organic compounds
10,11,12,13-Tetrahydro-4,5,9,14-tetraazadibenz[a,c]anthracene–benzene-1,4-dicarboxylic acid (2/1)
aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: guangbochejl@yahoo.com
In the title adduct, 2C18H14N4·C8H6O4, the centrosymmetric 1,4-benzenedicarboxylic acid molecule makes two O—H⋯·N hydrogen bonds to adjacent 10,11,12,13-tetrahydro-4,5,9,14-tetraazadibenzo[a,c]anthracene (TTBT) molecules. Aromatic π–π stacking interactions occur between TTBT rings [centroid–centroid distance = 3.570 (3) Å], leading to a two-dimensional supramolecular structure in the crystal.
Related literature
For related literature, see: Che et al. (2006, 2008); Stephenson & Hardie (2006); Xu et al. (2008); Yao et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808027785/hb2788sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808027785/hb2788Isup2.hkl
The TTBA was synthesized according to the literature method (Che, Li et al., 2006). TTBA (1.0 mmol) and 1,4-benzenedicarboxylic acid (0.5 mmol) were dissolved in aqueous solution and the mixture was sealed in a Teflon-lined autoclave and heated to 433 K for 4 d. Upon cooling and opening the bomb, colorless blocks of (I) were obtained.
The hydrogen atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82Å) and refined as riding, with Uiso(H)= 1.2Ueq(carrier).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).2C18H14N4·C8H6O4 | Z = 1 |
Mr = 738.80 | F(000) = 386 |
Triclinic, P1 | Dx = 1.392 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.266 (4) Å | Cell parameters from 2386 reflections |
b = 9.917 (5) Å | θ = 2.3–26.0° |
c = 13.564 (9) Å | µ = 0.09 mm−1 |
α = 101.469 (9)° | T = 292 K |
β = 97.429 (9)° | Block, colorless |
γ = 109.697 (6)° | 0.32 × 0.21 × 0.08 mm |
V = 881.2 (9) Å3 |
Bruker SMART CCD diffractometer | 3444 independent reflections |
Radiation source: fine-focus sealed tube | 1394 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 26.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −8→8 |
Tmin = 0.978, Tmax = 0.992 | k = −12→12 |
7636 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0762P)2] where P = (Fo2 + 2Fc2)/3 |
3444 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
2C18H14N4·C8H6O4 | γ = 109.697 (6)° |
Mr = 738.80 | V = 881.2 (9) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.266 (4) Å | Mo Kα radiation |
b = 9.917 (5) Å | µ = 0.09 mm−1 |
c = 13.564 (9) Å | T = 292 K |
α = 101.469 (9)° | 0.32 × 0.21 × 0.08 mm |
β = 97.429 (9)° |
Bruker SMART CCD diffractometer | 3444 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1394 reflections with I > 2σ(I) |
Tmin = 0.978, Tmax = 0.992 | Rint = 0.047 |
7636 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.34 e Å−3 |
3444 reflections | Δρmin = −0.18 e Å−3 |
253 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7589 (5) | 0.5815 (4) | 1.2595 (3) | 0.0603 (10) | |
H1 | 0.7594 | 0.6000 | 1.3295 | 0.072* | |
C2 | 0.7631 (5) | 0.6947 (4) | 1.2121 (3) | 0.0593 (9) | |
H2 | 0.7692 | 0.7861 | 1.2495 | 0.071* | |
C3 | 0.7581 (4) | 0.6668 (4) | 1.1082 (3) | 0.0534 (9) | |
H3 | 0.7589 | 0.7394 | 1.0739 | 0.064* | |
C4 | 0.7517 (4) | 0.5297 (3) | 1.0542 (2) | 0.0411 (8) | |
C5 | 0.7492 (4) | 0.4942 (3) | 0.9448 (2) | 0.0418 (8) | |
C6 | 0.7476 (4) | 0.5624 (4) | 0.7934 (3) | 0.0473 (8) | |
C7 | 0.7508 (5) | 0.6785 (4) | 0.7365 (2) | 0.0607 (10) | |
H7A | 0.8810 | 0.7585 | 0.7590 | 0.073* | |
H7B | 0.6518 | 0.7193 | 0.7543 | 0.073* | |
C8 | 0.7086 (6) | 0.6201 (4) | 0.6202 (3) | 0.0773 (12) | |
H8A | 0.5654 | 0.5694 | 0.5943 | 0.093* | |
H8B | 0.7534 | 0.7030 | 0.5898 | 0.093* | |
C9 | 0.8103 (6) | 0.5164 (4) | 0.5882 (3) | 0.0779 (12) | |
H9A | 0.9537 | 0.5678 | 0.6125 | 0.093* | |
H9B | 0.7826 | 0.4845 | 0.5137 | 0.093* | |
C10 | 0.7414 (6) | 0.3822 (4) | 0.6306 (2) | 0.0669 (10) | |
H10A | 0.6063 | 0.3186 | 0.5940 | 0.080* | |
H10B | 0.8271 | 0.3265 | 0.6187 | 0.080* | |
C11 | 0.7453 (4) | 0.4230 (4) | 0.7430 (2) | 0.0485 (8) | |
C12 | 0.7473 (4) | 0.3561 (3) | 0.8947 (2) | 0.0433 (8) | |
C13 | 0.7493 (4) | 0.2468 (3) | 0.9524 (2) | 0.0439 (8) | |
C14 | 0.7547 (4) | 0.1100 (4) | 0.9065 (3) | 0.0535 (9) | |
H14 | 0.7545 | 0.0847 | 0.8367 | 0.064* | |
C15 | 0.7602 (5) | 0.0130 (4) | 0.9645 (3) | 0.0578 (9) | |
H15 | 0.7664 | −0.0782 | 0.9355 | 0.069* | |
C16 | 0.7563 (5) | 0.0539 (4) | 1.0681 (3) | 0.0622 (10) | |
H16 | 0.7582 | −0.0131 | 1.1071 | 0.075* | |
C17 | 0.7489 (4) | 0.2799 (3) | 1.0574 (2) | 0.0431 (8) | |
C18 | 0.7504 (4) | 0.4245 (3) | 1.1102 (2) | 0.0429 (8) | |
C19 | 0.7010 (6) | 0.0878 (4) | 1.3406 (3) | 0.0611 (10) | |
C20 | 0.5949 (5) | 0.0433 (3) | 1.4226 (2) | 0.0527 (9) | |
C21 | 0.4077 (6) | 0.0460 (4) | 1.4252 (3) | 0.0597 (10) | |
H21 | 0.3439 | 0.0761 | 1.3747 | 0.072* | |
C22 | 0.6860 (5) | −0.0042 (4) | 1.4971 (3) | 0.0611 (10) | |
H22 | 0.8116 | −0.0082 | 1.4950 | 0.073* | |
N1 | 0.7543 (4) | 0.4499 (3) | 1.2122 (2) | 0.0533 (7) | |
N2 | 0.7502 (4) | 0.1824 (3) | 1.1147 (2) | 0.0513 (7) | |
N3 | 0.7496 (4) | 0.5981 (3) | 0.89318 (19) | 0.0472 (7) | |
N4 | 0.7442 (4) | 0.3203 (3) | 0.79299 (19) | 0.0491 (7) | |
O1 | 0.8422 (4) | 0.0570 (3) | 1.3217 (2) | 0.0853 (9) | |
O2 | 0.6271 (4) | 0.1674 (3) | 1.29255 (18) | 0.0766 (8) | |
H2A | 0.6112 | 0.1355 | 1.2302 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.067 (2) | 0.068 (3) | 0.049 (2) | 0.028 (2) | 0.0207 (18) | 0.014 (2) |
C2 | 0.070 (2) | 0.053 (2) | 0.057 (3) | 0.0253 (19) | 0.0208 (19) | 0.0101 (19) |
C3 | 0.054 (2) | 0.053 (2) | 0.058 (2) | 0.0230 (18) | 0.0178 (18) | 0.0190 (19) |
C4 | 0.0385 (18) | 0.0422 (19) | 0.043 (2) | 0.0169 (15) | 0.0081 (15) | 0.0082 (16) |
C5 | 0.0338 (18) | 0.046 (2) | 0.045 (2) | 0.0133 (15) | 0.0059 (15) | 0.0148 (17) |
C6 | 0.0439 (19) | 0.050 (2) | 0.049 (2) | 0.0188 (17) | 0.0066 (16) | 0.0151 (18) |
C7 | 0.069 (2) | 0.065 (2) | 0.051 (2) | 0.0243 (19) | 0.0119 (19) | 0.0243 (19) |
C8 | 0.106 (3) | 0.082 (3) | 0.053 (3) | 0.043 (3) | 0.015 (2) | 0.026 (2) |
C9 | 0.100 (3) | 0.093 (3) | 0.057 (2) | 0.047 (3) | 0.025 (2) | 0.029 (2) |
C10 | 0.084 (3) | 0.070 (3) | 0.043 (2) | 0.027 (2) | 0.0104 (19) | 0.0135 (19) |
C11 | 0.049 (2) | 0.052 (2) | 0.041 (2) | 0.0161 (17) | 0.0074 (16) | 0.0106 (18) |
C12 | 0.0388 (18) | 0.047 (2) | 0.042 (2) | 0.0156 (15) | 0.0067 (15) | 0.0103 (17) |
C13 | 0.0391 (18) | 0.044 (2) | 0.048 (2) | 0.0137 (15) | 0.0108 (15) | 0.0134 (17) |
C14 | 0.058 (2) | 0.050 (2) | 0.052 (2) | 0.0230 (18) | 0.0093 (17) | 0.0091 (19) |
C15 | 0.070 (2) | 0.043 (2) | 0.064 (2) | 0.0256 (19) | 0.0160 (19) | 0.0128 (19) |
C16 | 0.072 (2) | 0.049 (2) | 0.067 (3) | 0.0211 (19) | 0.015 (2) | 0.023 (2) |
C17 | 0.0412 (18) | 0.0398 (19) | 0.049 (2) | 0.0132 (15) | 0.0120 (15) | 0.0146 (17) |
C18 | 0.0401 (18) | 0.048 (2) | 0.043 (2) | 0.0173 (16) | 0.0116 (15) | 0.0135 (17) |
C19 | 0.079 (3) | 0.053 (2) | 0.057 (2) | 0.025 (2) | 0.024 (2) | 0.0211 (19) |
C20 | 0.067 (2) | 0.043 (2) | 0.050 (2) | 0.0207 (18) | 0.0185 (18) | 0.0124 (17) |
C21 | 0.074 (3) | 0.059 (2) | 0.054 (2) | 0.030 (2) | 0.0161 (19) | 0.0227 (19) |
C22 | 0.069 (2) | 0.060 (2) | 0.066 (2) | 0.0287 (19) | 0.023 (2) | 0.025 (2) |
N1 | 0.0634 (18) | 0.0523 (19) | 0.0464 (18) | 0.0224 (15) | 0.0166 (14) | 0.0131 (15) |
N2 | 0.0600 (18) | 0.0427 (17) | 0.0547 (18) | 0.0202 (14) | 0.0139 (14) | 0.0171 (15) |
N3 | 0.0502 (16) | 0.0494 (17) | 0.0433 (17) | 0.0193 (13) | 0.0087 (13) | 0.0143 (14) |
N4 | 0.0541 (17) | 0.0485 (17) | 0.0435 (18) | 0.0194 (14) | 0.0095 (13) | 0.0098 (14) |
O1 | 0.099 (2) | 0.097 (2) | 0.101 (2) | 0.0578 (18) | 0.0578 (18) | 0.0550 (17) |
O2 | 0.101 (2) | 0.0836 (19) | 0.0687 (17) | 0.0465 (16) | 0.0330 (15) | 0.0399 (15) |
C1—N1 | 1.323 (4) | C10—H10B | 0.9700 |
C1—C2 | 1.393 (4) | C11—N4 | 1.329 (4) |
C1—H1 | 0.9300 | C12—N4 | 1.349 (4) |
C2—C3 | 1.375 (4) | C12—C13 | 1.461 (4) |
C2—H2 | 0.9300 | C13—C14 | 1.392 (4) |
C3—C4 | 1.393 (4) | C13—C17 | 1.397 (4) |
C3—H3 | 0.9300 | C14—C15 | 1.366 (4) |
C4—C18 | 1.405 (4) | C14—H14 | 0.9300 |
C4—C5 | 1.452 (4) | C15—C16 | 1.389 (4) |
C5—N3 | 1.355 (3) | C15—H15 | 0.9300 |
C5—C12 | 1.398 (4) | C16—N2 | 1.322 (4) |
C6—N3 | 1.327 (4) | C16—H16 | 0.9300 |
C6—C11 | 1.408 (4) | C17—N2 | 1.357 (4) |
C6—C7 | 1.504 (4) | C17—C18 | 1.466 (4) |
C7—C8 | 1.520 (4) | C18—N1 | 1.351 (4) |
C7—H7A | 0.9700 | C19—O1 | 1.208 (4) |
C7—H7B | 0.9700 | C19—O2 | 1.317 (4) |
C8—C9 | 1.486 (5) | C19—C20 | 1.488 (5) |
C8—H8A | 0.9700 | C20—C21 | 1.375 (4) |
C8—H8B | 0.9700 | C20—C22 | 1.381 (4) |
C9—C10 | 1.511 (4) | C21—C22i | 1.384 (4) |
C9—H9A | 0.9700 | C21—H21 | 0.9300 |
C9—H9B | 0.9700 | C22—C21i | 1.384 (4) |
C10—C11 | 1.491 (4) | C22—H22 | 0.9300 |
C10—H10A | 0.9700 | O2—H2A | 0.8200 |
N1—C1—C2 | 124.8 (3) | N4—C11—C6 | 121.7 (3) |
N1—C1—H1 | 117.6 | N4—C11—C10 | 116.5 (3) |
C2—C1—H1 | 117.6 | C6—C11—C10 | 121.8 (3) |
C3—C2—C1 | 117.8 (3) | N4—C12—C5 | 121.5 (3) |
C3—C2—H2 | 121.1 | N4—C12—C13 | 118.5 (3) |
C1—C2—H2 | 121.1 | C5—C12—C13 | 120.1 (3) |
C2—C3—C4 | 119.9 (3) | C14—C13—C17 | 118.3 (3) |
C2—C3—H3 | 120.1 | C14—C13—C12 | 122.0 (3) |
C4—C3—H3 | 120.1 | C17—C13—C12 | 119.7 (3) |
C3—C4—C18 | 117.4 (3) | C15—C14—C13 | 119.6 (3) |
C3—C4—C5 | 122.5 (3) | C15—C14—H14 | 120.2 |
C18—C4—C5 | 120.1 (3) | C13—C14—H14 | 120.2 |
N3—C5—C12 | 121.2 (3) | C14—C15—C16 | 118.3 (3) |
N3—C5—C4 | 118.5 (3) | C14—C15—H15 | 120.8 |
C12—C5—C4 | 120.3 (3) | C16—C15—H15 | 120.8 |
N3—C6—C11 | 121.7 (3) | N2—C16—C15 | 124.0 (3) |
N3—C6—C7 | 116.9 (3) | N2—C16—H16 | 118.0 |
C11—C6—C7 | 121.4 (3) | C15—C16—H16 | 118.0 |
C6—C7—C8 | 113.5 (3) | N2—C17—C13 | 122.2 (3) |
C6—C7—H7A | 108.9 | N2—C17—C18 | 117.4 (3) |
C8—C7—H7A | 108.9 | C13—C17—C18 | 120.4 (3) |
C6—C7—H7B | 108.9 | N1—C18—C4 | 123.4 (3) |
C8—C7—H7B | 108.9 | N1—C18—C17 | 117.1 (3) |
H7A—C7—H7B | 107.7 | C4—C18—C17 | 119.4 (3) |
C9—C8—C7 | 112.1 (3) | O1—C19—O2 | 123.7 (4) |
C9—C8—H8A | 109.2 | O1—C19—C20 | 123.6 (4) |
C7—C8—H8A | 109.2 | O2—C19—C20 | 112.6 (4) |
C9—C8—H8B | 109.2 | C21—C20—C22 | 119.2 (3) |
C7—C8—H8B | 109.2 | C21—C20—C19 | 121.8 (3) |
H8A—C8—H8B | 107.9 | C22—C20—C19 | 119.0 (4) |
C8—C9—C10 | 111.6 (3) | C20—C21—C22i | 120.1 (3) |
C8—C9—H9A | 109.3 | C20—C21—H21 | 119.9 |
C10—C9—H9A | 109.3 | C22i—C21—H21 | 119.9 |
C8—C9—H9B | 109.3 | C20—C22—C21i | 120.6 (3) |
C10—C9—H9B | 109.3 | C20—C22—H22 | 119.7 |
H9A—C9—H9B | 108.0 | C21i—C22—H22 | 119.7 |
C11—C10—C9 | 112.4 (3) | C1—N1—C18 | 116.7 (3) |
C11—C10—H10A | 109.1 | C16—N2—C17 | 117.6 (3) |
C9—C10—H10A | 109.1 | C6—N3—C5 | 117.0 (3) |
C11—C10—H10B | 109.1 | C11—N4—C12 | 116.9 (3) |
C9—C10—H10B | 109.1 | C19—O2—H2A | 109.5 |
H10A—C10—H10B | 107.9 |
Symmetry code: (i) −x+1, −y, −z+3. |
Experimental details
Crystal data | |
Chemical formula | 2C18H14N4·C8H6O4 |
Mr | 738.80 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 292 |
a, b, c (Å) | 7.266 (4), 9.917 (5), 13.564 (9) |
α, β, γ (°) | 101.469 (9), 97.429 (9), 109.697 (6) |
V (Å3) | 881.2 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.32 × 0.21 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.978, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7636, 3444, 1394 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.180, 0.93 |
No. of reflections | 3444 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.18 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank the Doctoral Foundation of Jilin Normal University (Nos. 2006006 and 2007009), the Subject and Base Construction Foundation of Jilin Normal University (No. 2006041) and the Masters' Innovation Foundation of Jilin Normal University (No. 2006064).
References
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519–2524. Web of Science CrossRef CAS Google Scholar
Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423–432. Web of Science CSD CrossRef CAS Google Scholar
Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem. 27, 593–597. CAS Google Scholar
Yao, J.-C., Qin, J.-H., Sun, Q.-B., Qu, L. & Li, Y.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 11–12. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Current crystal engineering on the basis of the supramolecular architectures assembled from various noncovalent interactions, such as hydrogen bonds and π-π stacking interactions have been extensively studied owing to their novel topologies and potential applications as functional materials (Stephenson & Hardie, 2006; Yao et al.,2008). 1,10-Phenanthroline (phen) and its derivatives have been widely used to build novel supramolecular architectures (Xu, Li et al., 2008; Che, Liu et al., 2008). As a continuation of our studies in this area, we have prepared the title compound, (I), using the phen derivative 10,11,12,13-tetrahydro-4,5,9,14-tetraazadibenz[a,c]anthracene (TTBA).
The asymmetric unit of (I) consists of one TTBA molecule and half of a centrosymmetric 1,4-benzenedicarboxylic acid molecule (Fig. 1). The two components of (I) interact by way of O—H···N hydrogen bonds (Table 1). Furthermore, there are π-π aromatic stacking interactions involving TTBA ligands of adjacent units [centroid-centroid distance = 3.570 (3)Å], forming an intriguing two-dimensional supramolecular motif (Fig. 2).