organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1955-o1956

trans-rac-[1-Oxo-2-phenethyl-3-(2-thien­yl)-1,2,3,4-tetra­hydro­isoquinolin-4-yl]methyl 4-methyl­benzene­sulfonate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bFaculty of Chemistry, University of Sofia, 1, James Bourchier blvd., 1164 Sofia, Bulgaria, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 9 September 2008; accepted 12 September 2008; online 17 September 2008)

The title compound, C29H27NO4S2, was synthesized by reaction of trans-rac-4-(hydroxy­meth­yl)-2-phenethyl-3-(thio­phen-2-yl)-3,4-dihydro­isoquinolin-1(2H)-one and 4-methyl­benzene-1-sulfonyl chloride in the presence of Et3N in CH2Cl2. The relative orientations of the benzene ring (A) of the 3,4-dihydro­isoquinolinone ring system, the thio­phene ring (B), the benzene ring (C) of the methyl­benzene group and the phenyl ring (D) result in the following dihedral angles: A/B = 80.91 (16), A/C = 22.79 (18), A/D = 9.9 (2), B/C = 80.73 (19), B/D = 88.9 (2) and C/D = 29.9 (2)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For chemical background, see: Kandinska et al. (2006[Kandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403-414.]); Rothweiler et al. (2008[Rothweiler, U., Czarna, A., Krajewski, M., Ciombor, J., Kalinski, C., Khazak, V., Ross, G., Skobeleva, N., Weber, L. & Holak, T. A. (2008). Chem. Med. Chem. 3, 1118-1128.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H27NO4S2

  • Mr = 517.66

  • Triclinic, [P \overline 1]

  • a = 7.2529 (3) Å

  • b = 8.6727 (4) Å

  • c = 20.9899 (10) Å

  • α = 86.021 (4)°

  • β = 87.396 (4)°

  • γ = 78.330 (4)°

  • V = 1289.24 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.58 × 0.52 × 0.48 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.872, Tmax = 0.892

  • 24485 measured reflections

  • 5417 independent reflections

  • 4537 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.306

  • S = 1.36

  • 5417 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 2.04 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O4i 0.98 2.34 3.285 (3) 161
C12—H12⋯Cg1ii 0.93 2.65 3.567 (4) 168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z. Cg1 is the centroid of the thiophene ring (S2/C18–C21).

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), was synthesized as part of a research project (Kandinska et al., 2006) seeking precursors for the production of new tetrahydroquinolone derivatives with biological activity (Rothweiler et al., 2008).

In the molecule of (I) (Fig.1), the benzene ring A (C10—C15) of 3,4-dihydroisoquinolinone ring system is essentially planar, with an r.m.s. deviation of 0.005 (3) Å for C11 and its other six-membered part is not planar [its Puckering parameters (Cremer & Pople, 1975) are QT = 0.444 (3) Å, θ = 118.4 (4) ° and ϕ = 93.4 (4) °]. The thiophene ring B (S2—C18—C21) is almost planar, with an r.m.s. deviation for fitted atoms of 0.004 Å. The rings C (C1—C6) and D (C24—C29) are almost planar, with an r.m.s. deviation for fitted atoms of 0.012 Å and 0.021 Å, respectively. The dihedral angles between the planes of these rings are A/B = 80.91 (16), A/C = 22.79 (18), A/D = 9.9 (2), B/C = 80.73 (19), B/D = 88.9 (2) and C/D = 29.9 (2)°. An interesting feature of the crystal structure is the long C18—C19 bond of 1.594 (3) Å.

The crystal structure of (I) is stabilized by weak intra- and intermolecular C—H···O hydrogen bonds and C—H···π interactions (Table 1 and Fig. 2).

Related literature top

For chemical background, see: Kandinska et al. (2006); Rothweiler et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Compound(I) was synthesized by reaction between trans-rac-4-(hydroxymethyl)-2-phenethyl-3-(thiophen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (5.91 g, 0.0163 mol) and 4-methylbenzene-1-sulfonyl chloride (6.22 g, 0.033 mol) in the presence of Et3N (6.8 ml, 0.049 mol) in CH2Cl2. After working up the reaction mixture, compound (I) crystallized as colourless prisms from hexane–ethyl acetate (9:1 v/v) (yield 7.5 g, 89%; m.p. 385–386 K). Elemental analysis, calculated for C29H27NO4S2: C 67.29, H 5.26°; found: C 66.90, H 5.45°. IR (KBr) 3000 cm-1 (C—H), 1647 cm-1 (C=O), 1603 cm-1 (ArH), 1467 cm-1 (ArH), 1358 cm-1 (S=O), 1172 cm-1 (S=O). 1H NMR (250 MHz, CDCl3) δ (p.p.m.) = 2.32 (s, 3H, Ph—CH3), 2.69 (t, 2H, J = 8.3 Hz, Ph—CH2), 3.05–3.17 (m, 1H, N—CH2a), 3.45–3.54 (ddd, 1H, J = 1.3, 5.1 and 10 Hz, -OCH2—CH), 3.69 (t, 1H, J = 10.3 Hz, -SO3—CH2a), 4.04–4.23 (m, 2H, -SO3—CH2b & N—CH2b), 5.10 (d, 1H, J = 0.8 Hz, Th—CH), 6.81 (dd, 1H, J = 3.5 and 4.9 Hz, Th-H), 6.76–6.81 (m, 1H, Ph-H), 7.06 (dd, 1H, J = 1.4 and 4.9 Hz, Th-H), 7.10–7.16 (m, 1H, Ph-H), 7.17–7.23 (m, 3H, H-Ph), 7.24–7.28 (m, 2H, Th-H, Ph-H), 7.28–7.33 (m, 2H, Ph-H), 7.40–7.48 (m, 2H, Ph-H), 7.78 (d, 2H, J = 8.3, Ph-H), 8.08–8.15 (m, 1H, Ph-H). 13C NMR (63 MHz, CDCl3) δ = 162.8, 145.4, 142.7, 138.4,133.4, 132.6, 132.4, 130.1, 129.0, 128.8, 128.7, 128.5, 128.4, 127.8, 126.5,126.4, 125.6, 125.1, 70.0, 56.8, 48.5, 45.8, 34.1, 21.5.

Refinement top

The H atoms were positioned geometrically, with C—H = 0.93-0.97 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The maximum diference peak and deepest difference hole are situated 0.13 Å from C19 and 0.36 Å from S2, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 20% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. View of the packing and C—H···O4(x + 1, y, z) hydrogen bonding interactions of (I).
trans-rac-[1-Oxo-2-phenethyl-3-(2-thienyl)-1,2,3,4-tetrahydroisoquinolin-4-yl]methyl 4-methylbenzenesulfonate top
Crystal data top
C29H27NO4S2Z = 2
Mr = 517.66F(000) = 544
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2529 (3) ÅCell parameters from 39940 reflections
b = 8.6727 (4) Åθ = 2.0–27.2°
c = 20.9899 (10) ŵ = 0.24 mm1
α = 86.021 (4)°T = 293 K
β = 87.396 (4)°Prism, colourless
γ = 78.330 (4)°0.58 × 0.52 × 0.48 mm
V = 1289.24 (10) Å3
Data collection top
STOE IPDS 2
diffractometer
5417 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4537 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.026
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 2.0°
ω scansh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.872, Tmax = 0.892l = 2626
24485 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.307H-atom parameters constrained
S = 1.36 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
5417 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 2.04 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
C29H27NO4S2γ = 78.330 (4)°
Mr = 517.66V = 1289.24 (10) Å3
Triclinic, P1Z = 2
a = 7.2529 (3) ÅMo Kα radiation
b = 8.6727 (4) ŵ = 0.24 mm1
c = 20.9899 (10) ÅT = 293 K
α = 86.021 (4)°0.58 × 0.52 × 0.48 mm
β = 87.396 (4)°
Data collection top
STOE IPDS 2
diffractometer
5417 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4537 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.892Rint = 0.026
24485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0910 restraints
wR(F2) = 0.307H-atom parameters constrained
S = 1.36Δρmax = 2.04 e Å3
5417 reflectionsΔρmin = 1.13 e Å3
328 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03368 (13)0.63784 (11)0.12882 (4)0.0578 (3)
S20.29088 (17)0.44287 (14)0.45285 (5)0.0773 (4)
O10.0694 (5)0.7915 (3)0.11138 (12)0.0735 (10)
O20.2311 (4)0.6020 (4)0.11655 (14)0.0790 (10)
O30.0077 (4)0.6048 (3)0.20349 (10)0.0617 (8)
O40.6871 (3)0.6854 (3)0.33989 (14)0.0648 (9)
N10.3988 (3)0.5354 (3)0.31787 (12)0.0412 (7)
C10.0691 (5)0.4960 (4)0.09658 (15)0.0562 (10)
C20.0407 (6)0.3512 (5)0.0825 (2)0.0755 (16)
C30.0429 (8)0.2421 (6)0.0565 (3)0.0875 (17)
C40.2337 (7)0.2725 (5)0.04587 (19)0.0735 (13)
C50.3386 (6)0.4142 (6)0.0618 (2)0.0726 (14)
C60.2604 (5)0.5268 (5)0.08621 (18)0.0635 (11)
C70.3220 (11)0.1501 (8)0.0164 (3)0.103 (2)
C80.1329 (4)0.7120 (3)0.23876 (13)0.0446 (8)
C90.1186 (3)0.6570 (3)0.30901 (12)0.0351 (7)
C100.2305 (3)0.7881 (3)0.34681 (12)0.0359 (7)
C110.1458 (4)0.9049 (3)0.36804 (15)0.0451 (8)
C120.2536 (6)1.0252 (4)0.40202 (17)0.0569 (10)
C130.4427 (5)1.0301 (4)0.41386 (17)0.0585 (10)
C140.5271 (4)0.9165 (4)0.39273 (17)0.0532 (9)
C150.4213 (4)0.7938 (3)0.35887 (13)0.0397 (7)
C160.5138 (4)0.6687 (4)0.33822 (14)0.0430 (8)
C170.1943 (3)0.5055 (3)0.32432 (12)0.0360 (7)
C180.1405 (3)0.4301 (3)0.38941 (13)0.0376 (7)
C190.0641 (3)0.3302 (3)0.40474 (9)0.0283 (6)
C200.0312 (6)0.2882 (5)0.47633 (19)0.0633 (11)
C210.1398 (6)0.3405 (4)0.50120 (17)0.0648 (13)
C220.4795 (4)0.3999 (4)0.30376 (15)0.0495 (9)
C230.4857 (6)0.3814 (5)0.23322 (17)0.0619 (11)
C240.5652 (5)0.2386 (4)0.21943 (15)0.0513 (9)
C250.4571 (6)0.1171 (5)0.1868 (2)0.0683 (12)
C260.5350 (8)0.0092 (5)0.1723 (3)0.0870 (18)
C270.7133 (8)0.0202 (5)0.1926 (3)0.090 (2)
C280.8215 (7)0.1004 (7)0.2275 (3)0.092 (2)
C290.7476 (6)0.2293 (5)0.2385 (2)0.0688 (14)
H20.168800.328300.090500.0910*
H30.030600.145900.045900.1050*
H50.467700.434900.055700.0870*
H60.334900.623400.095800.0760*
H7A0.359300.187200.026200.1540*
H7B0.430500.133500.041800.1540*
H7C0.231900.052600.015000.1540*
H8A0.257700.711200.224200.0540*
H8B0.110400.818600.232400.0540*
H90.013700.638400.320800.0420*
H110.018200.902400.359600.0540*
H120.197701.102800.416800.0680*
H130.513901.111300.436400.0700*
H140.655100.920900.400900.0640*
H170.138000.430300.292700.0430*
H190.171100.304900.378400.0340*
H200.126800.228900.501000.0760*
H210.170700.319300.544000.0780*
H22A0.606300.412900.322200.0590*
H22B0.405100.304600.323700.0590*
H23A0.359400.370800.214500.0740*
H23B0.562900.475500.213400.0740*
H250.332800.119900.174700.0820*
H260.464300.087900.148300.1040*
H270.762800.106700.183400.1070*
H280.941800.093000.243000.1100*
H290.822000.312300.259200.0830*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0696 (6)0.0664 (6)0.0362 (4)0.0129 (4)0.0092 (3)0.0030 (3)
S20.0886 (8)0.0798 (7)0.0602 (6)0.0132 (5)0.0112 (5)0.0016 (5)
O10.109 (2)0.0652 (16)0.0445 (13)0.0169 (14)0.0046 (13)0.0039 (11)
O20.0700 (16)0.110 (2)0.0585 (16)0.0238 (15)0.0145 (13)0.0087 (15)
O30.0799 (16)0.0613 (13)0.0357 (11)0.0033 (11)0.0104 (10)0.0042 (9)
O40.0301 (10)0.0819 (17)0.0867 (18)0.0192 (10)0.0030 (10)0.0149 (14)
N10.0336 (10)0.0471 (12)0.0478 (13)0.0179 (9)0.0014 (9)0.0082 (10)
C10.0664 (19)0.0632 (18)0.0348 (13)0.0045 (15)0.0080 (13)0.0060 (12)
C20.070 (2)0.077 (3)0.074 (3)0.0044 (19)0.0009 (19)0.023 (2)
C30.094 (3)0.076 (3)0.086 (3)0.007 (2)0.009 (2)0.027 (2)
C40.100 (3)0.078 (2)0.0468 (18)0.028 (2)0.0008 (18)0.0057 (17)
C50.061 (2)0.098 (3)0.057 (2)0.0111 (19)0.0052 (16)0.0051 (19)
C60.065 (2)0.067 (2)0.0523 (18)0.0027 (16)0.0040 (15)0.0067 (15)
C70.141 (5)0.107 (4)0.074 (3)0.051 (4)0.013 (3)0.017 (3)
C80.0441 (13)0.0495 (14)0.0388 (14)0.0091 (11)0.0072 (11)0.0015 (11)
C90.0308 (10)0.0401 (12)0.0361 (12)0.0118 (9)0.0023 (9)0.0035 (9)
C100.0378 (12)0.0361 (12)0.0359 (12)0.0130 (9)0.0006 (9)0.0004 (9)
C110.0488 (14)0.0408 (13)0.0491 (15)0.0170 (11)0.0061 (12)0.0009 (11)
C120.082 (2)0.0363 (13)0.0566 (18)0.0194 (14)0.0076 (16)0.0060 (12)
C130.077 (2)0.0389 (14)0.0564 (18)0.0045 (14)0.0073 (16)0.0088 (13)
C140.0483 (15)0.0509 (16)0.0569 (18)0.0030 (12)0.0096 (13)0.0064 (13)
C150.0369 (12)0.0394 (13)0.0427 (13)0.0078 (10)0.0009 (10)0.0020 (10)
C160.0323 (12)0.0529 (15)0.0464 (14)0.0140 (10)0.0004 (10)0.0055 (12)
C170.0341 (11)0.0405 (12)0.0360 (12)0.0132 (9)0.0024 (9)0.0066 (9)
C180.0398 (12)0.0363 (12)0.0384 (13)0.0117 (9)0.0022 (10)0.0041 (9)
C190.0316 (10)0.0348 (11)0.0186 (9)0.0109 (8)0.0072 (7)0.0149 (8)
C200.073 (2)0.0623 (19)0.0561 (19)0.0200 (16)0.0158 (16)0.0135 (15)
C210.102 (3)0.0588 (19)0.0415 (16)0.0379 (19)0.0130 (17)0.0047 (14)
C220.0547 (16)0.0554 (16)0.0473 (15)0.0309 (13)0.0040 (12)0.0044 (12)
C230.085 (2)0.065 (2)0.0466 (17)0.0408 (18)0.0047 (16)0.0017 (15)
C240.0588 (17)0.0537 (16)0.0467 (16)0.0195 (13)0.0095 (13)0.0098 (13)
C250.066 (2)0.074 (2)0.065 (2)0.0102 (17)0.0058 (17)0.0131 (18)
C260.115 (4)0.054 (2)0.091 (3)0.002 (2)0.018 (3)0.032 (2)
C270.112 (4)0.058 (2)0.110 (4)0.036 (2)0.027 (3)0.014 (2)
C280.084 (3)0.102 (4)0.106 (4)0.057 (3)0.009 (3)0.012 (3)
C290.064 (2)0.068 (2)0.081 (3)0.0231 (17)0.0036 (18)0.026 (2)
Geometric parameters (Å, º) top
S1—O11.422 (3)C24—C251.383 (5)
S1—O21.418 (3)C24—C291.381 (6)
S1—O31.583 (2)C25—C261.387 (7)
S1—C11.749 (4)C26—C271.363 (8)
S2—C181.678 (3)C27—C281.403 (8)
S2—C211.613 (4)C28—C291.371 (7)
O3—C81.448 (4)C2—H20.9300
O4—C161.235 (4)C3—H30.9300
N1—C161.364 (4)C5—H50.9300
N1—C171.464 (3)C6—H60.9300
N1—C221.468 (4)C7—H7A0.9600
C1—C21.387 (5)C7—H7B0.9600
C1—C61.383 (5)C7—H7C0.9600
C2—C31.376 (7)C8—H8A0.9700
C3—C41.381 (8)C8—H8B0.9700
C4—C51.363 (7)C9—H90.9800
C4—C71.524 (8)C11—H110.9300
C5—C61.363 (6)C12—H120.9300
C8—C91.520 (4)C13—H130.9300
C9—C101.508 (4)C14—H140.9300
C9—C171.532 (3)C17—H170.9800
C10—C111.393 (4)C19—H190.9300
C10—C151.387 (4)C20—H200.9300
C11—C121.390 (5)C21—H210.9300
C12—C131.375 (6)C22—H22A0.9700
C13—C141.368 (5)C22—H22B0.9700
C14—C151.397 (4)C23—H23A0.9700
C15—C161.484 (4)C23—H23B0.9700
C17—C181.506 (4)C25—H250.9300
C18—C191.594 (3)C26—H260.9300
C19—C201.541 (4)C27—H270.9300
C20—C211.328 (6)C28—H280.9300
C22—C231.504 (5)C29—H290.9300
C23—C241.518 (6)
O1—S1—O2119.4 (2)C3—C2—H2121.00
O1—S1—O3108.65 (15)C2—C3—H3119.00
O1—S1—C1109.86 (18)C4—C3—H3119.00
O2—S1—O3104.97 (17)C4—C5—H5119.00
O2—S1—C1109.28 (18)C6—C5—H5119.00
O3—S1—C1103.47 (15)C1—C6—H6120.00
C18—S2—C2194.67 (18)C5—C6—H6120.00
S1—O3—C8119.2 (2)C4—C7—H7A109.00
C16—N1—C17122.1 (2)C4—C7—H7B109.00
C16—N1—C22119.8 (2)C4—C7—H7C109.00
C17—N1—C22116.4 (2)H7A—C7—H7B109.00
S1—C1—C2120.0 (3)H7A—C7—H7C110.00
S1—C1—C6120.1 (3)H7B—C7—H7C109.00
C2—C1—C6119.9 (4)O3—C8—H8A110.00
C1—C2—C3118.9 (4)O3—C8—H8B110.00
C2—C3—C4121.4 (5)C9—C8—H8A110.00
C3—C4—C5118.3 (4)C9—C8—H8B110.00
C3—C4—C7120.2 (5)H8A—C8—H8B109.00
C5—C4—C7121.5 (5)C8—C9—H9109.00
C4—C5—C6122.1 (4)C10—C9—H9109.00
C1—C6—C5119.4 (4)C17—C9—H9109.00
O3—C8—C9107.6 (2)C10—C11—H11120.00
C8—C9—C10107.4 (2)C12—C11—H11120.00
C8—C9—C17112.4 (2)C11—C12—H12120.00
C10—C9—C17109.79 (19)C13—C12—H12120.00
C9—C10—C11120.9 (2)C12—C13—H13120.00
C9—C10—C15119.1 (2)C14—C13—H13120.00
C11—C10—C15120.0 (2)C13—C14—H14120.00
C10—C11—C12119.4 (3)C15—C14—H14120.00
C11—C12—C13120.3 (3)N1—C17—H17108.00
C12—C13—C14120.6 (3)C9—C17—H17108.00
C13—C14—C15120.1 (3)C18—C17—H17108.00
C10—C15—C14119.6 (3)C18—C19—H19131.00
C10—C15—C16121.0 (2)C20—C19—H19131.00
C14—C15—C16119.4 (3)C19—C20—H20122.00
O4—C16—N1122.1 (3)C21—C20—H20122.00
O4—C16—C15121.0 (3)S2—C21—H21122.00
N1—C16—C15117.0 (3)C20—C21—H21122.00
N1—C17—C9110.8 (2)N1—C22—H22A109.00
N1—C17—C18110.7 (2)N1—C22—H22B109.00
C9—C17—C18112.6 (2)C23—C22—H22A109.00
S2—C18—C17123.12 (18)C23—C22—H22B109.00
S2—C18—C19113.48 (18)H22A—C22—H22B108.00
C17—C18—C19123.4 (2)C22—C23—H23A109.00
C18—C19—C2098.8 (2)C22—C23—H23B109.00
C19—C20—C21117.0 (3)C24—C23—H23A109.00
S2—C21—C20116.0 (3)C24—C23—H23B109.00
N1—C22—C23112.6 (3)H23A—C23—H23B108.00
C22—C23—C24111.9 (3)C24—C25—H25120.00
C23—C24—C25120.5 (3)C26—C25—H25120.00
C23—C24—C29120.4 (3)C25—C26—H26119.00
C25—C24—C29119.1 (4)C27—C26—H26119.00
C24—C25—C26119.6 (4)C26—C27—H27120.00
C25—C26—C27121.2 (5)C28—C27—H27120.00
C26—C27—C28119.3 (5)C27—C28—H28120.00
C27—C28—C29119.2 (5)C29—C28—H28120.00
C24—C29—C28121.5 (4)C24—C29—H29119.00
C1—C2—H2120.00C28—C29—H29119.00
O1—S1—O3—C811.0 (3)C10—C9—C17—N150.8 (3)
O2—S1—O3—C8139.7 (3)C8—C9—C10—C1190.2 (3)
C1—S1—O3—C8105.8 (3)C8—C9—C17—C18166.7 (2)
O1—S1—C1—C2152.1 (3)C8—C9—C17—N168.7 (3)
O2—S1—C1—C219.3 (4)C9—C10—C11—C12179.1 (3)
O3—S1—C1—C292.1 (3)C15—C10—C11—C120.9 (4)
O1—S1—C1—C629.2 (3)C11—C10—C15—C140.5 (4)
O2—S1—C1—C6161.9 (3)C9—C10—C15—C163.3 (4)
O3—S1—C1—C686.7 (3)C11—C10—C15—C16178.4 (3)
C21—S2—C18—C190.4 (2)C9—C10—C15—C14178.7 (3)
C18—S2—C21—C200.0 (3)C10—C11—C12—C130.9 (5)
C21—S2—C18—C17179.7 (2)C11—C12—C13—C140.4 (5)
S1—O3—C8—C9176.8 (2)C12—C13—C14—C150.1 (5)
C17—N1—C16—C158.5 (4)C13—C14—C15—C100.1 (5)
C17—N1—C16—O4171.1 (3)C13—C14—C15—C16178.0 (3)
C22—N1—C16—O46.6 (4)C10—C15—C16—O4168.7 (3)
C16—N1—C17—C1885.2 (3)C14—C15—C16—N1166.3 (3)
C17—N1—C22—C2389.1 (3)C14—C15—C16—O413.4 (4)
C16—N1—C17—C940.4 (3)C10—C15—C16—N111.7 (4)
C22—N1—C16—C15173.0 (3)N1—C17—C18—C19158.4 (2)
C16—N1—C22—C23105.6 (3)N1—C17—C18—S221.5 (3)
C22—N1—C17—C1879.8 (3)C9—C17—C18—C1977.0 (3)
C22—N1—C17—C9154.6 (2)C9—C17—C18—S2103.1 (2)
C6—C1—C2—C31.9 (6)S2—C18—C19—C200.6 (3)
C2—C1—C6—C50.4 (6)C17—C18—C19—C20179.5 (3)
S1—C1—C2—C3179.3 (4)C18—C19—C20—C210.6 (4)
S1—C1—C6—C5179.2 (3)C19—C20—C21—S20.4 (5)
C1—C2—C3—C41.8 (8)N1—C22—C23—C24178.7 (3)
C2—C3—C4—C50.0 (8)C22—C23—C24—C25118.9 (4)
C2—C3—C4—C7179.4 (5)C22—C23—C24—C2962.1 (5)
C7—C4—C5—C6177.8 (4)C23—C24—C25—C26177.3 (4)
C3—C4—C5—C61.6 (7)C29—C24—C25—C261.8 (6)
C4—C5—C6—C11.4 (6)C23—C24—C29—C28178.9 (4)
O3—C8—C9—C1772.4 (3)C25—C24—C29—C282.0 (6)
O3—C8—C9—C10166.8 (2)C24—C25—C26—C273.6 (8)
C8—C9—C10—C1588.0 (3)C25—C26—C27—C281.5 (9)
C10—C9—C17—C1873.8 (2)C26—C27—C28—C292.2 (9)
C17—C9—C10—C11147.2 (2)C27—C28—C29—C244.0 (8)
C17—C9—C10—C1534.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O4i0.982.343.285 (3)161
C12—H12···Cg1ii0.932.653.567 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC29H27NO4S2
Mr517.66
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2529 (3), 8.6727 (4), 20.9899 (10)
α, β, γ (°)86.021 (4), 87.396 (4), 78.330 (4)
V3)1289.24 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.58 × 0.52 × 0.48
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.872, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
24485, 5417, 4537
Rint0.026
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.307, 1.36
No. of reflections5417
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.04, 1.13

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O4i0.982.343.285 (3)161
C12—H12···Cg1ii0.932.653.567 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403–414.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRothweiler, U., Czarna, A., Krajewski, M., Ciombor, J., Kalinski, C., Khazak, V., Ross, G., Skobeleva, N., Weber, L. & Holak, T. A. (2008). Chem. Med. Chem. 3, 1118–1128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1955-o1956
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds