organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Bromo­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 29 August 2008; accepted 30 August 2008; online 6 September 2008)

In the title compound, C8H6BrN3S, the thia­diazole ring is oriented at a dihedral angle of 48.35 (3)° with respect to the bromo­phenyl ring. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Omar et al. (1986[Omar, A. & Aboulwafa, O. M. (1986). J. Heterocycl. Chem. 23, 1339-1341.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrN3S

  • Mr = 256.13

  • Monoclinic, P 21 /c

  • a = 14.869 (3) Å

  • b = 8.0250 (16) Å

  • c = 7.9480 (16) Å

  • β = 97.43 (3)°

  • V = 940.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.54 mm−1

  • T = 298 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.343, Tmax = 0.659

  • 1832 measured reflections

  • 1694 independent reflections

  • 972 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.153

  • S = 0.97

  • 1694 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.86 2.27 3.092 (7) 160
N3—H3A⋯N2i 0.86 2.61 3.221 (7) 129
N3—H3B⋯N2ii 0.86 2.06 2.896 (7) 163
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). It can also be widely used in the field of medicine, such as anti-cancer drugs (Omar et al., 1986).

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1–C6) and B (S/N1/N2/C7/C8) are, of course, planar, and they are oriented at a dihedral angle of 48.35 (3)°.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Nakagawa et al. (1996); Omar et al. (1986); Wang et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-bromobenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give title compound (m.p. 486–487 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
5-(2-Bromophenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C8H6BrN3SF(000) = 504
Mr = 256.13Dx = 1.809 Mg m3
Monoclinic, P21/cMelting point = 486–487 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.869 (3) ÅCell parameters from 25 reflections
b = 8.0250 (16) Åθ = 10–14°
c = 7.9480 (16) ŵ = 4.55 mm1
β = 97.43 (3)°T = 298 K
V = 940.4 (3) Å3Block, colorless
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
972 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.2°, θmin = 1.4°
ω/2θ scansh = 1717
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.343, Tmax = 0.659l = 09
1832 measured reflections3 standard reflections every 120 min
1694 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0838P)2]
where P = (Fo2 + 2Fc2)/3
1694 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C8H6BrN3SV = 940.4 (3) Å3
Mr = 256.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.869 (3) ŵ = 4.55 mm1
b = 8.0250 (16) ÅT = 298 K
c = 7.9480 (16) Å0.30 × 0.10 × 0.10 mm
β = 97.43 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
972 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.343, Tmax = 0.6593 standard reflections every 120 min
1832 measured reflections intensity decay: none
1694 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.97Δρmax = 0.41 e Å3
1694 reflectionsΔρmin = 0.57 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.88329 (5)1.09232 (10)1.09121 (14)0.0845 (5)
S0.65602 (11)1.1146 (2)1.0932 (2)0.0458 (5)
N10.6259 (3)0.9573 (7)0.8134 (6)0.0424 (13)
N20.5587 (3)1.0773 (6)0.8048 (6)0.0430 (13)
N30.5081 (3)1.2909 (6)0.9666 (6)0.0480 (14)
H3A0.46351.31430.89010.058*
H3B0.51581.34671.05970.058*
C10.7308 (5)0.6693 (8)0.9656 (9)0.0512 (18)
H10.67220.64310.91760.061*
C20.7921 (5)0.5423 (8)1.0064 (10)0.0591 (19)
H20.77500.43190.98660.071*
C30.8787 (5)0.5816 (10)1.0769 (10)0.068 (2)
H30.92040.49681.10670.081*
C40.9041 (4)0.7438 (10)1.1036 (9)0.059 (2)
H40.96300.76981.15060.071*
C50.8416 (4)0.8692 (8)1.0602 (9)0.0493 (17)
C60.7542 (4)0.8348 (7)0.9941 (8)0.0378 (14)
C70.6811 (4)0.9618 (8)0.9507 (7)0.0363 (14)
C80.5647 (4)1.1688 (7)0.9412 (7)0.0332 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0417 (5)0.0576 (5)0.1483 (10)0.0105 (4)0.0096 (5)0.0066 (6)
S0.0396 (9)0.0538 (10)0.0394 (9)0.0102 (8)0.0131 (7)0.0097 (8)
N10.042 (3)0.046 (3)0.037 (3)0.000 (3)0.001 (3)0.003 (3)
N20.045 (3)0.043 (3)0.037 (3)0.008 (3)0.008 (2)0.005 (3)
N30.049 (3)0.056 (4)0.036 (3)0.015 (3)0.008 (2)0.007 (3)
C10.046 (4)0.049 (4)0.057 (5)0.003 (3)0.005 (3)0.001 (4)
C20.057 (4)0.035 (4)0.086 (5)0.004 (3)0.013 (4)0.004 (4)
C30.050 (4)0.068 (6)0.083 (6)0.021 (4)0.005 (4)0.012 (5)
C40.037 (4)0.064 (5)0.073 (5)0.009 (4)0.003 (4)0.009 (4)
C50.031 (3)0.049 (4)0.065 (4)0.004 (3)0.004 (3)0.006 (3)
C60.038 (3)0.040 (3)0.036 (3)0.002 (3)0.006 (3)0.004 (3)
C70.029 (3)0.042 (3)0.037 (3)0.006 (3)0.001 (3)0.001 (3)
C80.029 (3)0.035 (3)0.034 (4)0.000 (3)0.003 (3)0.004 (3)
Geometric parameters (Å, º) top
Br—C51.901 (7)C3—H30.9300
N1—N21.383 (7)C4—C51.383 (9)
N3—H3A0.8600C4—H40.9300
N3—H3B0.8600C5—C61.365 (8)
C1—C21.377 (9)C6—C71.498 (8)
C1—C61.384 (8)C7—N11.278 (7)
C1—H10.9300C7—S1.742 (6)
C2—C31.373 (10)C8—N21.302 (7)
C2—H20.9300C8—N31.325 (7)
C3—C41.365 (11)C8—S1.752 (6)
C2—C1—C6121.8 (7)C5—C6—C1117.6 (6)
C2—C1—H1119.1C5—C6—C7125.3 (6)
C6—C1—H1119.1C1—C6—C7117.1 (6)
C3—C2—C1118.9 (7)N1—C7—C6123.0 (6)
C3—C2—H2120.5N1—C7—S114.0 (5)
C1—C2—H2120.5C6—C7—S122.6 (4)
C4—C3—C2120.6 (7)N2—C8—N3124.6 (5)
C4—C3—H3119.7N2—C8—S113.4 (4)
C2—C3—H3119.7N3—C8—S122.0 (5)
C3—C4—C5119.4 (6)C7—N1—N2113.7 (5)
C3—C4—H4120.3C8—N2—N1112.4 (5)
C5—C4—H4120.3C8—N3—H3A120.0
C6—C5—C4121.6 (6)C8—N3—H3B120.0
C6—C5—Br121.2 (5)H3A—N3—H3B120.0
C4—C5—Br117.1 (5)C7—S—C886.4 (3)
C6—C1—C2—C30.2 (11)C1—C6—C7—N144.3 (9)
C1—C2—C3—C41.0 (12)C5—C6—C7—S51.2 (8)
C2—C3—C4—C50.5 (12)C1—C6—C7—S128.4 (6)
C3—C4—C5—C61.3 (11)C6—C7—N1—N2174.6 (5)
C3—C4—C5—Br177.2 (6)S—C7—N1—N21.3 (7)
C4—C5—C6—C12.5 (11)N3—C8—N2—N1179.0 (6)
Br—C5—C6—C1176.0 (5)S—C8—N2—N10.6 (6)
C4—C5—C6—C7177.2 (6)C7—N1—N2—C81.2 (7)
Br—C5—C6—C74.4 (9)N1—C7—S—C80.8 (5)
C2—C1—C6—C51.9 (11)C6—C7—S—C8174.1 (5)
C2—C1—C6—C7177.8 (6)N2—C8—S—C70.1 (5)
C5—C6—C7—N1136.1 (7)N3—C8—S—C7179.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.273.092 (7)160
N3—H3A···N2i0.862.613.221 (7)129
N3—H3B···N2ii0.862.062.896 (7)163
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6BrN3S
Mr256.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.869 (3), 8.0250 (16), 7.9480 (16)
β (°) 97.43 (3)
V3)940.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.55
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.343, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
1832, 1694, 972
Rint0.034
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.153, 0.97
No. of reflections1694
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.57

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.273.092 (7)160.3
N3—H3A···N2i0.862.613.221 (7)128.5
N3—H3B···N2ii0.862.062.896 (7)163.2
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+5/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOmar, A. & Aboulwafa, O. M. (1986). J. Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds