organic compounds
4-Chloro-N-(3-methoxyphenyl)benzamide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com
The title benzamide derivative, C14H12ClNO2, crystallizes with two independent molecules in the Both are close to being planar, with dihedral angles between the two benzene rings of 11.92 (6) and 12.80 (7)°. In the N—H⋯O hydrogen bonds link molecules into chains along a. These interactions are augmented by C—H⋯O hydrogen bonds to form two-dimensional layers in the ac plane. Additional C—H⋯O interactions result in a three-dimensional network consisting of undulating rows along c. The crystal studied was an with a 0.59 (3):0.41 (3) domain ratio.
Related literature
For background on the applications of benzanilides, see: Zhichkin et al. (2007); Igawa et al. (1999). For reference structural data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808029899/hb2792sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029899/hb2792Isup2.hkl
4-Chorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 3-methoxyaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aqueous 1 M HCl and saturated aqueous NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (yield = 81%) as colourless needles: Analysis calculated. for C14H12ClNO2: C 64.25, H 4.62, N 5.35%; found: C 64.19, H 4.68, N 5.30%.
The crystal chosen was the smallest available without having to resort to potentially damaging cutting procedures.
The N-bound H atoms were located in a difference map and refined freely with isotropic displacememt parameters. The C-bound H atoms were geometrically placed (C—H = 0.95-0.98Å) and refined as riding with Uiso= 1.2Ueq(C) or 1.5Ueq(methyl C). The crystal studied was an
with a 0.59 (3):0.41 (3) domain ratio.Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).Fig. 1. The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. | |
Fig. 2. The two dimensional network in (I) formed by N—H···O and C—H···O interactions. | |
Fig. 3. Crystal packing of (I) viewed down the a axis. |
C14H12ClNO2 | F(000) = 1088 |
Mr = 261.70 | Dx = 1.393 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 8842 reflections |
a = 9.6952 (4) Å | θ = 2.3–32.7° |
b = 10.5671 (3) Å | µ = 0.30 mm−1 |
c = 24.3512 (8) Å | T = 91 K |
V = 2494.78 (15) Å3 | Rod, colourless |
Z = 8 | 0.80 × 0.27 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 8997 independent reflections |
Radiation source: fine-focus sealed tube | 8334 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 33.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −14→11 |
Tmin = 0.771, Tmax = 0.948 | k = −16→16 |
47170 measured reflections | l = −35→36 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3361P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
8997 reflections | Δρmax = 0.43 e Å−3 |
336 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 3581 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.59 (3) |
C14H12ClNO2 | V = 2494.78 (15) Å3 |
Mr = 261.70 | Z = 8 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.6952 (4) Å | µ = 0.30 mm−1 |
b = 10.5671 (3) Å | T = 91 K |
c = 24.3512 (8) Å | 0.80 × 0.27 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 8997 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 8334 reflections with I > 2σ(I) |
Tmin = 0.771, Tmax = 0.948 | Rint = 0.038 |
47170 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.087 | Δρmax = 0.43 e Å−3 |
S = 1.05 | Δρmin = −0.26 e Å−3 |
8997 reflections | Absolute structure: Flack (1983), 3581 Friedel pairs |
336 parameters | Absolute structure parameter: 0.59 (3) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.44661 (12) | −0.01256 (11) | 0.37778 (4) | 0.01480 (19) | |
O1A | 0.33061 (9) | −0.01825 (10) | 0.39873 (4) | 0.0241 (2) | |
C2A | 0.46264 (12) | 0.02718 (10) | 0.31915 (4) | 0.01340 (18) | |
C3A | 0.36632 (12) | 0.11223 (11) | 0.29781 (5) | 0.0164 (2) | |
H3A | 0.2946 | 0.1434 | 0.3207 | 0.020* | |
C4A | 0.37391 (13) | 0.15185 (11) | 0.24357 (5) | 0.0172 (2) | |
H4A | 0.3095 | 0.2113 | 0.2295 | 0.021* | |
C5A | 0.47765 (13) | 0.10288 (10) | 0.21016 (4) | 0.0166 (2) | |
Cl1A | 0.48931 (4) | 0.15338 (3) | 0.142463 (11) | 0.02479 (7) | |
C6A | 0.57279 (13) | 0.01592 (11) | 0.22997 (4) | 0.0175 (2) | |
H6A | 0.6418 | −0.0180 | 0.2065 | 0.021* | |
C7A | 0.56516 (12) | −0.02073 (10) | 0.28487 (4) | 0.01525 (19) | |
H7A | 0.6306 | −0.0791 | 0.2991 | 0.018* | |
N1A | 0.56370 (10) | −0.04026 (9) | 0.40506 (4) | 0.01410 (17) | |
H1NA | 0.6396 (18) | −0.0282 (16) | 0.3886 (7) | 0.021 (4)* | |
C8A | 0.57503 (12) | −0.08292 (10) | 0.46008 (4) | 0.01315 (18) | |
C9A | 0.47507 (12) | −0.05885 (10) | 0.49949 (4) | 0.01510 (19) | |
H9A | 0.3933 | −0.0145 | 0.4899 | 0.018* | |
C10A | 0.49561 (12) | −0.10044 (10) | 0.55337 (4) | 0.0160 (2) | |
O2A | 0.39068 (10) | −0.07027 (9) | 0.58869 (3) | 0.02047 (17) | |
C14A | 0.39789 (14) | −0.11940 (12) | 0.64324 (5) | 0.0224 (2) | |
H14A | 0.3922 | −0.2120 | 0.6421 | 0.034* | |
H14B | 0.3210 | −0.0859 | 0.6650 | 0.034* | |
H14C | 0.4854 | −0.0941 | 0.6601 | 0.034* | |
C11A | 0.61594 (13) | −0.16314 (11) | 0.56841 (5) | 0.0179 (2) | |
H11A | 0.6298 | −0.1903 | 0.6052 | 0.021* | |
C12A | 0.71576 (13) | −0.18529 (11) | 0.52836 (5) | 0.0185 (2) | |
H12A | 0.7989 | −0.2270 | 0.5383 | 0.022* | |
C13A | 0.69619 (12) | −0.14772 (11) | 0.47434 (5) | 0.0162 (2) | |
H13A | 0.7641 | −0.1656 | 0.4473 | 0.019* | |
C1B | −0.05241 (12) | −0.00261 (10) | 0.37999 (4) | 0.01368 (19) | |
O1B | −0.16985 (9) | −0.00419 (9) | 0.36016 (3) | 0.01997 (17) | |
C2B | −0.02802 (12) | 0.04716 (10) | 0.43684 (4) | 0.01360 (18) | |
C3B | 0.07492 (12) | −0.00094 (11) | 0.47086 (4) | 0.01501 (19) | |
H3B | 0.1339 | −0.0660 | 0.4577 | 0.018* | |
C4B | 0.09238 (13) | 0.04536 (11) | 0.52393 (4) | 0.0172 (2) | |
H4B | 0.1618 | 0.0118 | 0.5473 | 0.021* | |
C5B | 0.00613 (13) | 0.14154 (10) | 0.54198 (4) | 0.0171 (2) | |
Cl1B | 0.02837 (4) | 0.19996 (3) | 0.608166 (12) | 0.02653 (7) | |
C6B | −0.09805 (13) | 0.19097 (11) | 0.50899 (5) | 0.0193 (2) | |
H6B | −0.1558 | 0.2570 | 0.5221 | 0.023* | |
C7B | −0.11618 (13) | 0.14216 (11) | 0.45660 (5) | 0.0174 (2) | |
H7B | −0.1886 | 0.1732 | 0.4340 | 0.021* | |
N1B | 0.06041 (10) | −0.04339 (9) | 0.35250 (4) | 0.01450 (17) | |
H1NB | 0.1425 (18) | −0.0346 (16) | 0.3682 (7) | 0.021 (4)* | |
C8B | 0.06282 (12) | −0.09968 (10) | 0.29958 (4) | 0.01377 (19) | |
C9B | −0.04236 (12) | −0.08284 (11) | 0.26127 (4) | 0.0157 (2) | |
H9B | −0.1206 | −0.0327 | 0.2701 | 0.019* | |
C10B | −0.03149 (13) | −0.14050 (11) | 0.20975 (4) | 0.0163 (2) | |
O2B | −0.14035 (10) | −0.11702 (9) | 0.17528 (4) | 0.02185 (18) | |
C14B | −0.13097 (13) | −0.16277 (12) | 0.12016 (4) | 0.0205 (2) | |
H14D | −0.0436 | −0.1350 | 0.1039 | 0.031* | |
H14E | −0.2080 | −0.1292 | 0.0985 | 0.031* | |
H14F | −0.1349 | −0.2554 | 0.1202 | 0.031* | |
C11B | 0.08319 (13) | −0.21239 (11) | 0.19574 (5) | 0.0193 (2) | |
H11B | 0.0899 | −0.2509 | 0.1606 | 0.023* | |
C12B | 0.18814 (14) | −0.22688 (12) | 0.23434 (5) | 0.0204 (2) | |
H12B | 0.2675 | −0.2751 | 0.2251 | 0.024* | |
C13B | 0.17912 (13) | −0.17224 (11) | 0.28614 (5) | 0.0175 (2) | |
H13B | 0.2510 | −0.1839 | 0.3122 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0113 (5) | 0.0201 (5) | 0.0130 (4) | −0.0011 (4) | −0.0008 (4) | 0.0000 (3) |
O1A | 0.0102 (4) | 0.0468 (6) | 0.0152 (4) | −0.0008 (4) | 0.0008 (3) | 0.0043 (4) |
C2A | 0.0114 (5) | 0.0159 (4) | 0.0129 (4) | −0.0015 (4) | −0.0004 (4) | −0.0008 (3) |
C3A | 0.0152 (5) | 0.0199 (5) | 0.0142 (4) | 0.0028 (4) | −0.0003 (4) | −0.0018 (4) |
C4A | 0.0194 (5) | 0.0167 (4) | 0.0155 (4) | 0.0020 (4) | −0.0035 (4) | −0.0001 (4) |
C5A | 0.0193 (5) | 0.0188 (4) | 0.0116 (4) | −0.0043 (4) | −0.0018 (4) | 0.0007 (3) |
Cl1A | 0.03200 (17) | 0.02910 (14) | 0.01326 (10) | −0.00233 (12) | 0.00006 (11) | 0.00451 (9) |
C6A | 0.0160 (5) | 0.0236 (5) | 0.0129 (4) | 0.0002 (4) | 0.0015 (4) | −0.0023 (4) |
C7A | 0.0126 (5) | 0.0188 (4) | 0.0143 (4) | 0.0016 (4) | −0.0010 (4) | −0.0014 (4) |
N1A | 0.0097 (4) | 0.0202 (4) | 0.0124 (4) | −0.0002 (3) | 0.0005 (3) | 0.0010 (3) |
C8A | 0.0125 (5) | 0.0151 (4) | 0.0118 (4) | −0.0022 (4) | −0.0016 (4) | 0.0005 (3) |
C9A | 0.0130 (5) | 0.0179 (4) | 0.0144 (4) | 0.0006 (4) | −0.0009 (4) | 0.0008 (3) |
C10A | 0.0164 (5) | 0.0173 (4) | 0.0143 (4) | −0.0004 (4) | 0.0004 (4) | 0.0005 (3) |
O2A | 0.0190 (4) | 0.0299 (4) | 0.0125 (3) | 0.0046 (4) | 0.0033 (3) | 0.0028 (3) |
C14A | 0.0258 (6) | 0.0283 (6) | 0.0129 (4) | −0.0009 (5) | 0.0033 (5) | 0.0034 (4) |
C11A | 0.0192 (5) | 0.0199 (5) | 0.0145 (4) | 0.0013 (4) | −0.0012 (4) | 0.0036 (4) |
C12A | 0.0170 (5) | 0.0191 (5) | 0.0194 (5) | 0.0036 (4) | −0.0018 (4) | 0.0036 (4) |
C13A | 0.0132 (5) | 0.0182 (5) | 0.0174 (5) | 0.0012 (4) | 0.0012 (4) | 0.0019 (4) |
C1B | 0.0103 (5) | 0.0179 (4) | 0.0128 (4) | 0.0003 (4) | 0.0025 (3) | 0.0020 (3) |
O1B | 0.0096 (4) | 0.0351 (5) | 0.0152 (3) | 0.0004 (3) | 0.0008 (3) | −0.0002 (3) |
C2B | 0.0115 (5) | 0.0172 (4) | 0.0121 (4) | −0.0004 (4) | 0.0022 (4) | 0.0015 (3) |
C3B | 0.0129 (5) | 0.0187 (4) | 0.0135 (4) | 0.0023 (4) | 0.0020 (4) | −0.0005 (4) |
C4B | 0.0157 (5) | 0.0220 (5) | 0.0138 (4) | 0.0014 (4) | 0.0010 (4) | −0.0009 (4) |
C5B | 0.0197 (6) | 0.0184 (4) | 0.0133 (4) | −0.0021 (4) | 0.0040 (4) | −0.0032 (3) |
Cl1B | 0.03451 (17) | 0.02830 (14) | 0.01679 (11) | −0.00085 (13) | 0.00243 (12) | −0.00894 (10) |
C6B | 0.0214 (6) | 0.0177 (4) | 0.0188 (5) | 0.0048 (4) | 0.0065 (4) | −0.0002 (4) |
C7B | 0.0160 (5) | 0.0206 (5) | 0.0157 (5) | 0.0037 (4) | 0.0030 (4) | 0.0026 (4) |
N1B | 0.0094 (4) | 0.0220 (4) | 0.0121 (4) | 0.0009 (3) | −0.0001 (3) | −0.0009 (3) |
C8B | 0.0129 (5) | 0.0172 (4) | 0.0113 (4) | −0.0006 (4) | 0.0017 (4) | 0.0005 (3) |
C9B | 0.0134 (5) | 0.0201 (5) | 0.0137 (4) | 0.0022 (4) | 0.0008 (4) | −0.0011 (4) |
C10B | 0.0158 (5) | 0.0199 (5) | 0.0133 (4) | 0.0009 (4) | −0.0003 (4) | −0.0008 (3) |
O2B | 0.0181 (4) | 0.0333 (5) | 0.0142 (3) | 0.0051 (4) | −0.0031 (3) | −0.0068 (3) |
C14B | 0.0219 (6) | 0.0268 (5) | 0.0127 (4) | −0.0008 (5) | 0.0004 (4) | −0.0045 (4) |
C11B | 0.0203 (6) | 0.0210 (5) | 0.0165 (5) | 0.0044 (4) | 0.0011 (4) | −0.0033 (4) |
C12B | 0.0182 (6) | 0.0234 (5) | 0.0195 (5) | 0.0075 (5) | 0.0008 (4) | −0.0022 (4) |
C13B | 0.0147 (5) | 0.0215 (5) | 0.0164 (5) | 0.0044 (4) | 0.0003 (4) | −0.0004 (4) |
C1A—O1A | 1.2364 (14) | C1B—O1B | 1.2369 (14) |
C1A—N1A | 1.3475 (14) | C1B—N1B | 1.3529 (14) |
C1A—C2A | 1.4964 (14) | C1B—C2B | 1.4997 (14) |
C2A—C7A | 1.3932 (15) | C2B—C3B | 1.3931 (15) |
C2A—C3A | 1.3963 (15) | C2B—C7B | 1.4035 (15) |
C3A—C4A | 1.3875 (15) | C3B—C4B | 1.3920 (15) |
C3A—H3A | 0.9500 | C3B—H3B | 0.9500 |
C4A—C5A | 1.3933 (17) | C4B—C5B | 1.3876 (16) |
C4A—H4A | 0.9500 | C4B—H4B | 0.9500 |
C5A—C6A | 1.3884 (17) | C5B—C6B | 1.3921 (17) |
C5A—Cl1A | 1.7364 (10) | C5B—Cl1B | 1.7394 (11) |
C6A—C7A | 1.3939 (15) | C6B—C7B | 1.3872 (16) |
C6A—H6A | 0.9500 | C6B—H6B | 0.9500 |
C7A—H7A | 0.9500 | C7B—H7B | 0.9500 |
N1A—C8A | 1.4178 (13) | N1B—C8B | 1.4194 (13) |
N1A—H1NA | 0.847 (18) | N1B—H1NB | 0.887 (18) |
C8A—C9A | 1.3874 (15) | C8B—C9B | 1.3936 (16) |
C8A—C13A | 1.4033 (16) | C8B—C13B | 1.4023 (16) |
C9A—C10A | 1.3980 (14) | C9B—C10B | 1.3987 (14) |
C9A—H9A | 0.9500 | C9B—H9B | 0.9500 |
C10A—O2A | 1.3697 (14) | C10B—O2B | 1.3711 (14) |
C10A—C11A | 1.3908 (17) | C10B—C11B | 1.3891 (17) |
O2A—C14A | 1.4281 (14) | O2B—C14B | 1.4295 (13) |
C14A—H14A | 0.9800 | C14B—H14D | 0.9800 |
C14A—H14B | 0.9800 | C14B—H14E | 0.9800 |
C14A—H14C | 0.9800 | C14B—H14F | 0.9800 |
C11A—C12A | 1.3938 (17) | C11B—C12B | 1.3936 (17) |
C11A—H11A | 0.9500 | C11B—H11B | 0.9500 |
C12A—C13A | 1.3869 (16) | C12B—C13B | 1.3900 (16) |
C12A—H12A | 0.9500 | C12B—H12B | 0.9500 |
C13A—H13A | 0.9500 | C13B—H13B | 0.9500 |
O1A—C1A—N1A | 123.52 (10) | O1B—C1B—N1B | 123.15 (10) |
O1A—C1A—C2A | 120.13 (10) | O1B—C1B—C2B | 120.68 (10) |
N1A—C1A—C2A | 116.35 (10) | N1B—C1B—C2B | 116.17 (10) |
C7A—C2A—C3A | 119.22 (10) | C3B—C2B—C7B | 119.56 (10) |
C7A—C2A—C1A | 122.94 (10) | C3B—C2B—C1B | 122.27 (10) |
C3A—C2A—C1A | 117.79 (10) | C7B—C2B—C1B | 118.12 (10) |
C4A—C3A—C2A | 120.86 (10) | C4B—C3B—C2B | 120.73 (10) |
C4A—C3A—H3A | 119.6 | C4B—C3B—H3B | 119.6 |
C2A—C3A—H3A | 119.6 | C2B—C3B—H3B | 119.6 |
C3A—C4A—C5A | 118.82 (11) | C5B—C4B—C3B | 118.56 (11) |
C3A—C4A—H4A | 120.6 | C5B—C4B—H4B | 120.7 |
C5A—C4A—H4A | 120.6 | C3B—C4B—H4B | 120.7 |
C6A—C5A—C4A | 121.50 (10) | C4B—C5B—C6B | 121.96 (10) |
C6A—C5A—Cl1A | 119.34 (9) | C4B—C5B—Cl1B | 118.60 (9) |
C4A—C5A—Cl1A | 119.16 (9) | C6B—C5B—Cl1B | 119.43 (9) |
C5A—C6A—C7A | 118.81 (10) | C7B—C6B—C5B | 118.88 (10) |
C5A—C6A—H6A | 120.6 | C7B—C6B—H6B | 120.6 |
C7A—C6A—H6A | 120.6 | C5B—C6B—H6B | 120.6 |
C2A—C7A—C6A | 120.76 (10) | C6B—C7B—C2B | 120.27 (11) |
C2A—C7A—H7A | 119.6 | C6B—C7B—H7B | 119.9 |
C6A—C7A—H7A | 119.6 | C2B—C7B—H7B | 119.9 |
C1A—N1A—C8A | 126.89 (10) | C1B—N1B—C8B | 126.59 (10) |
C1A—N1A—H1NA | 117.8 (11) | C1B—N1B—H1NB | 118.6 (11) |
C8A—N1A—H1NA | 115.3 (11) | C8B—N1B—H1NB | 114.8 (11) |
C9A—C8A—C13A | 120.19 (10) | C9B—C8B—C13B | 120.13 (10) |
C9A—C8A—N1A | 122.76 (10) | C9B—C8B—N1B | 122.83 (10) |
C13A—C8A—N1A | 117.00 (10) | C13B—C8B—N1B | 117.02 (10) |
C8A—C9A—C10A | 119.48 (10) | C8B—C9B—C10B | 119.33 (10) |
C8A—C9A—H9A | 120.3 | C8B—C9B—H9B | 120.3 |
C10A—C9A—H9A | 120.3 | C10B—C9B—H9B | 120.3 |
O2A—C10A—C11A | 124.65 (10) | O2B—C10B—C11B | 124.39 (10) |
O2A—C10A—C9A | 114.22 (10) | O2B—C10B—C9B | 114.35 (10) |
C11A—C10A—C9A | 121.10 (10) | C11B—C10B—C9B | 121.25 (11) |
C10A—O2A—C14A | 117.59 (9) | C10B—O2B—C14B | 117.69 (9) |
O2A—C14A—H14A | 109.5 | O2B—C14B—H14D | 109.5 |
O2A—C14A—H14B | 109.5 | O2B—C14B—H14E | 109.5 |
H14A—C14A—H14B | 109.5 | H14D—C14B—H14E | 109.5 |
O2A—C14A—H14C | 109.5 | O2B—C14B—H14F | 109.5 |
H14A—C14A—H14C | 109.5 | H14D—C14B—H14F | 109.5 |
H14B—C14A—H14C | 109.5 | H14E—C14B—H14F | 109.5 |
C10A—C11A—C12A | 118.56 (10) | C10B—C11B—C12B | 118.61 (10) |
C10A—C11A—H11A | 120.7 | C10B—C11B—H11B | 120.7 |
C12A—C11A—H11A | 120.7 | C12B—C11B—H11B | 120.7 |
C13A—C12A—C11A | 121.37 (11) | C13B—C12B—C11B | 121.37 (11) |
C13A—C12A—H12A | 119.3 | C13B—C12B—H12B | 119.3 |
C11A—C12A—H12A | 119.3 | C11B—C12B—H12B | 119.3 |
C12A—C13A—C8A | 119.27 (10) | C12B—C13B—C8B | 119.31 (11) |
C12A—C13A—H13A | 120.4 | C12B—C13B—H13B | 120.3 |
C8A—C13A—H13A | 120.4 | C8B—C13B—H13B | 120.3 |
O1A—C1A—C2A—C7A | −146.54 (12) | O1B—C1B—C2B—C3B | 147.65 (12) |
N1A—C1A—C2A—C7A | 33.66 (15) | N1B—C1B—C2B—C3B | −32.96 (15) |
O1A—C1A—C2A—C3A | 30.77 (16) | O1B—C1B—C2B—C7B | −29.90 (15) |
N1A—C1A—C2A—C3A | −149.03 (11) | N1B—C1B—C2B—C7B | 149.49 (10) |
C7A—C2A—C3A—C4A | −1.76 (17) | C7B—C2B—C3B—C4B | −0.84 (17) |
C1A—C2A—C3A—C4A | −179.17 (10) | C1B—C2B—C3B—C4B | −178.36 (10) |
C2A—C3A—C4A—C5A | 1.56 (17) | C2B—C3B—C4B—C5B | −0.79 (17) |
C3A—C4A—C5A—C6A | −0.02 (17) | C3B—C4B—C5B—C6B | 1.13 (17) |
C3A—C4A—C5A—Cl1A | −179.20 (9) | C3B—C4B—C5B—Cl1B | −179.70 (9) |
C4A—C5A—C6A—C7A | −1.29 (17) | C4B—C5B—C6B—C7B | 0.20 (18) |
Cl1A—C5A—C6A—C7A | 177.90 (9) | Cl1B—C5B—C6B—C7B | −178.97 (9) |
C3A—C2A—C7A—C6A | 0.41 (16) | C5B—C6B—C7B—C2B | −1.86 (17) |
C1A—C2A—C7A—C6A | 177.69 (10) | C3B—C2B—C7B—C6B | 2.19 (16) |
C5A—C6A—C7A—C2A | 1.08 (17) | C1B—C2B—C7B—C6B | 179.81 (10) |
O1A—C1A—N1A—C8A | 1.95 (19) | O1B—C1B—N1B—C8B | −3.85 (18) |
C2A—C1A—N1A—C8A | −178.25 (10) | C2B—C1B—N1B—C8B | 176.77 (10) |
C1A—N1A—C8A—C9A | −24.49 (17) | C1B—N1B—C8B—C9B | 22.32 (17) |
C1A—N1A—C8A—C13A | 157.99 (11) | C1B—N1B—C8B—C13B | −159.27 (11) |
C13A—C8A—C9A—C10A | −0.46 (16) | C13B—C8B—C9B—C10B | 0.94 (17) |
N1A—C8A—C9A—C10A | −177.90 (10) | N1B—C8B—C9B—C10B | 179.31 (10) |
C8A—C9A—C10A—O2A | 179.44 (10) | C8B—C9B—C10B—O2B | −179.68 (10) |
C8A—C9A—C10A—C11A | 1.42 (17) | C8B—C9B—C10B—C11B | −1.12 (17) |
C11A—C10A—O2A—C14A | −7.68 (17) | C11B—C10B—O2B—C14B | −4.22 (17) |
C9A—C10A—O2A—C14A | 174.37 (10) | C9B—C10B—O2B—C14B | 174.29 (10) |
O2A—C10A—C11A—C12A | −178.57 (11) | O2B—C10B—C11B—C12B | 178.73 (12) |
C9A—C10A—C11A—C12A | −0.76 (17) | C9B—C10B—C11B—C12B | 0.32 (18) |
C10A—C11A—C12A—C13A | −0.87 (18) | C10B—C11B—C12B—C13B | 0.67 (19) |
C11A—C12A—C13A—C8A | 1.81 (18) | C11B—C12B—C13B—C8B | −0.83 (18) |
C9A—C8A—C13A—C12A | −1.13 (17) | C9B—C8B—C13B—C12B | 0.01 (17) |
N1A—C8A—C13A—C12A | 176.46 (10) | N1B—C8B—C13B—C12B | −178.44 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H1NB···O1A | 0.887 (18) | 1.977 (18) | 2.8638 (13) | 176.4 (15) |
C3B—H3B···O1A | 0.95 | 2.44 | 3.0436 (14) | 121 |
C4B—H4B···O2A | 0.95 | 2.59 | 3.5134 (15) | 165 |
N1A—H1NA···O1Bi | 0.847 (18) | 1.989 (18) | 2.8309 (13) | 172.0 (16) |
C6A—H6A···O2Bi | 0.95 | 2.48 | 3.3885 (15) | 161 |
C7A—H7A···O1Bi | 0.95 | 2.57 | 3.1611 (14) | 121 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H12ClNO2 |
Mr | 261.70 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 91 |
a, b, c (Å) | 9.6952 (4), 10.5671 (3), 24.3512 (8) |
V (Å3) | 2494.78 (15) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.80 × 0.27 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.771, 0.948 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 47170, 8997, 8334 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.776 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.087, 1.05 |
No. of reflections | 8997 |
No. of parameters | 336 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.43, −0.26 |
Absolute structure | Flack (1983), 3581 Friedel pairs |
Absolute structure parameter | 0.59 (3) |
Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H1NB···O1A | 0.887 (18) | 1.977 (18) | 2.8638 (13) | 176.4 (15) |
C3B—H3B···O1A | 0.95 | 2.44 | 3.0436 (14) | 121 |
C4B—H4B···O2A | 0.95 | 2.59 | 3.5134 (15) | 165 |
N1A—H1NA···O1Bi | 0.847 (18) | 1.989 (18) | 2.8309 (13) | 172.0 (16) |
C6A—H6A···O2Bi | 0.95 | 2.48 | 3.3885 (15) | 161 |
C7A—H7A···O1Bi | 0.95 | 2.57 | 3.1611 (14) | 121 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
NA is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme. We also thank the University of Otago for purchase of the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2006). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Japanese Patent Kokai Tokkyo Koho, JP 11171848. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzanilides have important uses in organic synthesis (e.g. Zhichkin et al., 2007) and show biological activity (e.g. Igawa et al., 1999).
The title compound, (I), crystallized as an inversion twin in the crystal studied with two independent molecules, A and B, in the asymmetric unit. Bond distances and angles within the molecules are normal (Allen et al., 1987). Each molecule deviates slightly from planarity with dihedral angles between the two benzene rings of 11.92 (6)° for A and 12.80 (7)° for B.
In the crystal structure, N—H···O hydrogen bonds link molecules into chains along a (Table 1). These interactions are augmented by C—H···O hydrogen bonds to form two dimensional layers in the ac plane, Fig 2. Additional C—H···O interactions result in a three dimensional network consisting of undulating rows along c, Fig 3.