organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Fluoro­phen­yl)-1-phenyl­pyrazolidin-3-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 13 August 2008; accepted 19 August 2008; online 6 September 2008)

In the mol­ecule of the title compound, C15H13FN2O, the phenyl and fluorophenyl rings are oriented at a dihedral angle of 77.92 (3)°. The pyrazolidine ring adopts an envelope conformation. An intra­molecular C—H⋯N hydrogen bond results in the formation of a five-membered ring adopting an envelope conformation. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules. There are C—H⋯π contacts between between aromatic H atoms and the phenyl and fluorophenyl rings. A ππ contact between phenyl rings [centroid–centroid distance = 3.926 (1) Å] is also observed.

Related literature

For general background, see: Chiara & Garcia (2005[Chiara, J. L. & Garcia, A. (2005). Synlett, pp. 2607-2610.]). For related literature, see: Jia et al. (2008[Jia, H.-S., Li, Y.-F., Liu, Y.-Y., Liu, S. & Zhu, H.-J. (2008). Acta Cryst. E64, o855.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13FN2O

  • Mr = 256.27

  • Monoclinic, P 21 /c

  • a = 10.265 (2) Å

  • b = 7.3130 (15) Å

  • c = 17.822 (4) Å

  • β = 92.39 (3)°

  • V = 1336.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 2393 measured reflections

  • 2393 independent reflections

  • 1231 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.232

  • S = 1.07

  • 2393 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Oi 0.86 1.92 2.777 (4) 172
C4—H4A⋯N1 0.93 2.48 2.836 (6) 103
C8—H8A⋯Oii 0.97 2.59 3.422 (5) 143
C6—H6ACg3iii 0.93 2.96 3.866 (3) 165
C12—H12ACg2iv 0.93 3.05 3.751 (3) 134
C14—H14ACg3v 0.93 2.80 3.654 (3) 153
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x+1, -y, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C10–C15 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolidin-3-one and its derivatives used as medicines and herbicides (Chiara & Garcia, 2005) have been developed most quickly, such as anodyne and antipyretic. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and C (C10-C15) are, of course, planar, and they are oriented at a dihedral angle of A/C = 77.92 (3)°. Ring B (N1/N2/C7-C9) adopts envelope conformation, with C8 atom displaced by 0.277 (3) Å from the plane of the other ring atoms. The intra- molecular C-H···N hydrogen bond (Table 1) results in the formation of a five-membered ring D (N1/C4/C5/C7/H4A) adopting envelope conformation, with N1 atom displaced by -0.326 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O and C-H···O hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The C—H···π contacts (Table 1) between the phenyl rings and the aromatic H atoms and a ππ contact between phenyl rings Cg2···Cg2i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg2 is centroid of the ring A (C1-C6)] further stabilize the structure, with centroid-centroid distance of 3.926 (1) Å.

Related literature top

For general background, see: Chiara & Garcia (2005). For related literature, see: Jia et al. (2008). For bond-length data, see: Allen et al. (1987). Cg2 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C10–C15 ring.

Experimental top

The title compound was prepared according to the literature method (Jia et al., 2008). The crystals were obtained by dissolving the title compound (1.5 g) in ethyl acetate (25 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
5-(3-fluorophenyl)-1-phenylpyrazolidin-3-one top
Crystal data top
C15H13FN2OF(000) = 536
Mr = 256.27Dx = 1.273 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.265 (2) Åθ = 9–12°
b = 7.3130 (15) ŵ = 0.09 mm1
c = 17.822 (4) ÅT = 294 K
β = 92.39 (3)°Needle, colorless
V = 1336.7 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.973, Tmax = 0.991l = 021
2393 measured reflections3 standard reflections every 120 min
2393 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.232 w = 1/[σ2(Fo2) + (0.1065P)2 + 0.1962P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2393 reflectionsΔρmax = 0.34 e Å3
166 parametersΔρmin = 0.75 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H13FN2OV = 1336.7 (5) Å3
Mr = 256.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.265 (2) ŵ = 0.09 mm1
b = 7.3130 (15) ÅT = 294 K
c = 17.822 (4) Å0.30 × 0.20 × 0.10 mm
β = 92.39 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1231 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.973, Tmax = 0.9913 standard reflections every 120 min
2393 measured reflections intensity decay: none
2393 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.081166 parameters
wR(F2) = 0.232H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
2393 reflectionsΔρmin = 0.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.0023 (3)0.2565 (4)0.22989 (17)0.0567 (8)
F0.2688 (3)0.7468 (5)0.56248 (19)0.098
N10.2364 (3)0.0858 (4)0.35618 (19)0.0407 (8)
C10.2186 (8)0.5785 (10)0.5378 (4)0.104 (2)
N20.1332 (3)0.0777 (4)0.3021 (2)0.0477 (9)
H2A0.09650.02350.28860.057*
C20.1419 (7)0.4819 (12)0.5800 (4)0.095 (2)
H2B0.11740.52520.62640.114*
C30.0997 (6)0.3176 (11)0.5537 (3)0.0873 (18)
H3A0.04260.24920.58160.105*
C40.1399 (5)0.2505 (7)0.4868 (3)0.0650 (13)
H4A0.11120.13610.47040.078*
C50.2215 (4)0.3492 (6)0.4436 (2)0.0488 (11)
C60.2666 (6)0.5199 (7)0.4691 (3)0.0790 (16)
H6A0.32450.58980.44240.095*
C70.2639 (4)0.2853 (5)0.3683 (2)0.0421 (10)
H7A0.35760.30730.36470.051*
C80.1895 (4)0.3791 (5)0.3012 (2)0.0452 (10)
H8A0.14350.48700.31740.054*
H8B0.24870.41370.26260.054*
C90.0967 (4)0.2358 (5)0.2735 (2)0.0433 (10)
C100.3413 (3)0.0333 (5)0.3443 (2)0.0385 (9)
C110.4505 (4)0.0252 (6)0.3943 (2)0.0509 (11)
H11A0.45290.06110.43270.061*
C120.5555 (4)0.1441 (7)0.3875 (3)0.0592 (13)
H12A0.62820.13590.42030.071*
C130.5499 (5)0.2750 (6)0.3310 (3)0.0660 (14)
H13A0.61850.35690.32650.079*
C140.4453 (4)0.2840 (6)0.2825 (3)0.0573 (12)
H14A0.44300.37180.24470.069*
C150.3405 (4)0.1633 (5)0.2880 (2)0.0423 (10)
H15A0.26990.17060.25370.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0586 (18)0.0318 (16)0.079 (2)0.0078 (14)0.0066 (17)0.0028 (15)
F0.0980.0980.0980.0000.0040.000
N10.0375 (18)0.0253 (17)0.059 (2)0.0030 (14)0.0036 (16)0.0029 (15)
C10.125 (6)0.083 (5)0.101 (5)0.018 (4)0.022 (5)0.058 (4)
N20.0402 (19)0.0242 (17)0.078 (3)0.0014 (15)0.0117 (18)0.0065 (16)
C20.089 (5)0.132 (7)0.063 (4)0.044 (5)0.007 (3)0.022 (4)
C30.081 (4)0.117 (6)0.064 (4)0.015 (4)0.002 (3)0.008 (4)
C40.055 (3)0.067 (3)0.072 (3)0.008 (3)0.002 (3)0.000 (3)
C50.043 (2)0.045 (3)0.058 (3)0.010 (2)0.004 (2)0.005 (2)
C60.109 (4)0.063 (3)0.065 (3)0.010 (3)0.006 (3)0.027 (3)
C70.040 (2)0.0212 (19)0.066 (3)0.0020 (17)0.0037 (19)0.0048 (19)
C80.040 (2)0.030 (2)0.066 (3)0.0010 (18)0.007 (2)0.003 (2)
C90.042 (2)0.031 (2)0.057 (2)0.0024 (19)0.005 (2)0.013 (2)
C100.032 (2)0.031 (2)0.052 (2)0.0004 (17)0.0015 (18)0.0085 (19)
C110.047 (2)0.049 (3)0.056 (3)0.014 (2)0.004 (2)0.009 (2)
C120.051 (3)0.063 (3)0.062 (3)0.006 (2)0.017 (2)0.009 (3)
C130.052 (3)0.043 (3)0.105 (4)0.012 (2)0.023 (3)0.001 (3)
C140.055 (3)0.042 (3)0.076 (3)0.006 (2)0.024 (2)0.017 (2)
C150.038 (2)0.039 (2)0.050 (2)0.0045 (19)0.0006 (18)0.0047 (19)
Geometric parameters (Å, º) top
O—C91.226 (5)C6—H6A0.9300
F—C11.398 (7)C7—C81.552 (6)
N1—N21.404 (4)C7—H7A0.9800
N1—C101.408 (5)C8—C91.487 (5)
N1—C71.500 (4)C8—H8A0.9700
C1—C21.317 (9)C8—H8B0.9700
C1—C61.405 (9)C10—C151.381 (5)
N2—C91.311 (5)C10—C111.404 (5)
N2—H2A0.8600C11—C121.394 (6)
C2—C31.354 (9)C11—H11A0.9300
C2—H2B0.9300C12—C131.389 (6)
C3—C41.370 (8)C12—H12A0.9300
C3—H3A0.9300C13—C141.353 (6)
C4—C51.366 (7)C13—H13A0.9300
C4—H4A0.9300C14—C151.398 (6)
C5—C61.400 (6)C14—H14A0.9300
C5—C71.502 (6)C15—H15A0.9300
N2—N1—C10115.5 (3)C8—C7—H7A109.2
N2—N1—C7105.8 (3)C9—C8—C7103.4 (3)
C10—N1—C7118.9 (3)C9—C8—H8A111.1
C2—C1—F120.9 (7)C7—C8—H8A111.1
C2—C1—C6125.0 (6)C9—C8—H8B111.1
F—C1—C6113.9 (7)C7—C8—H8B111.1
C9—N2—N1115.1 (3)H8A—C8—H8B109.0
C9—N2—H2A122.4O—C9—N2124.1 (4)
N1—N2—H2A122.4O—C9—C8127.0 (4)
C1—C2—C3117.9 (6)N2—C9—C8108.9 (3)
C1—C2—H2B121.0C15—C10—C11118.0 (4)
C3—C2—H2B121.0C15—C10—N1123.6 (3)
C2—C3—C4121.1 (6)C11—C10—N1118.3 (3)
C2—C3—H3A119.5C12—C11—C10121.2 (4)
C4—C3—H3A119.5C12—C11—H11A119.4
C5—C4—C3121.0 (5)C10—C11—H11A119.4
C5—C4—H4A119.5C13—C12—C11119.0 (4)
C3—C4—H4A119.5C13—C12—H12A120.5
C4—C5—C6119.4 (4)C11—C12—H12A120.5
C4—C5—C7123.0 (4)C14—C13—C12120.3 (4)
C6—C5—C7117.6 (4)C14—C13—H13A119.8
C5—C6—C1115.6 (6)C12—C13—H13A119.8
C5—C6—H6A122.2C13—C14—C15121.1 (4)
C1—C6—H6A122.2C13—C14—H14A119.4
N1—C7—C5111.8 (3)C15—C14—H14A119.4
N1—C7—C8103.6 (3)C10—C15—C14120.3 (4)
C5—C7—C8113.6 (3)C10—C15—H15A119.8
N1—C7—H7A109.2C14—C15—H15A119.8
C5—C7—H7A109.2
C10—N1—N2—C9128.7 (4)C6—C5—C7—C876.9 (5)
C7—N1—N2—C95.0 (5)N1—C7—C8—C917.4 (4)
F—C1—C2—C3178.1 (5)C5—C7—C8—C9104.2 (4)
C6—C1—C2—C33.9 (11)N1—N2—C9—O174.3 (4)
C1—C2—C3—C42.6 (9)N1—N2—C9—C87.0 (5)
C2—C3—C4—C51.4 (8)C7—C8—C9—O166.0 (4)
C3—C4—C5—C61.2 (7)C7—C8—C9—N215.3 (4)
C3—C4—C5—C7177.3 (4)N2—N1—C10—C156.1 (5)
C4—C5—C6—C12.1 (7)C7—N1—C10—C15133.5 (4)
C7—C5—C6—C1176.5 (5)N2—N1—C10—C11176.8 (3)
C2—C1—C6—C53.6 (10)C7—N1—C10—C1149.4 (5)
F—C1—C6—C5178.2 (5)C15—C10—C11—C120.2 (6)
N2—N1—C7—C5108.7 (3)N1—C10—C11—C12177.4 (4)
C10—N1—C7—C5119.4 (4)C10—C11—C12—C131.3 (7)
N2—N1—C7—C813.9 (4)C11—C12—C13—C141.4 (7)
C10—N1—C7—C8117.9 (4)C12—C13—C14—C150.4 (7)
C4—C5—C7—N115.1 (5)C11—C10—C15—C140.8 (6)
C6—C5—C7—N1166.3 (4)N1—C10—C15—C14176.2 (4)
C4—C5—C7—C8101.7 (4)C13—C14—C15—C100.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Oi0.861.922.777 (4)172
C4—H4A···N10.932.482.836 (6)103
C8—H8A···Oii0.972.593.422 (5)143
C6—H6A···Cg3iii0.932.963.866 (3)165
C12—H12A···Cg2iv0.933.053.751 (3)134
C14—H14A···Cg3v0.932.803.654 (3)153
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13FN2O
Mr256.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.265 (2), 7.3130 (15), 17.822 (4)
β (°) 92.39 (3)
V3)1336.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2393, 2393, 1231
Rint0.000
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.232, 1.07
No. of reflections2393
No. of parameters166
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.75

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Oi0.861.922.777 (4)172.00
C4—H4A···N10.932.482.836 (6)103.00
C8—H8A···Oii0.972.593.422 (5)143.00
C6—H6A···Cg3iii0.932.963.866 (3)165.00
C12—H12A···Cg2iv0.933.053.751 (3)134.00
C14—H14A···Cg3v0.932.803.654 (3)153.00
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChiara, J. L. & Garcia, A. (2005). Synlett, pp. 2607–2610.  Web of Science CrossRef Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJia, H.-S., Li, Y.-F., Liu, Y.-Y., Liu, S. & Zhu, H.-J. (2008). Acta Cryst. E64, o855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds