organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Allyl-4-ethyl­morpholinium chloride

aSchool of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: chemhong@126.com

(Received 4 September 2008; accepted 19 September 2008; online 27 September 2008)

In the title molecular salt, C9H18NO+·Cl, the morpholine ring adopts a chair conformation. In the crystal structure, intra­molecular C—H⋯Cl bonds occur and inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Abedin et al. (2004[Abedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510-514.], 2005[Abedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333-2339.]); Kim et al. (2005[Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673-5678.], 2006[Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315-1317.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C9H18NO+·Cl

  • Mr = 191.69

  • Monoclinic, P 21 /n

  • a = 8.5414 (17) Å

  • b = 9.0391 (18) Å

  • c = 13.124 (3) Å

  • β = 91.03 (3)°

  • V = 1013.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 133 (2) K

  • 0.12 × 0.10 × 0.04 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.961, Tmax = 0.987

  • 5624 measured reflections

  • 1779 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.07

  • 1779 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.97 2.48 3.4446 (19) 175
C2—H2A⋯Cl1ii 0.97 2.69 3.4417 (15) 135
C2—H2B⋯Cl1iii 0.97 2.72 3.6690 (17) 166
C4—H4A⋯Cl1iv 0.97 2.83 3.7513 (16) 160
C4—H4B⋯Cl1v 0.97 2.71 3.5612 (18) 147
C5—H5A⋯Cl1iv 0.97 2.78 3.6871 (16) 157
C5—H5B⋯Cl1iii 0.97 2.81 3.7562 (16) 166
C6—H6⋯Cl1 0.93 2.75 3.6777 (18) 173
C7—H7A⋯Cl1iii 0.93 2.92 3.776 (2) 154
C7—H7B⋯O1vi 0.93 2.58 3.4456 (19) 155
C9—H9B⋯O1vii 0.96 2.58 3.5359 (19) 173
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) x+1, y, z; (vi) x-1, y, z; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids (ILs) by ion metathesis (Kim et al., 2005). The excellent conductivity, broad electrochemical window, thermal stability, and low volatility of ILs have made them promising media for electrochemical processes (Abedin et al., 2004; Abedin et al., 2005). In particular, ILs based on the morpholinium cation are favored because of their low cost, easy synthesis and electrochemical stability (Kim et al., 2006). So far, only a few crystallographic studies have been performed on salts. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The morpholine ring (O1/N1/C1-C4) is, of course, not planar, having total puckering amplitude, QT, of 1.085 (3) and chair conformation [ϕ = -154.63 (3)° and θ = 122.70 (3)°] (Cremer & Pople, 1975).

In the crystal structure, intramolecular C-H···Cl and intermolecular C-H···O and C-H···Cl hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Abedin et al. (2004, 2005); Kim et al. (2005, 2006). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Under vigorous stirring, allyl chloride (0.1 mol) was added to a solution of 4-ethylmorpholine (0.1 mol) in acetonitrile (20 ml). The mixture was stirred at 333 K for 2 h. The mixture was filtered to remove excess N-ethyl morpholine and allyl chloride and washed with acetone to give the title compound. It was crystallized from ethanol/acetone mixture (1:20) by slow evaporation.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-Allyl-4-ethylmorpholinium chloride top
Crystal data top
C9H18NO+·ClF(000) = 416
Mr = 191.69Dx = 1.257 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1775 reflections
a = 8.5414 (17) Åθ = 2.1–27.8°
b = 9.0391 (18) ŵ = 0.33 mm1
c = 13.124 (3) ÅT = 133 K
β = 91.03 (3)°Prism, colorless
V = 1013.1 (4) Å30.12 × 0.10 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1779 independent reflections
Radiation source: fine-focus sealed tube1605 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
Detector resolution: 27.571 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1010
Tmin = 0.961, Tmax = 0.987l = 157
5624 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2964P]
where P = (Fo2 + 2Fc2)/3
1779 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H18NO+·ClV = 1013.1 (4) Å3
Mr = 191.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5414 (17) ŵ = 0.33 mm1
b = 9.0391 (18) ÅT = 133 K
c = 13.124 (3) Å0.12 × 0.10 × 0.04 mm
β = 91.03 (3)°
Data collection top
Rigaku Saturn
diffractometer
1779 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1605 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.987Rint = 0.028
5624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
1779 reflectionsΔρmin = 0.21 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25140 (4)0.17741 (4)0.39587 (3)0.01833 (14)
O11.03933 (11)0.39901 (11)0.64961 (8)0.0178 (2)
N10.76318 (13)0.27908 (13)0.54538 (9)0.0132 (3)
C10.79277 (17)0.44310 (15)0.56086 (11)0.0152 (3)
H1A0.84480.48240.50160.018*
H1B0.69320.49370.56680.018*
C20.89224 (17)0.47404 (15)0.65487 (11)0.0169 (3)
H2A0.91010.57970.66090.020*
H2B0.83730.44150.71490.020*
C31.01221 (17)0.24347 (15)0.64773 (11)0.0177 (3)
H3A0.95650.21490.70840.021*
H3B1.11190.19200.64840.021*
C40.91803 (16)0.19804 (15)0.55435 (11)0.0164 (3)
H4A0.89830.09240.55710.020*
H4B0.97870.21770.49410.020*
C50.65242 (16)0.21894 (15)0.62513 (11)0.0140 (3)
H5A0.64380.11260.61690.017*
H5B0.69700.23780.69240.017*
C60.49194 (17)0.28520 (16)0.61896 (11)0.0177 (3)
H60.42920.26680.56170.021*
C70.43728 (18)0.36865 (18)0.69216 (12)0.0242 (4)
H7A0.49880.38800.74980.029*
H7B0.33710.40840.68630.029*
C80.69654 (17)0.25945 (16)0.43820 (11)0.0177 (3)
H8A0.59810.31270.43280.021*
H8B0.76800.30410.39050.021*
C90.66857 (19)0.10082 (16)0.40710 (11)0.0220 (4)
H9A0.76620.04810.40850.033*
H9B0.62410.09800.33940.033*
H9C0.59760.05540.45360.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0215 (2)0.0166 (2)0.0169 (2)0.00409 (13)0.00052 (15)0.00080 (13)
O10.0150 (6)0.0159 (5)0.0223 (6)0.0008 (4)0.0006 (4)0.0002 (4)
N10.0141 (6)0.0130 (6)0.0126 (6)0.0005 (5)0.0015 (5)0.0012 (5)
C10.0168 (7)0.0107 (7)0.0182 (7)0.0006 (5)0.0024 (6)0.0021 (6)
C20.0179 (8)0.0136 (7)0.0192 (7)0.0007 (6)0.0020 (6)0.0005 (6)
C30.0156 (7)0.0141 (7)0.0234 (8)0.0024 (5)0.0008 (6)0.0013 (6)
C40.0137 (8)0.0151 (7)0.0204 (8)0.0034 (5)0.0028 (6)0.0006 (6)
C50.0154 (7)0.0138 (6)0.0130 (7)0.0020 (5)0.0021 (6)0.0009 (6)
C60.0138 (7)0.0213 (7)0.0179 (8)0.0033 (6)0.0012 (6)0.0027 (6)
C70.0171 (8)0.0290 (8)0.0263 (9)0.0036 (6)0.0008 (7)0.0017 (7)
C80.0199 (8)0.0213 (8)0.0118 (7)0.0011 (6)0.0003 (6)0.0013 (6)
C90.0256 (9)0.0241 (8)0.0161 (8)0.0025 (6)0.0018 (6)0.0025 (6)
Geometric parameters (Å, º) top
O1—C21.4305 (17)C4—H4B0.9700
O1—C31.4250 (17)C5—H5A0.9700
N1—C11.5170 (17)C5—H5B0.9700
N1—C41.5146 (17)C6—C51.497 (2)
N1—C51.5237 (18)C6—C71.314 (2)
N1—C81.5183 (18)C6—H60.9300
C1—C21.511 (2)C7—H7A0.9300
C1—H1A0.9700C7—H7B0.9300
C1—H1B0.9700C8—C91.509 (2)
C2—H2A0.9700C8—H8A0.9700
C2—H2B0.9700C8—H8B0.9700
C3—C41.511 (2)C9—H9A0.9600
C3—H3A0.9700C9—H9B0.9600
C3—H3B0.9700C9—H9C0.9600
C4—H4A0.9700
C3—O1—C2109.02 (10)C3—C4—H4A109.1
C1—N1—C5111.15 (11)C3—C4—H4B109.1
C1—N1—C8107.28 (10)H4A—C4—H4B107.8
C4—N1—C1108.61 (10)N1—C5—H5A108.9
C4—N1—C5109.04 (11)N1—C5—H5B108.9
C4—N1—C8109.13 (11)C6—C5—N1113.54 (11)
C8—N1—C5111.57 (11)C6—C5—H5A108.9
N1—C1—H1A109.1C6—C5—H5B108.9
N1—C1—H1B109.1H5A—C5—H5B107.7
H1A—C1—H1B107.9C7—C6—C5121.82 (14)
C2—C1—N1112.33 (11)C7—C6—H6119.1
C2—C1—H1A109.1C5—C6—H6119.1
C2—C1—H1B109.1C6—C7—H7A120.0
O1—C2—C1110.74 (12)C6—C7—H7B120.0
O1—C2—H2A109.5H7A—C7—H7B120.0
O1—C2—H2B109.5N1—C8—H8A108.6
C1—C2—H2A109.5N1—C8—H8B108.6
C1—C2—H2B109.5C9—C8—N1114.62 (11)
H2A—C2—H2B108.1C9—C8—H8A108.6
O1—C3—C4111.49 (11)C9—C8—H8B108.6
O1—C3—H3A109.3H8A—C8—H8B107.6
O1—C3—H3B109.3C8—C9—H9A109.5
C4—C3—H3A109.3C8—C9—H9B109.5
C4—C3—H3B109.3H9A—C9—H9B109.5
H3A—C3—H3B108.0C8—C9—H9C109.5
N1—C4—H4A109.1H9A—C9—H9C109.5
N1—C4—H4B109.1H9B—C9—H9C109.5
C3—C4—N1112.52 (11)
N1—C1—C2—O157.87 (15)C1—N1—C5—C663.78 (14)
C3—O1—C2—C163.03 (14)C4—N1—C5—C6176.51 (11)
C2—O1—C3—C462.46 (15)C8—N1—C5—C655.91 (15)
C4—N1—C1—C249.24 (15)C1—N1—C8—C9176.57 (12)
C5—N1—C1—C270.72 (14)C4—N1—C8—C959.07 (15)
C8—N1—C1—C2167.07 (12)C5—N1—C8—C961.48 (15)
C1—N1—C4—C348.38 (15)O1—C3—C4—N156.48 (16)
C5—N1—C4—C372.88 (14)C7—C6—C5—N1114.26 (16)
C8—N1—C4—C3165.03 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.483.4446 (19)175
C2—H2A···Cl1ii0.972.693.4417 (15)135
C2—H2B···Cl1iii0.972.723.6690 (17)166
C4—H4A···Cl1iv0.972.833.7513 (16)160
C4—H4B···Cl1v0.972.713.5612 (18)147
C5—H5A···Cl1iv0.972.783.6871 (16)157
C5—H5B···Cl1iii0.972.813.7562 (16)166
C6—H6···Cl10.932.753.6777 (18)173
C7—H7A···Cl1iii0.932.923.776 (2)154
C7—H7B···O1vi0.932.583.4456 (19)155
C9—H9B···O1vii0.962.583.5359 (19)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x1, y, z; (vii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H18NO+·Cl
Mr191.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)133
a, b, c (Å)8.5414 (17), 9.0391 (18), 13.124 (3)
β (°) 91.03 (3)
V3)1013.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.12 × 0.10 × 0.04
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.961, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5624, 1779, 1605
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.08
No. of reflections1779
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.483.4446 (19)174.9
C2—H2A···Cl1ii0.972.693.4417 (15)134.6
C2—H2B···Cl1iii0.972.723.6690 (17)166.2
C4—H4A···Cl1iv0.972.833.7513 (16)159.5
C4—H4B···Cl1v0.972.713.5612 (18)147.2
C5—H5A···Cl1iv0.972.783.6871 (16)156.7
C5—H5B···Cl1iii0.972.813.7562 (16)165.6
C6—H6···Cl10.932.753.6777 (18)173.2
C7—H7A···Cl1iii0.932.923.776 (2)153.6
C7—H7B···O1vi0.932.583.4456 (19)154.8
C9—H9B···O1vii0.962.583.5359 (19)172.7
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x1, y, z; (vii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Tianjin Natural Science Foundation (grant No. 07JCYBJC02200) for financial support.

References

First citationAbedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510–514.  Web of Science CrossRef Google Scholar
First citationAbedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333–2339.  Web of Science PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315–1317.  Web of Science CrossRef CAS Google Scholar
First citationKim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673–5678.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds