organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1939-o1940

8-Ethyl-2-hydr­­oxy-2-methyl-4-morpholino­ethyl-1-thia-4-aza­spiro­[4.5]decan-3-one

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmacetical Chemistry, Faculty of Pharmacy, stanbul University, Beyazıt 34116, Istanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 9 September 2008; accepted 10 September 2008; online 13 September 2008)

Mol­ecules of the title spiro­[4.5]decane derivative, C17H30N2O3S, are linked by paired O—H⋯N hydrogen bonds into centrosymmetric R22(16) dimers and these dimers are linked into a three-dimensional framework structure by C—H⋯O interactions.

Related literature

For background on the applications of thia­zolidines, see: Babaoğlu et al. (2003[Babaoğlu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett. 13, 3227-3230.]); Pfahl et al. (2003[Pfahl, M., Al-Shamma, H. A., Fanjul, A. N., Pleynet, D. P. M., Bao, H., Spruce, L. W., Cow, C. N., Tachdjian, C., Zapt, J. W. & Wiemann, T. R. (2003). Patent WO 2003/050 098, Int. Appl. No. PCT/US2002/039 178.]); Sayyed et al. (2006[Sayyed, M., Mokle, S., Bokhare, M., Mankar, A., Surwase, S., Bhusare, S. & Vilohute, Y. (2006). Arkivoc ii, 187-197.]); Sharma et al. (2006[Sharma, R., Nagda, D. P. & Talesara, G. L. (2006). Arkivoc, i, 1-12.]). For related structures, see: Akkurt et al. (2007[Akkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.]); Akkurt et al. (2008a[Akkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o810-o811.],b[Akkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o1572-o1573.],c[Akkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008c). Acta Cryst. E64, o1574-o1575.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H30N2O3S

  • Mr = 342.50

  • Triclinic, [P \overline 1]

  • a = 8.1878 (4) Å

  • b = 10.2241 (5) Å

  • c = 12.2188 (6) Å

  • α = 79.901 (4)°

  • β = 73.796 (4)°

  • γ = 67.674 (4)°

  • V = 905.83 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.55 × 0.38 × 0.27 mm

Data collection
  • STOE IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.900, Tmax = 0.949

  • 18506 measured reflections

  • 3717 independent reflections

  • 3297 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.03

  • 3717 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2i 0.82 1.99 2.7994 (14) 171
C9—H9A⋯O2ii 0.97 2.57 3.418 (2) 146
C15—H15B⋯O1iii 0.97 2.55 3.249 (2) 129
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1; (iii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Thiazolidinone derivatives have been shown to possess antibacterial (Sayyed et al., 2006), antimicrobial (Sharma et al., 2006) and antimycobacterial (Babaoğlu et al., 2003) activities. There have also been several reports on the anticancer properties of compounds bearing this ring system (Pfahl et al., 2003). In view of above considerations, we have synthesized the title spiro[4.5]decane derivative, (I), and we report here its crystal structure. This molecule is chiral: in the arbitrarily chosen asymmetric molecule, C1 has R configuration, but crystal symmetry generates a racemic mixture.

The values of the geometric parameters of the molecule shown in Fig. 1 are in their normal ranges and similar to those in the related compounds, 8-methyl-4-morpholinoethyl-1-thia-4-azaspiro[4.5]decan-3-one (Akkurt et al., 2008b) and 2,8-dimethyl-4-morpholinoethyl-1-thia-4-azaspiro[4.5] decan-3-one (Akkurt et al., 2008c).

In the crystal, the molecules of (I) are linked by paired O—H···N hydrogen bonds into centrosymmetric R22(16) dimers and these dimers are linked into a three-dimensional framework structure by a combination of three independent C—H···O hydrogen bonds (Table 1). The thiazole ring (C1–C3/S1/N1) has an envelope conformation on S1 [puckering parameters (Cremer & Pople, 1975): Q(2) = 0.2032 (12) Å, ϕ(2) = 6.1 (4) °]. The cyclohexane ring (C3–C8) and morpholine ring (C13–C16/N2/O2) adopt chair conformations [puckering parameters: QT = 0.565 (2) Å, θ = 177.6 (2) °, ϕ = 73 (4) °, and QT = 0.570 (2) Å, θ = 0.40 (17) °, ϕ = 101 (16) °, respectively].

Related literature top

For background on the applications of thiazolidines, see: Babaoğlu et al. (2003); Pfahl et al. (2003); Sayyed et al. (2006); Sharma et al. (2006). For related structures, see: Akkurt et al. (2007); Akkurt et al. (2008a,b,c). For ring puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of morpholinoethylamin (5 mmol), 4-ethyl cyclohexanone (5 mmol) and α-mercaptopropionic acid (20 mmol) in dry benzene (20 ml) was refluxed for 18 h using a Dean–Starkwater separator. Excess solvent was evaporated in vacuo. The residue was taken up in chloroform. The chloroform layer was triturated with saturated NaHCO3 solution (2×) before drying over sodium sulfate and concentrated under reduced pressure to dryness. The crude product was triturated with diethyl ether several times and recrystallized from ethanol to yield colourless prisms of (I).

Refinement top

All H atoms were placed geometrically (C—H = 0.96–0.98 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the hydrogen-bonded dimer in (I), forming a intermolecular R22(16) ring. For clarity, H atoms not involved in hydrogen bonds have been omitted.
8-Ethyl-2-hydroxy-2-methyl-4-morpholinoethyl-1-thia- 4-azaspiro[4.5]decan-3-one top
Crystal data top
C17H30N2O3SZ = 2
Mr = 342.50F(000) = 372
Triclinic, P1Dx = 1.256 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1878 (4) ÅCell parameters from 28660 reflections
b = 10.2241 (5) Åθ = 2.2–27.4°
c = 12.2188 (6) ŵ = 0.20 mm1
α = 79.901 (4)°T = 296 K
β = 73.796 (4)°Block, colourless
γ = 67.674 (4)°0.55 × 0.38 × 0.27 mm
V = 905.83 (8) Å3
Data collection top
STOE IPDS II
diffractometer
3717 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3297 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.055
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.7°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.900, Tmax = 0.949l = 1515
18506 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.1334P]
where P = (Fo2 + 2Fc2)/3
3717 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H30N2O3Sγ = 67.674 (4)°
Mr = 342.50V = 905.83 (8) Å3
Triclinic, P1Z = 2
a = 8.1878 (4) ÅMo Kα radiation
b = 10.2241 (5) ŵ = 0.20 mm1
c = 12.2188 (6) ÅT = 296 K
α = 79.901 (4)°0.55 × 0.38 × 0.27 mm
β = 73.796 (4)°
Data collection top
STOE IPDS II
diffractometer
3717 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3297 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.949Rint = 0.055
18506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3717 reflectionsΔρmin = 0.16 e Å3
208 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35630 (5)0.26913 (4)0.21446 (3)0.0484 (1)
O10.18488 (14)0.24461 (12)0.54122 (9)0.0578 (4)
O20.74392 (17)0.18404 (13)0.83355 (9)0.0631 (4)
O30.08914 (13)0.18609 (10)0.34973 (9)0.0505 (3)
N10.43113 (15)0.26810 (11)0.40883 (9)0.0402 (3)
N20.68062 (14)0.09805 (10)0.64605 (9)0.0379 (3)
C10.17113 (18)0.28560 (13)0.34309 (12)0.0432 (4)
C20.26212 (18)0.26248 (13)0.44208 (11)0.0421 (4)
C30.51348 (17)0.28899 (13)0.28697 (10)0.0380 (3)
C40.5285 (2)0.43629 (13)0.25620 (12)0.0453 (4)
C50.6216 (2)0.45605 (14)0.13129 (12)0.0492 (4)
C60.80738 (19)0.34126 (15)0.09591 (12)0.0459 (4)
C70.78779 (19)0.19575 (14)0.12536 (12)0.0461 (4)
C80.70039 (18)0.17493 (13)0.25161 (11)0.0425 (4)
C90.8933 (2)0.36576 (18)0.02995 (13)0.0564 (5)
C101.0855 (3)0.2653 (2)0.06975 (18)0.0795 (7)
C110.52301 (19)0.26419 (13)0.49686 (11)0.0433 (4)
C120.61041 (19)0.11222 (13)0.54526 (11)0.0422 (4)
C130.53767 (18)0.14089 (15)0.74933 (11)0.0463 (4)
C140.6216 (2)0.11142 (18)0.85005 (12)0.0582 (5)
C150.8845 (2)0.14204 (18)0.73395 (14)0.0568 (5)
C160.80961 (18)0.17138 (14)0.62963 (12)0.0440 (4)
C170.0219 (2)0.43050 (16)0.34677 (16)0.0596 (5)
H30.166100.106200.348000.0760*
H4A0.407900.507700.271600.0540*
H4B0.596600.449800.304100.0540*
H5A0.636200.547800.117300.0590*
H5B0.544300.456000.083900.0590*
H60.886300.346900.140800.0550*
H7A0.714000.186300.079500.0550*
H7B0.906600.122600.106900.0550*
H8A0.778900.177400.297200.0510*
H8B0.688100.082400.267100.0510*
H9A0.818500.356800.075400.0680*
H9B0.893100.462200.044300.0680*
H10A1.086900.169600.058600.0950*
H10B1.161600.274500.026500.0950*
H10C1.130100.288000.149400.0950*
H11A0.436000.320100.558300.0520*
H11B0.615900.306200.464400.0520*
H12A0.521100.066000.564600.0510*
H12B0.709500.061600.485600.0510*
H13A0.455900.088700.762100.0560*
H13B0.468100.241200.740300.0560*
H14A0.526600.140800.918400.0700*
H14B0.685600.010300.861200.0700*
H15A0.952600.041500.743800.0680*
H15B0.967200.192900.723500.0680*
H16A0.749000.272600.616200.0530*
H16B0.907900.138800.563400.0530*
H17A0.030000.447900.281900.0720*
H17B0.072000.502100.344900.0720*
H17C0.070500.433100.415800.0720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0492 (2)0.0609 (2)0.0430 (2)0.0225 (2)0.0195 (1)0.0021 (1)
O10.0516 (6)0.0715 (7)0.0478 (6)0.0221 (5)0.0079 (5)0.0035 (5)
O20.0749 (7)0.0766 (7)0.0507 (6)0.0302 (6)0.0222 (5)0.0163 (5)
O30.0399 (5)0.0454 (5)0.0692 (6)0.0137 (4)0.0166 (5)0.0089 (4)
N10.0419 (5)0.0422 (5)0.0398 (5)0.0146 (4)0.0161 (4)0.0012 (4)
N20.0394 (5)0.0387 (5)0.0373 (5)0.0119 (4)0.0133 (4)0.0046 (4)
C10.0391 (6)0.0411 (6)0.0511 (7)0.0110 (5)0.0166 (5)0.0048 (5)
C20.0411 (6)0.0375 (6)0.0459 (7)0.0094 (5)0.0131 (5)0.0042 (5)
C30.0402 (6)0.0366 (6)0.0392 (6)0.0115 (5)0.0158 (5)0.0019 (5)
C40.0513 (7)0.0353 (6)0.0488 (7)0.0124 (5)0.0145 (6)0.0040 (5)
C50.0584 (8)0.0385 (7)0.0504 (7)0.0177 (6)0.0146 (6)0.0020 (5)
C60.0472 (7)0.0516 (7)0.0448 (7)0.0209 (6)0.0153 (6)0.0028 (5)
C70.0462 (7)0.0424 (7)0.0467 (7)0.0100 (6)0.0131 (6)0.0051 (5)
C80.0428 (7)0.0362 (6)0.0467 (7)0.0097 (5)0.0150 (5)0.0009 (5)
C90.0596 (9)0.0649 (9)0.0487 (8)0.0294 (8)0.0101 (7)0.0015 (7)
C100.0607 (10)0.0973 (14)0.0711 (12)0.0298 (10)0.0037 (9)0.0090 (10)
C110.0521 (7)0.0410 (6)0.0429 (7)0.0155 (6)0.0216 (6)0.0030 (5)
C120.0495 (7)0.0392 (6)0.0417 (6)0.0123 (5)0.0192 (6)0.0059 (5)
C130.0437 (7)0.0516 (7)0.0431 (7)0.0171 (6)0.0075 (6)0.0058 (5)
C140.0662 (9)0.0691 (10)0.0389 (7)0.0239 (8)0.0104 (7)0.0058 (6)
C150.0512 (8)0.0691 (10)0.0597 (9)0.0224 (7)0.0249 (7)0.0069 (7)
C160.0411 (6)0.0489 (7)0.0451 (7)0.0175 (6)0.0114 (5)0.0050 (5)
C170.0541 (8)0.0448 (8)0.0783 (11)0.0033 (6)0.0299 (8)0.0094 (7)
Geometric parameters (Å, º) top
S1—C11.8347 (15)C5—H5A0.9700
S1—C31.8386 (15)C5—H5B0.9700
O1—C21.2179 (17)C6—H60.9800
O2—C141.412 (2)C7—H7A0.9700
O2—C151.420 (2)C7—H7B0.9700
O3—C11.3971 (18)C8—H8A0.9700
O3—H30.8200C8—H8B0.9700
N1—C21.350 (2)C9—H9A0.9700
N1—C111.4623 (19)C9—H9B0.9700
N1—C31.4680 (16)C10—H10A0.9600
N2—C121.4620 (18)C10—H10B0.9600
N2—C161.466 (2)C10—H10C0.9600
N2—C131.4609 (18)C11—H11A0.9700
C1—C171.519 (2)C11—H11B0.9700
C1—C21.531 (2)C12—H12A0.9700
C3—C41.5300 (18)C12—H12B0.9700
C3—C81.5299 (19)C13—H13A0.9700
C4—C51.520 (2)C13—H13B0.9700
C5—C61.527 (2)C14—H14A0.9700
C6—C91.522 (2)C14—H14B0.9700
C6—C71.526 (2)C15—H15A0.9700
C7—C81.5237 (19)C15—H15B0.9700
C9—C101.513 (3)C16—H16A0.9700
C11—C121.5314 (18)C16—H16B0.9700
C13—C141.504 (2)C17—H17A0.9600
C15—C161.501 (2)C17—H17B0.9600
C4—H4A0.9700C17—H17C0.9600
C4—H4B0.9700
C1—S1—C394.89 (6)C8—C7—H7B109.00
C14—O2—C15110.20 (12)H7A—C7—H7B108.00
C1—O3—H3109.00C3—C8—H8A109.00
C2—N1—C3120.17 (12)C3—C8—H8B109.00
C3—N1—C11121.19 (12)C7—C8—H8A109.00
C2—N1—C11118.47 (11)C7—C8—H8B109.00
C12—N2—C13113.18 (12)H8A—C8—H8B108.00
C13—N2—C16109.95 (11)C6—C9—H9A109.00
C12—N2—C16113.51 (11)C6—C9—H9B109.00
S1—C1—C2104.46 (10)C10—C9—H9A109.00
S1—C1—C17113.16 (10)C10—C9—H9B109.00
O3—C1—C2112.49 (11)H9A—C9—H9B108.00
O3—C1—C17106.76 (13)C9—C10—H10A109.00
C2—C1—C17109.29 (12)C9—C10—H10B109.00
S1—C1—O3110.80 (9)C9—C10—H10C109.00
O1—C2—N1124.16 (14)H10A—C10—H10B109.00
N1—C2—C1113.68 (11)H10A—C10—H10C109.00
O1—C2—C1122.14 (14)H10B—C10—H10C109.00
S1—C3—N1103.71 (10)N1—C11—H11A109.00
S1—C3—C4110.66 (10)N1—C11—H11B109.00
N1—C3—C4111.72 (10)C12—C11—H11A109.00
N1—C3—C8111.49 (10)C12—C11—H11B109.00
S1—C3—C8109.19 (9)H11A—C11—H11B108.00
C4—C3—C8109.91 (12)N2—C12—H12A108.00
C3—C4—C5111.93 (11)N2—C12—H12B108.00
C4—C5—C6113.29 (12)C11—C12—H12A108.00
C5—C6—C7109.26 (13)C11—C12—H12B108.00
C5—C6—C9110.96 (12)H12A—C12—H12B107.00
C7—C6—C9112.66 (12)N2—C13—H13A110.00
C6—C7—C8111.36 (11)N2—C13—H13B110.00
C3—C8—C7112.03 (11)C14—C13—H13A110.00
C6—C9—C10114.58 (14)C14—C13—H13B110.00
N1—C11—C12111.58 (11)H13A—C13—H13B108.00
N2—C12—C11115.86 (11)O2—C14—H14A109.00
N2—C13—C14109.49 (13)O2—C14—H14B109.00
O2—C14—C13111.30 (12)C13—C14—H14A109.00
O2—C15—C16111.43 (14)C13—C14—H14B109.00
N2—C16—C15109.68 (12)H14A—C14—H14B108.00
C3—C4—H4A109.00O2—C15—H15A109.00
C3—C4—H4B109.00O2—C15—H15B109.00
C5—C4—H4A109.00C16—C15—H15A109.00
C5—C4—H4B109.00C16—C15—H15B109.00
H4A—C4—H4B108.00H15A—C15—H15B108.00
C4—C5—H5A109.00N2—C16—H16A110.00
C4—C5—H5B109.00N2—C16—H16B110.00
C6—C5—H5A109.00C15—C16—H16A110.00
C6—C5—H5B109.00C15—C16—H16B110.00
H5A—C5—H5B108.00H16A—C16—H16B108.00
C5—C6—H6108.00C1—C17—H17A109.00
C7—C6—H6108.00C1—C17—H17B109.00
C9—C6—H6108.00C1—C17—H17C109.00
C6—C7—H7A109.00H17A—C17—H17B109.00
C6—C7—H7B109.00H17A—C17—H17C110.00
C8—C7—H7A109.00H17B—C17—H17C109.00
C3—S1—C1—O3137.43 (10)C12—N2—C16—C15175.82 (11)
C3—S1—C1—C216.07 (9)C17—C1—C2—O170.12 (17)
C3—S1—C1—C17102.70 (12)C17—C1—C2—N1108.05 (14)
C1—S1—C3—N114.83 (9)S1—C1—C2—N113.31 (13)
C1—S1—C3—C4105.10 (10)S1—C1—C2—O1168.51 (11)
C1—S1—C3—C8133.79 (9)O3—C1—C2—N1133.56 (12)
C14—O2—C15—C1658.82 (17)O3—C1—C2—O148.27 (17)
C15—O2—C14—C1359.22 (17)C4—C3—C8—C755.31 (15)
C11—N1—C3—C465.77 (16)N1—C3—C8—C7179.75 (12)
C2—N1—C11—C1281.87 (15)S1—C3—C4—C567.62 (15)
C11—N1—C2—O15.22 (19)N1—C3—C4—C5177.37 (13)
C3—N1—C2—C12.34 (16)S1—C3—C8—C766.25 (13)
C2—N1—C3—C4109.35 (14)C8—C3—C4—C553.06 (16)
C3—N1—C11—C12102.93 (14)C3—C4—C5—C654.41 (18)
C11—N1—C3—C857.65 (15)C4—C5—C6—C754.72 (17)
C11—N1—C2—C1172.91 (10)C4—C5—C6—C9179.53 (13)
C3—N1—C2—O1179.53 (12)C5—C6—C7—C855.82 (16)
C11—N1—C3—S1175.01 (9)C5—C6—C9—C10174.32 (15)
C2—N1—C3—C8127.23 (13)C7—C6—C9—C1062.8 (2)
C2—N1—C3—S19.86 (13)C9—C6—C7—C8179.64 (13)
C13—N2—C16—C1556.27 (14)C6—C7—C8—C357.90 (17)
C12—N2—C13—C14175.30 (11)N1—C11—C12—N2170.62 (12)
C16—N2—C13—C1456.60 (14)N2—C13—C14—O258.47 (16)
C13—N2—C12—C1171.56 (15)O2—C15—C16—N257.46 (16)
C16—N2—C12—C1154.67 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.821.992.7994 (14)171
C9—H9A···O2ii0.972.573.418 (2)146
C15—H15B···O1iii0.972.553.249 (2)129
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H30N2O3S
Mr342.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1878 (4), 10.2241 (5), 12.2188 (6)
α, β, γ (°)79.901 (4), 73.796 (4), 67.674 (4)
V3)905.83 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.55 × 0.38 × 0.27
Data collection
DiffractometerSTOE IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.900, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
18506, 3717, 3297
Rint0.055
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.03
No. of reflections3717
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.821.992.7994 (14)171
C9—H9A···O2ii0.972.573.418 (2)146
C15—H15B···O1iii0.972.553.249 (2)129
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported by The Research Fund of İstanbul University (project Nos 177/15012004 and UDP-730/05052006).

References

First citationAkkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o810–o811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o1572–o1573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008c). Acta Cryst. E64, o1574–o1575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBabaoğlu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett. 13, 3227–3230.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPfahl, M., Al-Shamma, H. A., Fanjul, A. N., Pleynet, D. P. M., Bao, H., Spruce, L. W., Cow, C. N., Tachdjian, C., Zapt, J. W. & Wiemann, T. R. (2003). Patent WO 2003/050 098, Int. Appl. No. PCT/US2002/039 178.  Google Scholar
First citationSayyed, M., Mokle, S., Bokhare, M., Mankar, A., Surwase, S., Bhusare, S. & Vilohute, Y. (2006). Arkivoc ii, 187–197.  CrossRef Google Scholar
First citationSharma, R., Nagda, D. P. & Talesara, G. L. (2006). Arkivoc, i, 1–12.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1939-o1940
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds