organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

r-2,c-6-Bis(4-chloro­phen­yl)-t-3-iso­propyl-1-nitro­sopiperidin-4-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 15 September 2008; accepted 16 September 2008; online 20 September 2008)

In the title mol­ecule, C20H20Cl2N2O2, the piperidine ring adopts a chair conformation and the nitroso group at position 1 has a bis­ectional orientation. The two benzene rings and the isopropyl group attached to the piperidine ring in positions 2, 6 and 3, respectively, have axial orientations. The dihedral angle between the two benzene rings is 21.56 (13)°. One of the Cl atoms is disordered over two positions in a 0.281 (5):0.719 (5) ratio. In the crystal structure, mol­ecules are linked by C—H⋯O hydrogen bonds and a short C—H⋯O contact occurs within the mol­ecule.

Related literature

For related crystal structures, see: Balamurugan et al. (2006[Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2006). Acta Cryst. E62, o2005-o2006.], 2007[Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2007). Acta Cryst. E63, o789-o791.]); Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai (2007[Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J. & Manimekalai, A. (2007). Acta Cryst. E63, o2910.]); Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007[Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J., Manimekalai, A. & Rajarajan, G. (2007). Acta Cryst. E63, o2886.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20Cl2N2O2

  • Mr = 391.28

  • Triclinic, [P \overline 1]

  • a = 8.2771 (2) Å

  • b = 11.1921 (4) Å

  • c = 11.2351 (4) Å

  • α = 93.375 (3)°

  • β = 106.924 (3)°

  • γ = 104.549 (3)°

  • V = 953.95 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.20 mm−1

  • T = 200 (2) K

  • 0.54 × 0.47 × 0.41 mm

Data collection
  • Oxford Diffraction R Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.269, Tmax = 1.000 (expected range = 0.073–0.270)

  • 8014 measured reflections

  • 3752 independent reflections

  • 3506 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.155

  • S = 1.02

  • 3752 reflections

  • 239 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O11 1.00 2.24 2.676 (2) 105
C5—H5B⋯O4i 0.99 2.55 3.530 (3) 171
C32—H32C⋯O4ii 0.98 2.59 3.532 (3) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Various crystal structures of di-2-furylpiperidin-4-one derivatives have been reported, wherein the piperidine ring adopts a chair (Balamurugan et al., 2006), a twist-boat (Balamurugan et al., 2007) and a chair conformation (Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai, 2007). Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007) have reported the crystal structure of a diphenylpiperidin-4-ol derivative, wherein the piperidine ring adopts a chair conformation.

In the title molecule, C20H20Cl2N2O2 (Fig. 1), the piperidine ring adopts a chair conformation. The nitroso group at position 1 has a bisectional orientation. The two phenyl rings and the isopropyl group attached to the piperidine ring in positions 2, 6 and 3, respectively, have axial orientations. The dihedral angle between the two phenyl rings is 21.56 (13)°. Compound (I) is chiral: in the arbitrarily chosen asymmetric molecule, C2, C3 and C6 have S, R, and R conformations respectively, but crystal symmetry generates a racemic mixture. In the crystal, the molecules are linked by C—H···O hydrogen bonds (Fig. 2, Table 1).

Related literature top

For related crystal structures, see: Balamurugan et al. (2006, 2007); Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai (2007); Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007).

Experimental top

To a solution of t3-isopropyl-r2,c6-bis(4-chlorophenyl) piperidin-4-one (1.81 g, 0.005 mol) in chloroform (10 ml), concentrated HCl (1.5 ml) and water (1.5 ml) were added. While stirring, solid NaNO2 (3 g, 0.012 mol) was added in small portions to the reaction mixture over a period of 30 minutes. The stirring was continued for another 30 minutes. The organic layer was washed with water and saturated NaHCO3 and dried over anhydrous Na2SO4. After the removal of chloroform, the crude solid was recrystallized from distilled ethanol, to yield 1.5 g of colourless chunks of (I) (yield = 76%).

Refinement top

The Cl atom attached to C64 is disordered over two positions in a 0.281 (5) to 0.719 (5) ratio. The ADPs of both chlorine atoms were set to be identical. The C—Cl distances were restrained to be 1.740 (3) Å. The H atoms were positioned geometrically (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing of (I), viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
r-2,c-6-Bis(4-chlorophenyl)-t-3-isopropyl-1-nitrosopiperidin-4-one top
Crystal data top
C20H20Cl2N2O2Z = 2
Mr = 391.28F(000) = 408
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Melting point: 371 K
a = 8.2771 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.1921 (4) ÅCell parameters from 7346 reflections
c = 11.2351 (4) Åθ = 4.1–73.2°
α = 93.375 (3)°µ = 3.20 mm1
β = 106.924 (3)°T = 200 K
γ = 104.549 (3)°Chunk, colourless
V = 953.95 (6) Å30.54 × 0.47 × 0.41 mm
Data collection top
Oxford Diffraction R Gemini
diffractometer
3752 independent reflections
Radiation source: fine-focus sealed tube3506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 73.6°, θmin = 4.1°
ϕ and ω scansh = 910
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1313
Tmin = 0.269, Tmax = 1.000l = 1313
8014 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.6137P]
where P = (Fo2 + 2Fc2)/3
3752 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.55 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
C20H20Cl2N2O2γ = 104.549 (3)°
Mr = 391.28V = 953.95 (6) Å3
Triclinic, P1Z = 2
a = 8.2771 (2) ÅCu Kα radiation
b = 11.1921 (4) ŵ = 3.20 mm1
c = 11.2351 (4) ÅT = 200 K
α = 93.375 (3)°0.54 × 0.47 × 0.41 mm
β = 106.924 (3)°
Data collection top
Oxford Diffraction R Gemini
diffractometer
3752 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3506 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 1.000Rint = 0.020
8014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.02Δρmax = 0.55 e Å3
3752 reflectionsΔρmin = 0.43 e Å3
239 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl20.43589 (10)0.19782 (5)0.33972 (6)0.0590 (2)
Cl6A0.1316 (3)0.06761 (12)0.2338 (3)0.0841 (7)0.719 (5)
O40.7087 (2)0.46794 (17)0.48136 (13)0.0497 (5)
O110.5501 (3)0.32189 (19)0.05880 (16)0.0660 (7)
N10.4995 (2)0.34969 (16)0.11627 (14)0.0372 (5)
N110.4570 (3)0.35585 (18)0.00614 (17)0.0522 (6)
C20.6545 (3)0.31257 (18)0.18850 (17)0.0334 (5)
C30.7723 (3)0.42145 (18)0.29227 (17)0.0327 (5)
C40.6642 (3)0.45915 (17)0.36822 (18)0.0348 (6)
C50.5004 (3)0.49030 (18)0.29305 (18)0.0363 (6)
C60.3862 (3)0.39307 (19)0.17854 (19)0.0383 (6)
C130.8596 (3)0.53527 (19)0.2373 (2)0.0389 (6)
C210.5990 (3)0.18630 (18)0.23147 (17)0.0326 (5)
C220.4852 (3)0.08611 (19)0.14198 (19)0.0389 (6)
C230.4339 (3)0.0315 (2)0.1750 (2)0.0421 (6)
C240.4973 (3)0.04937 (19)0.2980 (2)0.0398 (6)
C250.6100 (3)0.0473 (2)0.38825 (19)0.0409 (6)
C260.6609 (3)0.16493 (19)0.35455 (18)0.0384 (6)
C310.9944 (4)0.5055 (3)0.1809 (3)0.0592 (9)
C320.9513 (3)0.6478 (2)0.3399 (3)0.0543 (8)
C610.2563 (3)0.2832 (2)0.2041 (2)0.0421 (6)
C620.2692 (3)0.2498 (2)0.3220 (3)0.0524 (8)
C630.1510 (4)0.1436 (3)0.3368 (4)0.0703 (10)
C640.0189 (3)0.0718 (2)0.2332 (4)0.0720 (12)
C650.0003 (3)0.1074 (3)0.1156 (4)0.0746 (12)
C660.1184 (3)0.2115 (3)0.1008 (3)0.0593 (9)
Cl6B0.0853 (7)0.0526 (4)0.2990 (7)0.0841 (7)0.281 (5)
H20.722360.302380.129950.0401*
H30.867510.392290.349540.0393*
H5A0.535370.571980.264290.0435*
H5B0.429220.498680.348560.0435*
H60.315450.436750.117670.0459*
H130.766300.556520.169870.0467*
H220.442030.098660.056940.0467*
H230.355840.099110.113250.0505*
H250.652840.033910.473030.0491*
H260.739400.231860.416880.0461*
H31A0.936400.433460.114700.0887*
H31B1.087720.486220.246720.0887*
H31C1.045510.577680.144990.0887*
H32A0.865430.667840.376220.0814*
H32B1.002790.719490.303480.0814*
H32C1.044460.628380.405680.0814*
H620.359400.299570.393450.0629*
H630.161090.120480.418080.0844*
H650.093990.060000.044940.0896*
H660.106160.234970.019450.0712*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0920 (5)0.0271 (3)0.0621 (4)0.0080 (3)0.0375 (3)0.0087 (2)
Cl6A0.0520 (8)0.0412 (5)0.157 (2)0.0006 (5)0.0433 (11)0.0067 (8)
O40.0592 (10)0.0591 (10)0.0295 (7)0.0196 (8)0.0111 (7)0.0008 (6)
O110.1101 (16)0.0592 (11)0.0380 (9)0.0351 (11)0.0273 (10)0.0098 (8)
N10.0515 (10)0.0316 (8)0.0251 (7)0.0123 (7)0.0063 (7)0.0056 (6)
N110.0833 (14)0.0385 (10)0.0322 (9)0.0179 (10)0.0137 (9)0.0057 (7)
C20.0445 (10)0.0299 (9)0.0274 (9)0.0122 (8)0.0124 (8)0.0045 (7)
C30.0389 (10)0.0293 (9)0.0299 (9)0.0105 (8)0.0096 (7)0.0058 (7)
C40.0428 (10)0.0264 (9)0.0327 (10)0.0067 (8)0.0114 (8)0.0017 (7)
C50.0441 (11)0.0289 (9)0.0366 (10)0.0110 (8)0.0137 (8)0.0024 (8)
C60.0430 (11)0.0336 (10)0.0354 (10)0.0143 (8)0.0050 (8)0.0065 (8)
C130.0398 (10)0.0343 (10)0.0422 (10)0.0093 (8)0.0119 (8)0.0132 (8)
C210.0407 (10)0.0282 (9)0.0322 (9)0.0130 (8)0.0139 (8)0.0038 (7)
C220.0481 (11)0.0347 (10)0.0328 (10)0.0133 (9)0.0101 (8)0.0022 (8)
C230.0489 (12)0.0308 (10)0.0425 (11)0.0083 (9)0.0125 (9)0.0034 (8)
C240.0526 (12)0.0266 (9)0.0471 (11)0.0118 (8)0.0251 (9)0.0070 (8)
C250.0570 (12)0.0333 (10)0.0346 (10)0.0134 (9)0.0164 (9)0.0083 (8)
C260.0503 (11)0.0295 (10)0.0329 (10)0.0093 (8)0.0114 (8)0.0026 (7)
C310.0607 (15)0.0555 (15)0.0714 (17)0.0117 (12)0.0389 (13)0.0145 (12)
C320.0528 (13)0.0332 (11)0.0700 (16)0.0032 (10)0.0170 (12)0.0066 (10)
C610.0360 (10)0.0342 (10)0.0547 (12)0.0132 (8)0.0095 (9)0.0065 (9)
C620.0463 (12)0.0490 (13)0.0657 (15)0.0140 (10)0.0207 (11)0.0186 (11)
C630.0632 (17)0.0625 (17)0.107 (2)0.0285 (14)0.0448 (17)0.0408 (17)
C640.0418 (13)0.0347 (13)0.148 (3)0.0124 (10)0.0409 (17)0.0148 (16)
C650.0403 (13)0.0477 (15)0.120 (3)0.0057 (11)0.0118 (15)0.0104 (16)
C660.0446 (13)0.0496 (14)0.0720 (17)0.0135 (11)0.0026 (11)0.0012 (12)
Cl6B0.0520 (8)0.0412 (5)0.157 (2)0.0006 (5)0.0433 (11)0.0067 (8)
Geometric parameters (Å, º) top
Cl2—C241.745 (2)C62—C631.390 (4)
Cl6A—C641.737 (3)C63—C641.380 (5)
Cl6B—C641.766 (6)C64—C651.379 (6)
O4—C41.207 (2)C65—C661.373 (5)
O11—N111.214 (3)C2—H21.0000
N1—N111.327 (2)C3—H31.0000
N1—C21.476 (3)C5—H5A0.9900
N1—C61.475 (3)C5—H5B0.9900
C2—C211.525 (3)C6—H61.0000
C2—C31.539 (3)C13—H131.0000
C3—C41.516 (3)C22—H220.9500
C3—C131.555 (3)C23—H230.9500
C4—C51.510 (3)C25—H250.9500
C5—C61.531 (3)C26—H260.9500
C6—C611.519 (3)C31—H31A0.9800
C13—C321.527 (3)C31—H31B0.9800
C13—C311.527 (4)C31—H31C0.9800
C21—C221.393 (3)C32—H32A0.9800
C21—C261.386 (3)C32—H32B0.9800
C22—C231.385 (3)C32—H32C0.9800
C23—C241.374 (3)C62—H620.9500
C24—C251.372 (3)C63—H630.9500
C25—C261.388 (3)C65—H650.9500
C61—C661.397 (4)C66—H660.9500
C61—C621.379 (4)
N11—N1—C2123.99 (18)C21—C2—H2107.00
N11—N1—C6114.35 (18)C2—C3—H3108.00
C2—N1—C6121.50 (15)C4—C3—H3108.00
O11—N11—N1115.3 (2)C13—C3—H3108.00
N1—C2—C3108.06 (17)C4—C5—H5A109.00
N1—C2—C21110.95 (19)C4—C5—H5B109.00
C3—C2—C21116.29 (15)C6—C5—H5A109.00
C2—C3—C4109.5 (2)C6—C5—H5B109.00
C2—C3—C13111.85 (16)H5A—C5—H5B108.00
C4—C3—C13110.24 (17)N1—C6—H6107.00
O4—C4—C3122.5 (2)C5—C6—H6107.00
O4—C4—C5122.1 (2)C61—C6—H6107.00
C3—C4—C5115.41 (17)C3—C13—H13109.00
C4—C5—C6113.82 (18)C31—C13—H13109.00
N1—C6—C5109.7 (2)C32—C13—H13109.00
N1—C6—C61110.74 (17)C21—C22—H22119.00
C5—C6—C61115.49 (18)C23—C22—H22119.00
C3—C13—C31110.9 (2)C22—C23—H23120.00
C3—C13—C32110.29 (18)C24—C23—H23120.00
C31—C13—C32109.0 (2)C24—C25—H25120.00
C2—C21—C22118.53 (17)C26—C25—H25120.00
C2—C21—C26123.28 (18)C21—C26—H26119.00
C22—C21—C26118.15 (18)C25—C26—H26119.00
C21—C22—C23121.07 (19)C13—C31—H31A109.00
C22—C23—C24119.3 (2)C13—C31—H31B109.00
Cl2—C24—C23119.49 (17)C13—C31—H31C109.00
Cl2—C24—C25119.45 (16)H31A—C31—H31B109.00
C23—C24—C25121.1 (2)H31A—C31—H31C109.00
C24—C25—C26119.39 (19)H31B—C31—H31C109.00
C21—C26—C25121.06 (19)C13—C32—H32A109.00
C6—C61—C62123.8 (2)C13—C32—H32B109.00
C6—C61—C66117.3 (2)C13—C32—H32C109.00
C62—C61—C66118.9 (2)H32A—C32—H32B109.00
C61—C62—C63120.4 (3)H32A—C32—H32C110.00
C62—C63—C64119.9 (3)H32B—C32—H32C109.00
Cl6A—C64—C63125.8 (3)C61—C62—H62120.00
Cl6A—C64—C65114.0 (3)C63—C62—H62120.00
C63—C64—C65120.2 (3)C62—C63—H63120.00
Cl6B—C64—C63102.5 (4)C64—C63—H63120.00
Cl6B—C64—C65137.3 (4)C64—C65—H65120.00
C64—C65—C66119.9 (3)C66—C65—H65120.00
C61—C66—C65120.7 (3)C61—C66—H66120.00
N1—C2—H2107.00C65—C66—H66120.00
C3—C2—H2107.00
C2—N1—N11—O113.9 (3)C3—C4—C5—C648.5 (2)
C6—N1—N11—O11179.18 (19)C4—C5—C6—N140.6 (2)
N11—N1—C2—C3120.4 (2)C4—C5—C6—C6185.3 (3)
N11—N1—C2—C21111.1 (2)N1—C6—C61—C62107.0 (3)
C6—N1—C2—C354.6 (2)N1—C6—C61—C6671.9 (3)
C6—N1—C2—C2173.9 (2)C5—C6—C61—C6218.5 (3)
N11—N1—C6—C5127.96 (18)C5—C6—C61—C66162.8 (2)
N11—N1—C6—C61103.4 (2)C2—C21—C22—C23178.3 (2)
C2—N1—C6—C547.5 (2)C26—C21—C22—C230.5 (4)
C2—N1—C6—C6181.1 (2)C2—C21—C26—C25178.2 (2)
N1—C2—C3—C453.3 (2)C22—C21—C26—C250.5 (4)
N1—C2—C3—C1369.2 (2)C21—C22—C23—C240.3 (4)
C21—C2—C3—C472.2 (2)C22—C23—C24—Cl2179.0 (2)
C21—C2—C3—C13165.3 (2)C22—C23—C24—C250.1 (4)
N1—C2—C21—C2252.8 (3)Cl2—C24—C25—C26179.0 (2)
N1—C2—C21—C26129.5 (2)C23—C24—C25—C260.1 (4)
C3—C2—C21—C22176.8 (2)C24—C25—C26—C210.3 (4)
C3—C2—C21—C265.5 (4)C6—C61—C62—C63176.2 (3)
C2—C3—C4—O4127.9 (2)C66—C61—C62—C632.6 (4)
C2—C3—C4—C554.5 (2)C6—C61—C66—C65177.0 (3)
C13—C3—C4—O4108.6 (2)C62—C61—C66—C651.8 (4)
C13—C3—C4—C568.9 (2)C61—C62—C63—C640.7 (5)
C2—C3—C13—C3168.1 (3)C62—C63—C64—Cl6A176.3 (3)
C2—C3—C13—C32171.1 (2)C62—C63—C64—C652.2 (5)
C4—C3—C13—C31169.8 (2)Cl6A—C64—C65—C66175.6 (3)
C4—C3—C13—C3249.0 (3)C63—C64—C65—C663.0 (5)
O4—C4—C5—C6134.0 (2)C64—C65—C66—C611.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O111.002.242.676 (2)105
C5—H5B···O4i0.992.553.530 (3)171
C32—H32C···O4ii0.982.593.532 (3)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H20Cl2N2O2
Mr391.28
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.2771 (2), 11.1921 (4), 11.2351 (4)
α, β, γ (°)93.375 (3), 106.924 (3), 104.549 (3)
V3)953.95 (6)
Z2
Radiation typeCu Kα
µ (mm1)3.20
Crystal size (mm)0.54 × 0.47 × 0.41
Data collection
DiffractometerOxford Diffraction R Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.269, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8014, 3752, 3506
Rint0.020
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.155, 1.02
No. of reflections3752
No. of parameters239
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.43

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O111.002.242.676 (2)105
C5—H5B···O4i0.992.553.530 (3)171
C32—H32C···O4ii0.982.593.532 (3)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF–MRI program for funding to purchase the diffractometer.

References

First citationBalamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2006). Acta Cryst. E62, o2005–o2006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2007). Acta Cryst. E63, o789–o791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Jayabharathi, J. & Manimekalai, A. (2007). Acta Cryst. E63, o2910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Jayabharathi, J., Manimekalai, A. & Rajarajan, G. (2007). Acta Cryst. E63, o2886.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds