Schmidbaur et al., 1997). The bond length between C1—N1 is 1.124 (11)Å, and the length between C10 and N2 is 1.154 (11)Å. These length are, again, slightly longer than those reported for the phenyl and mesityl analogues, but the difference between the C1—N1 bond and the C10—N2 bond in (I) is also present in the isocyanide complexes studied (Schmidbaur et al., 1997, Schmidbaur et al., 2002). The slightly longer bond lengths in (I) could be due to decreased electron density in the C1—N1 and C10—N2 bonds. That electron density would be shifted toward the xylyl ring through resonance stabilization. The xylyl groups of the cation in (I) define planes that are orientated at an angle of 52.3 (7)°.