organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl-3-oxo-1-thia-4-aza­spiro­[4.5]dec-4-yl)-2-hydr­­oxy-2,2-di­phenyl­acetamide

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Atatürk University, 22240 Erzurum, Turkey, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 September 2008; accepted 7 September 2008; online 13 September 2008)

In the title compound, C24H28N2O3S, the pendant methyl C atom bonded to the cyclo­hexane ring is disordered over two sites in a 0.580 (11):0.420 (11) ratio. The cyclo­hexane ring adopts a distorted chair conformation while the thia­zolidine ring has an envelope conformation. The two phenyl rings make a dihedral angle of 71.8 (2)° with each other. The conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal structure, an inter­molecular hydrogen bond O—H⋯O occurs.

Related literature

For background, see: Güzel et al. (2006[Güzel, Ö., İlhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795-801.]). For a related structure, see: Akkurt et al. (2007[Akkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). Acta Cryst. E63, o3379-o3380.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N2O3S

  • Mr = 423.55

  • Monoclinic, P 21 /c

  • a = 9.4942 (4) Å

  • b = 20.6765 (5) Å

  • c = 12.0052 (4) Å

  • β = 105.063 (2)°

  • V = 2275.73 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293.1 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS conversion diffractometer

  • Absorption correction: empirical (using intensity measurements)XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.967, Tmax = 0.967

  • 6931 measured reflections

  • 6931 independent reflections

  • 3002 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.094

  • wR(F2) = 0.235

  • S = 1.05

  • 6931 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—HO3⋯O1i 0.92 (5) 1.83 (5) 2.744 (4) 175 (5)
N2—HN2⋯O3 0.86 (3) 2.11 (3) 2.535 (4) 110 (3)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In our previous report (Güzel et al., 2006), we described the synthesis and evaluation of sixteen new2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.4]non-4-yl)/(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamidederivatives, as potential antimicro-bacterial agents. We now report the crystal structure of the related title compound, (I), (Fig. 1).

The geometric parameters in (I) are comparable with those in 2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide (Akkurt et al., 2007). The dihedral angle between the two phenyl rings (C13—C18) and (C19—C24) in (I) is 71.8 (2)°. The five-membered ring (S1/C2/C3/N1/C4) has an envelope conformation with S1 at the flap position [puckering parameters: Q2 = 0.167 (3)Å and ϕ2 = 352.2 (12)° (Cremer & Pople, 1975)]. The cyclohexane ring has a distorted chair conformation, with the puckering parameters: Q = 0.585 (7) Å, θ = 2.7 (7) and ϕ = 132 (14)°.

The molecular conformation and crystal packing are stabilized by N—H···O and O—H···O hydrogen bonding interactions (Table 1).

Related literature top

For background, see: Güzel et al. (2006). For a related structure, see: Akkurt et al. (2007). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-hydroxy-2,2-diphenylacetohydrazide (0.005 mol), 2-methylcyclohexanone (0.005 mol) and mercaptoacetic acid or α-mercaptopropionic acid (0.02 mol) was refluxed in 20 ml dry benzene for 5–6 h using a Dean-Stark water separator. Excess benzene was evaporated in vacuo. The resulting residue was triturated with saturated NaHCO3 solution until CO2 evolution ceased and was allowed to stand overnight or in some cases refrigerated until solidification. The solid thus obtained was washed with water, dried, and recrystallized from ethanol. [Yield 48%, mp 455–458 K]. IR(KBr) (ν, cm-1): 3335 (O—H/N—H), 1679,1731 (C=O); 1H-NMR (DMSO-d6, 500 MHz) δ (p.p.m.): 0.93 (t, 3H, J = 6.83 Hz, 6-CH3), 0.95–1.10 (m, 1H, spirodecane),1.11–1.14 (m, 1H, spirodecane), 1.19–1.27 (m, 1H, spirodecane),1.41 (t, 3H, J = 7.32 Hz, 2-CH3), 1.45–1.67 (m, 5H, spirodecane), 1.83–1.87 (m, 1H, spirodecane), 3.77,3.85 (2q, 1H, J = 6.83 Hz, C2—H), 6.78 (s, 1H, COH), 7.26–7.31 (m, 2H, Ar—H), 7.33–7.35 (m, 4H, Ar—H), 7.45–7.49 (m, 4H,Ar—H), 9.93,10.05 (2 s, 1H, CONH). Analysis calculated for C24H28N2O3S: C 67.90, H 6.65, N 6.60%. Found: C 68.27, H 6.89, N 6.24%.

Refinement top

The methyl C atom bonded to the cyclohexane ring is disordered over two sites in a 0.580 (11):0.420 (11) ratio. The attached H atoms were located in difference maps and refined with the same fractional occupancies as their carrier carbon atoms and a fixed Uiso value of 0.05 Å2. The hydroxyl and amine H atoms were found from difference maps and refined freely. The other H atoms were located geometrically and constrained to ride on their parent atoms with C–H = 0.93-0.97 Å,and with Uiso(H) = 1.2Ueq(C)or Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 10% displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Packing for (I) with hydrogen bonds shown as dashed lines. The H atoms not involved in hydrogen contacts have been omitted.
N-(2,6-Dimethyl-3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2-hydroxy-2,2- diphenylacetamide top
Crystal data top
C24H28N2O3SF(000) = 900
Mr = 423.55Dx = 1.236 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 4481 reflections
a = 9.4942 (4) Åθ = 2.4–30.6°
b = 20.6765 (5) ŵ = 0.17 mm1
c = 12.0052 (4) ÅT = 293 K
β = 105.063 (2)°Block, pale yellow
V = 2275.73 (14) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS conversion
diffractometer
6931 independent reflections
Radiation source: Sealed Tube3002 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.000
Detector resolution: 10.0000 pixels mm-1θmax = 30.5°, θmin = 2.6°
dtprofit.ref scansh = 1313
Absorption correction: empirical (using intensity measurements) (using intensity measurements)
XABS2 (Parkin et al., 1995)
k = 029
Tmin = 0.967, Tmax = 0.967l = 017
6931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.094Hydrogen site location: difmap and geom
wR(F2) = 0.235H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0588P)2 + 1.0272P]
where P = (Fo2 + 2Fc2)/3
6931 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C24H28N2O3SV = 2275.73 (14) Å3
Mr = 423.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4942 (4) ŵ = 0.17 mm1
b = 20.6765 (5) ÅT = 293 K
c = 12.0052 (4) Å0.20 × 0.20 × 0.20 mm
β = 105.063 (2)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
6931 independent reflections
Absorption correction: empirical (using intensity measurements) (using intensity measurements)
XABS2 (Parkin et al., 1995)
3002 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.967Rint = 0.000
6931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0940 restraints
wR(F2) = 0.235H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
6931 reflectionsΔρmin = 0.35 e Å3
301 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.11370 (14)0.07379 (6)0.21004 (13)0.1429 (6)
O10.1607 (3)0.03247 (12)0.4220 (2)0.0880 (10)
O20.2399 (2)0.11034 (14)0.5737 (2)0.0862 (9)
O30.5610 (3)0.07766 (12)0.48919 (19)0.0738 (9)
N10.1428 (3)0.06961 (14)0.3499 (2)0.0709 (10)
N20.2874 (3)0.08385 (15)0.4045 (2)0.0713 (10)
C10.0926 (4)0.0586 (2)0.2264 (4)0.0989 (17)
C20.0673 (3)0.00255 (17)0.2971 (3)0.0772 (11)
C30.0903 (3)0.01066 (18)0.3637 (3)0.0698 (11)
C40.0490 (4)0.11999 (18)0.2824 (3)0.0791 (12)
C50.1203 (7)0.1502 (3)0.1956 (4)0.109 (2)
C6A0.1402 (11)0.1054 (5)0.1149 (8)0.109 (4)0.580 (11)
C70.0264 (9)0.2027 (3)0.1258 (6)0.188 (4)
C80.0013 (10)0.2558 (4)0.2017 (8)0.212 (5)
C90.0740 (7)0.2280 (3)0.2883 (7)0.170 (3)
C100.0158 (6)0.1737 (3)0.3578 (6)0.106 (2)
C110.3265 (3)0.09945 (16)0.5184 (3)0.0671 (11)
C120.4926 (3)0.10928 (16)0.5668 (3)0.0630 (10)
C130.5154 (3)0.18202 (17)0.5640 (3)0.0689 (11)
C140.5762 (5)0.2092 (2)0.4832 (3)0.0970 (17)
C150.5908 (6)0.2758 (3)0.4764 (4)0.123 (3)
C160.5463 (6)0.3152 (2)0.5502 (5)0.122 (2)
C170.4866 (5)0.2891 (2)0.6331 (5)0.115 (2)
C180.4700 (4)0.2227 (2)0.6395 (4)0.0906 (17)
C190.5443 (3)0.07960 (16)0.6865 (3)0.0636 (11)
C200.6706 (4)0.10250 (19)0.7626 (3)0.0812 (14)
C210.7222 (5)0.0740 (3)0.8703 (3)0.1008 (18)
C220.6495 (6)0.0232 (3)0.9013 (4)0.111 (2)
C230.5267 (5)0.0006 (2)0.8266 (4)0.1013 (17)
C240.4747 (4)0.02714 (19)0.7194 (3)0.0827 (14)
C6B0.0810 (13)0.1490 (6)0.4150 (10)0.092 (4)0.420 (11)
HO30.656 (5)0.065 (2)0.521 (4)0.117 (15)*
H1A0.194000.061900.186500.1480*
H1C0.035200.057600.171300.1480*
H20.127600.001100.352000.0920*
H1B0.064700.095300.276300.1480*
H6A10.199600.070400.153700.1640*0.580 (11)
H6A20.187500.125900.062700.1640*0.580 (11)
H6A30.047100.088900.072600.1640*0.580 (11)
H7A0.073900.219900.069700.2260*
H7B0.066600.184500.084200.2260*
H8A0.059300.289000.155800.2550*
HN20.353 (3)0.0683 (14)0.374 (3)0.060 (10)*
H9A0.169200.211500.247800.2030*
H9B0.088000.261900.340100.2030*
H10A0.115 (6)0.193 (2)0.400 (4)0.0500*0.580 (11)
H10B0.010 (8)0.156 (4)0.410 (6)0.0500*0.580 (11)
H140.608200.182700.432200.1160*
H150.631600.293400.420600.1470*
H160.555800.359800.545000.1460*
H170.457300.316100.684900.1380*
H180.428100.205300.694900.1090*
H200.720900.137000.741500.0970*
H210.806500.089600.921300.1210*
H220.683700.004600.973800.1320*
H230.478000.035600.848100.1210*
H240.391700.010300.668500.0990*
H8B0.093600.275200.241800.2550*
H5A0.229 (7)0.170 (3)0.247 (5)0.0500*0.420 (11)
H5B0.175 (9)0.122 (5)0.171 (9)0.0500*0.420 (11)
H6B10.103500.181600.464700.1380*0.420 (11)
H6B20.038000.112300.460200.1380*0.420 (11)
H6B30.168900.135900.359800.1380*0.420 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1011 (9)0.1045 (9)0.1652 (13)0.0240 (7)0.0691 (8)0.0456 (8)
O10.0723 (15)0.0910 (18)0.0904 (18)0.0132 (13)0.0026 (13)0.0235 (14)
O20.0574 (13)0.126 (2)0.0696 (15)0.0027 (14)0.0067 (12)0.0014 (14)
O30.0580 (13)0.0954 (18)0.0620 (14)0.0095 (12)0.0050 (11)0.0062 (12)
N10.0575 (15)0.0745 (18)0.0670 (17)0.0033 (13)0.0084 (12)0.0063 (14)
N20.0517 (15)0.095 (2)0.0589 (17)0.0003 (15)0.0007 (13)0.0060 (15)
C10.089 (3)0.100 (3)0.098 (3)0.013 (2)0.007 (2)0.015 (2)
C20.0580 (19)0.081 (2)0.084 (2)0.0039 (17)0.0028 (16)0.0012 (19)
C30.0591 (19)0.080 (2)0.063 (2)0.0074 (17)0.0028 (15)0.0009 (17)
C40.065 (2)0.078 (2)0.078 (2)0.0025 (18)0.0107 (17)0.0153 (19)
C50.132 (4)0.104 (4)0.079 (3)0.007 (3)0.005 (3)0.019 (3)
C6A0.106 (6)0.139 (8)0.082 (6)0.030 (5)0.023 (5)0.006 (5)
C70.239 (8)0.132 (5)0.135 (5)0.041 (5)0.056 (5)0.063 (4)
C80.227 (9)0.107 (5)0.225 (9)0.023 (5)0.081 (7)0.060 (6)
C90.136 (5)0.098 (4)0.218 (7)0.037 (4)0.056 (5)0.016 (4)
C100.085 (3)0.088 (3)0.129 (5)0.016 (3)0.002 (3)0.009 (3)
C110.0555 (18)0.075 (2)0.064 (2)0.0002 (15)0.0035 (15)0.0074 (16)
C120.0567 (17)0.075 (2)0.0529 (17)0.0009 (15)0.0063 (14)0.0008 (15)
C130.0609 (19)0.074 (2)0.065 (2)0.0010 (16)0.0040 (15)0.0002 (17)
C140.116 (3)0.093 (3)0.080 (3)0.022 (2)0.022 (2)0.001 (2)
C150.162 (5)0.101 (4)0.101 (4)0.033 (3)0.027 (3)0.009 (3)
C160.139 (4)0.079 (3)0.135 (5)0.014 (3)0.012 (4)0.004 (3)
C170.115 (4)0.089 (3)0.136 (4)0.004 (3)0.025 (3)0.023 (3)
C180.084 (3)0.084 (3)0.104 (3)0.003 (2)0.025 (2)0.007 (2)
C190.0625 (18)0.074 (2)0.0508 (17)0.0061 (16)0.0085 (14)0.0003 (15)
C200.075 (2)0.097 (3)0.060 (2)0.0005 (19)0.0035 (17)0.0072 (18)
C210.091 (3)0.132 (4)0.061 (2)0.016 (3)0.013 (2)0.008 (2)
C220.122 (4)0.136 (4)0.065 (3)0.036 (3)0.009 (3)0.022 (3)
C230.107 (3)0.107 (3)0.087 (3)0.014 (3)0.020 (3)0.029 (2)
C240.077 (2)0.089 (3)0.076 (2)0.007 (2)0.0089 (18)0.010 (2)
C6B0.070 (7)0.101 (8)0.107 (8)0.002 (6)0.025 (6)0.021 (6)
Geometric parameters (Å, º) top
S1—C21.794 (4)C21—C221.361 (8)
S1—C41.832 (4)C22—C231.365 (7)
O1—C31.220 (4)C23—C241.378 (6)
O2—C111.205 (4)C1—H1A0.9600
O3—C121.425 (4)C1—H1B0.9600
O3—HO30.92 (5)C1—H1C0.9600
N1—C31.343 (5)C2—H20.9800
N1—C41.470 (5)C5—H5A1.13 (7)
N1—N21.391 (4)C5—H5B0.88 (9)
N2—C111.359 (4)C6A—H6A10.9600
N2—HN20.86 (3)C6A—H6A20.9600
C1—C21.507 (6)C6A—H6A30.9600
C2—C31.511 (4)C6B—H6B10.9600
C4—C51.517 (7)C6B—H6B20.9600
C4—C101.517 (7)C6B—H6B30.9600
C5—C71.512 (9)C7—H7A0.9700
C5—C6A1.388 (11)C7—H7B0.9700
C6B—C101.380 (14)C8—H8A0.9700
C7—C81.485 (11)C8—H8B0.9700
C8—C91.519 (12)C9—H9B0.9700
C9—C101.521 (9)C9—H9A0.9700
C11—C121.546 (4)C10—H10B0.82 (7)
C12—C191.522 (5)C10—H10A1.03 (5)
C12—C131.521 (5)C14—H140.9300
C13—C181.385 (5)C15—H150.9300
C13—C141.372 (5)C16—H160.9300
C14—C151.389 (7)C17—H170.9300
C15—C161.350 (8)C18—H180.9300
C16—C171.377 (8)C20—H200.9300
C17—C181.386 (6)C21—H210.9300
C19—C241.380 (5)C22—H220.9300
C19—C201.388 (5)C23—H230.9300
C20—C211.389 (5)C24—H240.9300
C2—S1—C495.90 (17)S1—C2—H2109.00
C12—O3—HO3115 (3)C1—C2—H2109.00
N2—N1—C3119.1 (3)C3—C2—H2109.00
C3—N1—C4121.3 (3)C4—C5—H5A106 (3)
N2—N1—C4119.5 (3)C4—C5—H5B111 (7)
N1—N2—C11120.2 (3)C7—C5—H5A111 (3)
N1—N2—HN2117 (2)C7—C5—H5B127 (7)
C11—N2—HN2119 (2)H5A—C5—H5B84 (7)
C1—C2—C3112.5 (3)C5—C6A—H6A1109.00
S1—C2—C1112.5 (3)C5—C6A—H6A2109.00
S1—C2—C3106.1 (2)C5—C6A—H6A3109.00
O1—C3—C2122.8 (3)H6A1—C6A—H6A2110.00
O1—C3—N1124.6 (3)H6A1—C6A—H6A3109.00
N1—C3—C2112.6 (3)H6A2—C6A—H6A3110.00
S1—C4—N1102.0 (2)H6B2—C6B—H6B3109.00
S1—C4—C5111.2 (3)C10—C6B—H6B3109.00
C5—C4—C10107.9 (4)C10—C6B—H6B1109.00
S1—C4—C10112.6 (3)C10—C6B—H6B2109.00
N1—C4—C5110.9 (4)H6B1—C6B—H6B2110.00
N1—C4—C10112.3 (3)H6B1—C6B—H6B3109.00
C4—C5—C6A111.8 (6)C5—C7—H7B109.00
C4—C5—C7111.9 (5)C5—C7—H7A110.00
C6A—C5—C7105.1 (6)H7A—C7—H7B108.00
C5—C7—C8110.9 (6)C8—C7—H7A109.00
C7—C8—C9108.6 (6)C8—C7—H7B109.00
C8—C9—C10111.0 (6)C9—C8—H8B110.00
C6B—C10—C9101.3 (7)C7—C8—H8A110.00
C4—C10—C6B107.1 (7)C7—C8—H8B110.00
C4—C10—C9112.8 (5)C9—C8—H8A110.00
O2—C11—N2123.5 (3)H8A—C8—H8B108.00
O2—C11—C12123.0 (3)C8—C9—H9A109.00
N2—C11—C12113.2 (3)C8—C9—H9B109.00
C11—C12—C13105.0 (3)H9A—C9—H9B108.00
C11—C12—C19110.4 (3)C10—C9—H9B109.00
C13—C12—C19114.0 (3)C10—C9—H9A109.00
O3—C12—C19110.0 (3)C9—C10—H10A107 (2)
O3—C12—C11106.7 (3)C4—C10—H10B106 (6)
O3—C12—C13110.3 (3)C4—C10—H10A106 (3)
C12—C13—C14120.6 (3)C9—C10—H10B121 (6)
C14—C13—C18118.3 (3)H10A—C10—H10B102 (6)
C12—C13—C18121.1 (3)C13—C14—H14120.00
C13—C14—C15121.0 (4)C15—C14—H14119.00
C14—C15—C16120.5 (5)C16—C15—H15120.00
C15—C16—C17119.7 (4)C14—C15—H15120.00
C16—C17—C18120.2 (4)C15—C16—H16120.00
C13—C18—C17120.4 (4)C17—C16—H16120.00
C12—C19—C20119.7 (3)C16—C17—H17120.00
C12—C19—C24121.8 (3)C18—C17—H17120.00
C20—C19—C24118.4 (3)C17—C18—H18120.00
C19—C20—C21120.2 (4)C13—C18—H18120.00
C20—C21—C22120.1 (4)C19—C20—H20120.00
C21—C22—C23120.4 (4)C21—C20—H20120.00
C22—C23—C24120.1 (4)C20—C21—H21120.00
C19—C24—C23120.8 (4)C22—C21—H21120.00
C2—C1—H1A109.00C23—C22—H22120.00
C2—C1—H1B110.00C21—C22—H22120.00
C2—C1—H1C110.00C22—C23—H23120.00
H1A—C1—H1B109.00C24—C23—H23120.00
H1A—C1—H1C109.00C23—C24—H24120.00
H1B—C1—H1C109.00C19—C24—H24120.00
C4—S1—C2—C1135.6 (3)C8—C9—C10—C456.3 (7)
C4—S1—C2—C312.3 (3)O2—C11—C12—O3166.6 (3)
C2—S1—C4—N113.4 (2)O2—C11—C12—C1376.3 (4)
C2—S1—C4—C5131.6 (3)O2—C11—C12—C1947.0 (4)
C2—S1—C4—C10107.2 (4)N2—C11—C12—O319.8 (4)
C3—N1—N2—C1179.3 (4)N2—C11—C12—C1397.4 (3)
C4—N1—N2—C1198.2 (4)N2—C11—C12—C19139.3 (3)
N2—N1—C3—O10.3 (5)O3—C12—C13—C148.4 (4)
N2—N1—C3—C2178.9 (3)O3—C12—C13—C18174.3 (3)
C4—N1—C3—O1177.2 (3)C11—C12—C13—C14106.2 (4)
C4—N1—C3—C23.7 (4)C11—C12—C13—C1871.1 (4)
N2—N1—C4—S1170.4 (2)C19—C12—C13—C14132.8 (3)
N2—N1—C4—C552.0 (4)C19—C12—C13—C1849.9 (4)
N2—N1—C4—C1068.8 (4)O3—C12—C19—C2086.8 (4)
C3—N1—C4—S112.2 (4)O3—C12—C19—C2488.6 (4)
C3—N1—C4—C5130.6 (4)C11—C12—C19—C20155.6 (3)
C3—N1—C4—C10108.6 (4)C11—C12—C19—C2429.0 (4)
N1—N2—C11—O210.3 (5)C13—C12—C19—C2037.7 (4)
N1—N2—C11—C12176.1 (3)C13—C12—C19—C24146.9 (3)
S1—C2—C3—O1171.9 (3)C12—C13—C14—C15176.8 (4)
S1—C2—C3—N17.3 (3)C18—C13—C14—C150.6 (6)
C1—C2—C3—O148.6 (5)C12—C13—C18—C17177.6 (4)
C1—C2—C3—N1130.6 (3)C14—C13—C18—C170.2 (6)
S1—C4—C5—C6A49.6 (7)C13—C14—C15—C160.6 (8)
S1—C4—C5—C767.9 (5)C14—C15—C16—C170.3 (8)
N1—C4—C5—C6A63.1 (7)C15—C16—C17—C181.1 (8)
N1—C4—C5—C7179.5 (4)C16—C17—C18—C131.1 (7)
C10—C4—C5—C6A173.5 (6)C12—C19—C20—C21177.3 (4)
C10—C4—C5—C756.0 (6)C24—C19—C20—C211.8 (6)
S1—C4—C10—C968.8 (5)C12—C19—C24—C23177.4 (4)
N1—C4—C10—C9176.7 (4)C20—C19—C24—C232.0 (6)
C5—C4—C10—C954.2 (6)C19—C20—C21—C220.4 (7)
C4—C5—C7—C861.0 (8)C20—C21—C22—C230.8 (8)
C6A—C5—C7—C8177.6 (8)C21—C22—C23—C240.6 (8)
C5—C7—C8—C959.5 (9)C22—C23—C24—C190.8 (7)
C7—C8—C9—C1057.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HO3···O1i0.92 (5)1.83 (5)2.744 (4)175 (5)
N2—HN2···O30.86 (3)2.11 (3)2.535 (4)110 (3)
C6A—H6A1···N10.962.552.911 (10)102
C6A—H6A3···S10.962.542.996 (11)109
C7—H7B···S10.972.843.255 (7)107
C14—H14···O30.932.352.726 (5)103
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H28N2O3S
Mr423.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4942 (4), 20.6765 (5), 12.0052 (4)
β (°) 105.063 (2)
V3)2275.73 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS conversion
diffractometer
Absorption correctionEmpirical (using intensity measurements) (using intensity measurements)
XABS2 (Parkin et al., 1995)
Tmin, Tmax0.967, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
6931, 6931, 3002
Rint0.000
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.235, 1.05
No. of reflections6931
No. of parameters301
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.35

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HO3···O1i0.92 (5)1.83 (5)2.744 (4)175 (5)
N2—HN2···O30.86 (3)2.11 (3)2.535 (4)110 (3)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatüurk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAkkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). Acta Cryst. E63, o3379–o3380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGüzel, Ö., İlhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795–801.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds