organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10,11,12,13-Tetra­hydro-4,5,9,14-tetra­azadibenz[a,c]anthracene–benzene-1,4-di­carboxylic acid (2/1)

aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: guangbochejl@yahoo.com

(Received 29 August 2008; accepted 29 August 2008; online 6 September 2008)

In the title adduct, 2C18H14N4·C8H6O4, the centrosymmetric 1,4-benzene­dicarboxylic acid mol­ecule makes two O—H⋯·N hydrogen bonds to adjacent 10,11,12,13-tetra­hydro-4,5,9,14-tetra­azadibenzo[a,c]anthracene (TTBT) mol­ecules. Aromatic ππ stacking inter­actions occur between TTBT rings [centroid–centroid distance = 3.570 (3) Å], leading to a two-dimensional supra­molecular structure in the crystal.

Related literature

For related literature, see: Che et al. (2006[Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519-2524.], 2008[Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.]); Stephenson & Hardie (2006[Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423-432.]); Xu et al. (2008[Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem. 27, 593-597.]); Yao et al. (2008[Yao, J.-C., Qin, J.-H., Sun, Q.-B., Qu, L. & Li, Y.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 11-12.]).

[Scheme 1]

Experimental

Crystal data
  • 2C18H14N4·C8H6O4

  • Mr = 738.80

  • Triclinic, [P \overline 1]

  • a = 7.266 (4) Å

  • b = 9.917 (5) Å

  • c = 13.564 (9) Å

  • α = 101.469 (9)°

  • β = 97.429 (9)°

  • γ = 109.697 (6)°

  • V = 881.2 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 (2) K

  • 0.32 × 0.21 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.992

  • 7636 measured reflections

  • 3444 independent reflections

  • 1394 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.180

  • S = 0.93

  • 3444 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 2.02 2.694 (4) 139

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Current crystal engineering on the basis of the supramolecular architectures assembled from various noncovalent interactions, such as hydrogen bonds and π-π stacking interactions have been extensively studied owing to their novel topologies and potential applications as functional materials (Stephenson & Hardie, 2006; Yao et al.,2008). 1,10-Phenanthroline (phen) and its derivatives have been widely used to build novel supramolecular architectures (Xu, Li et al., 2008; Che, Liu et al., 2008). As a continuation of our studies in this area, we have prepared the title compound, (I), using the phen derivative 10,11,12,13-tetrahydro-4,5,9,14-tetraazadibenz[a,c]anthracene (TTBA).

The asymmetric unit of (I) consists of one TTBA molecule and half of a centrosymmetric 1,4-benzenedicarboxylic acid molecule (Fig. 1). The two components of (I) interact by way of O—H···N hydrogen bonds (Table 1). Furthermore, there are π-π aromatic stacking interactions involving TTBA ligands of adjacent units [centroid-centroid distance = 3.570 (3)Å], forming an intriguing two-dimensional supramolecular motif (Fig. 2).

Related literature top

For related literature, see: Che et al. (2006, 2008); Stephenson & Hardie (2006); Xu et al. (2008); Yao et al. (2008).

Experimental top

The TTBA was synthesized according to the literature method (Che, Li et al., 2006). TTBA (1.0 mmol) and 1,4-benzenedicarboxylic acid (0.5 mmol) were dissolved in aqueous solution and the mixture was sealed in a Teflon-lined autoclave and heated to 433 K for 4 d. Upon cooling and opening the bomb, colorless blocks of (I) were obtained.

Refinement top

The hydrogen atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82Å) and refined as riding, with Uiso(H)= 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) 1 - x, -y, 3 - z.]
[Figure 2] Fig. 2. Packing diagram of the two-dimensional supramolecular structure of (I) formed via ππ interactions and hydrogen bonds. H atoms have been omitted.
10,11,12,13-Tetrahydro-4,5,9,14-tetraazadibenz[a,c]anthracene– benzene-1,4-dicarboxylic acid (2/1) top
Crystal data top
2C18H14N4·C8H6O4Z = 1
Mr = 738.80F(000) = 386
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.266 (4) ÅCell parameters from 2386 reflections
b = 9.917 (5) Åθ = 2.3–26.0°
c = 13.564 (9) ŵ = 0.09 mm1
α = 101.469 (9)°T = 292 K
β = 97.429 (9)°Block, colorless
γ = 109.697 (6)°0.32 × 0.21 × 0.08 mm
V = 881.2 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
3444 independent reflections
Radiation source: fine-focus sealed tube1394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.978, Tmax = 0.992k = 1212
7636 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0762P)2]
where P = (Fo2 + 2Fc2)/3
3444 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
2C18H14N4·C8H6O4γ = 109.697 (6)°
Mr = 738.80V = 881.2 (9) Å3
Triclinic, P1Z = 1
a = 7.266 (4) ÅMo Kα radiation
b = 9.917 (5) ŵ = 0.09 mm1
c = 13.564 (9) ÅT = 292 K
α = 101.469 (9)°0.32 × 0.21 × 0.08 mm
β = 97.429 (9)°
Data collection top
Bruker SMART CCD
diffractometer
3444 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1394 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.992Rint = 0.047
7636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 0.93Δρmax = 0.34 e Å3
3444 reflectionsΔρmin = 0.18 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7589 (5)0.5815 (4)1.2595 (3)0.0603 (10)
H10.75940.60001.32950.072*
C20.7631 (5)0.6947 (4)1.2121 (3)0.0593 (9)
H20.76920.78611.24950.071*
C30.7581 (4)0.6668 (4)1.1082 (3)0.0534 (9)
H30.75890.73941.07390.064*
C40.7517 (4)0.5297 (3)1.0542 (2)0.0411 (8)
C50.7492 (4)0.4942 (3)0.9448 (2)0.0418 (8)
C60.7476 (4)0.5624 (4)0.7934 (3)0.0473 (8)
C70.7508 (5)0.6785 (4)0.7365 (2)0.0607 (10)
H7A0.88100.75850.75900.073*
H7B0.65180.71930.75430.073*
C80.7086 (6)0.6201 (4)0.6202 (3)0.0773 (12)
H8A0.56540.56940.59430.093*
H8B0.75340.70300.58980.093*
C90.8103 (6)0.5164 (4)0.5882 (3)0.0779 (12)
H9A0.95370.56780.61250.093*
H9B0.78260.48450.51370.093*
C100.7414 (6)0.3822 (4)0.6306 (2)0.0669 (10)
H10A0.60630.31860.59400.080*
H10B0.82710.32650.61870.080*
C110.7453 (4)0.4230 (4)0.7430 (2)0.0485 (8)
C120.7473 (4)0.3561 (3)0.8947 (2)0.0433 (8)
C130.7493 (4)0.2468 (3)0.9524 (2)0.0439 (8)
C140.7547 (4)0.1100 (4)0.9065 (3)0.0535 (9)
H140.75450.08470.83670.064*
C150.7602 (5)0.0130 (4)0.9645 (3)0.0578 (9)
H150.76640.07820.93550.069*
C160.7563 (5)0.0539 (4)1.0681 (3)0.0622 (10)
H160.75820.01311.10710.075*
C170.7489 (4)0.2799 (3)1.0574 (2)0.0431 (8)
C180.7504 (4)0.4245 (3)1.1102 (2)0.0429 (8)
C190.7010 (6)0.0878 (4)1.3406 (3)0.0611 (10)
C200.5949 (5)0.0433 (3)1.4226 (2)0.0527 (9)
C210.4077 (6)0.0460 (4)1.4252 (3)0.0597 (10)
H210.34390.07611.37470.072*
C220.6860 (5)0.0042 (4)1.4971 (3)0.0611 (10)
H220.81160.00821.49500.073*
N10.7543 (4)0.4499 (3)1.2122 (2)0.0533 (7)
N20.7502 (4)0.1824 (3)1.1147 (2)0.0513 (7)
N30.7496 (4)0.5981 (3)0.89318 (19)0.0472 (7)
N40.7442 (4)0.3203 (3)0.79299 (19)0.0491 (7)
O10.8422 (4)0.0570 (3)1.3217 (2)0.0853 (9)
O20.6271 (4)0.1674 (3)1.29255 (18)0.0766 (8)
H2A0.61120.13551.23020.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (2)0.068 (3)0.049 (2)0.028 (2)0.0207 (18)0.014 (2)
C20.070 (2)0.053 (2)0.057 (3)0.0253 (19)0.0208 (19)0.0101 (19)
C30.054 (2)0.053 (2)0.058 (2)0.0230 (18)0.0178 (18)0.0190 (19)
C40.0385 (18)0.0422 (19)0.043 (2)0.0169 (15)0.0081 (15)0.0082 (16)
C50.0338 (18)0.046 (2)0.045 (2)0.0133 (15)0.0059 (15)0.0148 (17)
C60.0439 (19)0.050 (2)0.049 (2)0.0188 (17)0.0066 (16)0.0151 (18)
C70.069 (2)0.065 (2)0.051 (2)0.0243 (19)0.0119 (19)0.0243 (19)
C80.106 (3)0.082 (3)0.053 (3)0.043 (3)0.015 (2)0.026 (2)
C90.100 (3)0.093 (3)0.057 (2)0.047 (3)0.025 (2)0.029 (2)
C100.084 (3)0.070 (3)0.043 (2)0.027 (2)0.0104 (19)0.0135 (19)
C110.049 (2)0.052 (2)0.041 (2)0.0161 (17)0.0074 (16)0.0106 (18)
C120.0388 (18)0.047 (2)0.042 (2)0.0156 (15)0.0067 (15)0.0103 (17)
C130.0391 (18)0.044 (2)0.048 (2)0.0137 (15)0.0108 (15)0.0134 (17)
C140.058 (2)0.050 (2)0.052 (2)0.0230 (18)0.0093 (17)0.0091 (19)
C150.070 (2)0.043 (2)0.064 (2)0.0256 (19)0.0160 (19)0.0128 (19)
C160.072 (2)0.049 (2)0.067 (3)0.0211 (19)0.015 (2)0.023 (2)
C170.0412 (18)0.0398 (19)0.049 (2)0.0132 (15)0.0120 (15)0.0146 (17)
C180.0401 (18)0.048 (2)0.043 (2)0.0173 (16)0.0116 (15)0.0135 (17)
C190.079 (3)0.053 (2)0.057 (2)0.025 (2)0.024 (2)0.0211 (19)
C200.067 (2)0.043 (2)0.050 (2)0.0207 (18)0.0185 (18)0.0124 (17)
C210.074 (3)0.059 (2)0.054 (2)0.030 (2)0.0161 (19)0.0227 (19)
C220.069 (2)0.060 (2)0.066 (2)0.0287 (19)0.023 (2)0.025 (2)
N10.0634 (18)0.0523 (19)0.0464 (18)0.0224 (15)0.0166 (14)0.0131 (15)
N20.0600 (18)0.0427 (17)0.0547 (18)0.0202 (14)0.0139 (14)0.0171 (15)
N30.0502 (16)0.0494 (17)0.0433 (17)0.0193 (13)0.0087 (13)0.0143 (14)
N40.0541 (17)0.0485 (17)0.0435 (18)0.0194 (14)0.0095 (13)0.0098 (14)
O10.099 (2)0.097 (2)0.101 (2)0.0578 (18)0.0578 (18)0.0550 (17)
O20.101 (2)0.0836 (19)0.0687 (17)0.0465 (16)0.0330 (15)0.0399 (15)
Geometric parameters (Å, º) top
C1—N11.323 (4)C10—H10B0.9700
C1—C21.393 (4)C11—N41.329 (4)
C1—H10.9300C12—N41.349 (4)
C2—C31.375 (4)C12—C131.461 (4)
C2—H20.9300C13—C141.392 (4)
C3—C41.393 (4)C13—C171.397 (4)
C3—H30.9300C14—C151.366 (4)
C4—C181.405 (4)C14—H140.9300
C4—C51.452 (4)C15—C161.389 (4)
C5—N31.355 (3)C15—H150.9300
C5—C121.398 (4)C16—N21.322 (4)
C6—N31.327 (4)C16—H160.9300
C6—C111.408 (4)C17—N21.357 (4)
C6—C71.504 (4)C17—C181.466 (4)
C7—C81.520 (4)C18—N11.351 (4)
C7—H7A0.9700C19—O11.208 (4)
C7—H7B0.9700C19—O21.317 (4)
C8—C91.486 (5)C19—C201.488 (5)
C8—H8A0.9700C20—C211.375 (4)
C8—H8B0.9700C20—C221.381 (4)
C9—C101.511 (4)C21—C22i1.384 (4)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700C22—C21i1.384 (4)
C10—C111.491 (4)C22—H220.9300
C10—H10A0.9700O2—H2A0.8200
N1—C1—C2124.8 (3)N4—C11—C6121.7 (3)
N1—C1—H1117.6N4—C11—C10116.5 (3)
C2—C1—H1117.6C6—C11—C10121.8 (3)
C3—C2—C1117.8 (3)N4—C12—C5121.5 (3)
C3—C2—H2121.1N4—C12—C13118.5 (3)
C1—C2—H2121.1C5—C12—C13120.1 (3)
C2—C3—C4119.9 (3)C14—C13—C17118.3 (3)
C2—C3—H3120.1C14—C13—C12122.0 (3)
C4—C3—H3120.1C17—C13—C12119.7 (3)
C3—C4—C18117.4 (3)C15—C14—C13119.6 (3)
C3—C4—C5122.5 (3)C15—C14—H14120.2
C18—C4—C5120.1 (3)C13—C14—H14120.2
N3—C5—C12121.2 (3)C14—C15—C16118.3 (3)
N3—C5—C4118.5 (3)C14—C15—H15120.8
C12—C5—C4120.3 (3)C16—C15—H15120.8
N3—C6—C11121.7 (3)N2—C16—C15124.0 (3)
N3—C6—C7116.9 (3)N2—C16—H16118.0
C11—C6—C7121.4 (3)C15—C16—H16118.0
C6—C7—C8113.5 (3)N2—C17—C13122.2 (3)
C6—C7—H7A108.9N2—C17—C18117.4 (3)
C8—C7—H7A108.9C13—C17—C18120.4 (3)
C6—C7—H7B108.9N1—C18—C4123.4 (3)
C8—C7—H7B108.9N1—C18—C17117.1 (3)
H7A—C7—H7B107.7C4—C18—C17119.4 (3)
C9—C8—C7112.1 (3)O1—C19—O2123.7 (4)
C9—C8—H8A109.2O1—C19—C20123.6 (4)
C7—C8—H8A109.2O2—C19—C20112.6 (4)
C9—C8—H8B109.2C21—C20—C22119.2 (3)
C7—C8—H8B109.2C21—C20—C19121.8 (3)
H8A—C8—H8B107.9C22—C20—C19119.0 (4)
C8—C9—C10111.6 (3)C20—C21—C22i120.1 (3)
C8—C9—H9A109.3C20—C21—H21119.9
C10—C9—H9A109.3C22i—C21—H21119.9
C8—C9—H9B109.3C20—C22—C21i120.6 (3)
C10—C9—H9B109.3C20—C22—H22119.7
H9A—C9—H9B108.0C21i—C22—H22119.7
C11—C10—C9112.4 (3)C1—N1—C18116.7 (3)
C11—C10—H10A109.1C16—N2—C17117.6 (3)
C9—C10—H10A109.1C6—N3—C5117.0 (3)
C11—C10—H10B109.1C11—N4—C12116.9 (3)
C9—C10—H10B109.1C19—O2—H2A109.5
H10A—C10—H10B107.9
Symmetry code: (i) x+1, y, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.822.022.694 (4)139

Experimental details

Crystal data
Chemical formula2C18H14N4·C8H6O4
Mr738.80
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.266 (4), 9.917 (5), 13.564 (9)
α, β, γ (°)101.469 (9), 97.429 (9), 109.697 (6)
V3)881.2 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.21 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.978, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
7636, 3444, 1394
Rint0.047
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.180, 0.93
No. of reflections3444
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.822.022.694 (4)139
 

Acknowledgements

The authors thank the Doctoral Foundation of Jilin Normal University (Nos. 2006006 and 2007009), the Subject and Base Construction Foundation of Jilin Normal University (No. 2006041) and the Masters' Innovation Foundation of Jilin Normal University (No. 2006064).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519–2524.  Web of Science CrossRef CAS Google Scholar
First citationChe, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem. 27, 593–597.  CAS Google Scholar
First citationYao, J.-C., Qin, J.-H., Sun, Q.-B., Qu, L. & Li, Y.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 11–12.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds