organic compounds
4-Allyl-4-ethylmorpholinium chloride
aSchool of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: chemhong@126.com
In the title molecular salt, C9H18NO+·Cl−, the morpholine ring adopts a chair conformation. In the intramolecular C—H⋯Cl bonds occur and intermolecular C—H⋯O and C—H⋯Cl hydrogen bonds link the molecules.
Related literature
For general background, see: Abedin et al. (2004, 2005); Kim et al. (2005, 2006). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808030201/hk2524sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808030201/hk2524Isup2.hkl
Under vigorous stirring, allyl chloride (0.1 mol) was added to a solution of 4-ethylmorpholine (0.1 mol) in acetonitrile (20 ml). The mixture was stirred at 333 K for 2 h. The mixture was filtered to remove excess N-ethyl morpholine and allyl chloride and washed with acetone to give the title compound. It was crystallized from ethanol/acetone mixture (1:20) by slow evaporation.
H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. |
C9H18NO+·Cl− | F(000) = 416 |
Mr = 191.69 | Dx = 1.257 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1775 reflections |
a = 8.5414 (17) Å | θ = 2.1–27.8° |
b = 9.0391 (18) Å | µ = 0.33 mm−1 |
c = 13.124 (3) Å | T = 133 K |
β = 91.03 (3)° | Prism, colorless |
V = 1013.1 (4) Å3 | 0.12 × 0.10 × 0.04 mm |
Z = 4 |
Rigaku Saturn diffractometer | 1779 independent reflections |
Radiation source: fine-focus sealed tube | 1605 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.028 |
Detector resolution: 27.571 pixels mm-1 | θmax = 25.0°, θmin = 2.7° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (Jacobson, 1998) | k = −10→10 |
Tmin = 0.961, Tmax = 0.987 | l = −15→7 |
5624 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2964P] where P = (Fo2 + 2Fc2)/3 |
1779 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C9H18NO+·Cl− | V = 1013.1 (4) Å3 |
Mr = 191.69 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.5414 (17) Å | µ = 0.33 mm−1 |
b = 9.0391 (18) Å | T = 133 K |
c = 13.124 (3) Å | 0.12 × 0.10 × 0.04 mm |
β = 91.03 (3)° |
Rigaku Saturn diffractometer | 1779 independent reflections |
Absorption correction: multi-scan (Jacobson, 1998) | 1605 reflections with I > 2σ(I) |
Tmin = 0.961, Tmax = 0.987 | Rint = 0.028 |
5624 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.24 e Å−3 |
1779 reflections | Δρmin = −0.21 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.25140 (4) | 0.17741 (4) | 0.39587 (3) | 0.01833 (14) | |
O1 | 1.03933 (11) | 0.39901 (11) | 0.64961 (8) | 0.0178 (2) | |
N1 | 0.76318 (13) | 0.27908 (13) | 0.54538 (9) | 0.0132 (3) | |
C1 | 0.79277 (17) | 0.44310 (15) | 0.56086 (11) | 0.0152 (3) | |
H1A | 0.8448 | 0.4824 | 0.5016 | 0.018* | |
H1B | 0.6932 | 0.4937 | 0.5668 | 0.018* | |
C2 | 0.89224 (17) | 0.47404 (15) | 0.65487 (11) | 0.0169 (3) | |
H2A | 0.9101 | 0.5797 | 0.6609 | 0.020* | |
H2B | 0.8373 | 0.4415 | 0.7149 | 0.020* | |
C3 | 1.01221 (17) | 0.24347 (15) | 0.64773 (11) | 0.0177 (3) | |
H3A | 0.9565 | 0.2149 | 0.7084 | 0.021* | |
H3B | 1.1119 | 0.1920 | 0.6484 | 0.021* | |
C4 | 0.91803 (16) | 0.19804 (15) | 0.55435 (11) | 0.0164 (3) | |
H4A | 0.8983 | 0.0924 | 0.5571 | 0.020* | |
H4B | 0.9787 | 0.2177 | 0.4941 | 0.020* | |
C5 | 0.65242 (16) | 0.21894 (15) | 0.62513 (11) | 0.0140 (3) | |
H5A | 0.6438 | 0.1126 | 0.6169 | 0.017* | |
H5B | 0.6970 | 0.2378 | 0.6924 | 0.017* | |
C6 | 0.49194 (17) | 0.28520 (16) | 0.61896 (11) | 0.0177 (3) | |
H6 | 0.4292 | 0.2668 | 0.5617 | 0.021* | |
C7 | 0.43728 (18) | 0.36865 (18) | 0.69216 (12) | 0.0242 (4) | |
H7A | 0.4988 | 0.3880 | 0.7498 | 0.029* | |
H7B | 0.3371 | 0.4084 | 0.6863 | 0.029* | |
C8 | 0.69654 (17) | 0.25945 (16) | 0.43820 (11) | 0.0177 (3) | |
H8A | 0.5981 | 0.3127 | 0.4328 | 0.021* | |
H8B | 0.7680 | 0.3041 | 0.3905 | 0.021* | |
C9 | 0.66857 (19) | 0.10082 (16) | 0.40710 (11) | 0.0220 (4) | |
H9A | 0.7662 | 0.0481 | 0.4085 | 0.033* | |
H9B | 0.6241 | 0.0980 | 0.3394 | 0.033* | |
H9C | 0.5976 | 0.0554 | 0.4536 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0215 (2) | 0.0166 (2) | 0.0169 (2) | 0.00409 (13) | −0.00052 (15) | −0.00080 (13) |
O1 | 0.0150 (6) | 0.0159 (5) | 0.0223 (6) | −0.0008 (4) | −0.0006 (4) | −0.0002 (4) |
N1 | 0.0141 (6) | 0.0130 (6) | 0.0126 (6) | 0.0005 (5) | 0.0015 (5) | 0.0012 (5) |
C1 | 0.0168 (7) | 0.0107 (7) | 0.0182 (7) | 0.0006 (5) | 0.0024 (6) | 0.0021 (6) |
C2 | 0.0179 (8) | 0.0136 (7) | 0.0192 (7) | 0.0007 (6) | 0.0020 (6) | −0.0005 (6) |
C3 | 0.0156 (7) | 0.0141 (7) | 0.0234 (8) | 0.0024 (5) | −0.0008 (6) | 0.0013 (6) |
C4 | 0.0137 (8) | 0.0151 (7) | 0.0204 (8) | 0.0034 (5) | 0.0028 (6) | −0.0006 (6) |
C5 | 0.0154 (7) | 0.0138 (6) | 0.0130 (7) | −0.0020 (5) | 0.0021 (6) | 0.0009 (6) |
C6 | 0.0138 (7) | 0.0213 (7) | 0.0179 (8) | −0.0033 (6) | −0.0012 (6) | 0.0027 (6) |
C7 | 0.0171 (8) | 0.0290 (8) | 0.0263 (9) | 0.0036 (6) | 0.0008 (7) | −0.0017 (7) |
C8 | 0.0199 (8) | 0.0213 (8) | 0.0118 (7) | 0.0011 (6) | −0.0003 (6) | 0.0013 (6) |
C9 | 0.0256 (9) | 0.0241 (8) | 0.0161 (8) | −0.0025 (6) | −0.0018 (6) | −0.0025 (6) |
O1—C2 | 1.4305 (17) | C4—H4B | 0.9700 |
O1—C3 | 1.4250 (17) | C5—H5A | 0.9700 |
N1—C1 | 1.5170 (17) | C5—H5B | 0.9700 |
N1—C4 | 1.5146 (17) | C6—C5 | 1.497 (2) |
N1—C5 | 1.5237 (18) | C6—C7 | 1.314 (2) |
N1—C8 | 1.5183 (18) | C6—H6 | 0.9300 |
C1—C2 | 1.511 (2) | C7—H7A | 0.9300 |
C1—H1A | 0.9700 | C7—H7B | 0.9300 |
C1—H1B | 0.9700 | C8—C9 | 1.509 (2) |
C2—H2A | 0.9700 | C8—H8A | 0.9700 |
C2—H2B | 0.9700 | C8—H8B | 0.9700 |
C3—C4 | 1.511 (2) | C9—H9A | 0.9600 |
C3—H3A | 0.9700 | C9—H9B | 0.9600 |
C3—H3B | 0.9700 | C9—H9C | 0.9600 |
C4—H4A | 0.9700 | ||
C3—O1—C2 | 109.02 (10) | C3—C4—H4A | 109.1 |
C1—N1—C5 | 111.15 (11) | C3—C4—H4B | 109.1 |
C1—N1—C8 | 107.28 (10) | H4A—C4—H4B | 107.8 |
C4—N1—C1 | 108.61 (10) | N1—C5—H5A | 108.9 |
C4—N1—C5 | 109.04 (11) | N1—C5—H5B | 108.9 |
C4—N1—C8 | 109.13 (11) | C6—C5—N1 | 113.54 (11) |
C8—N1—C5 | 111.57 (11) | C6—C5—H5A | 108.9 |
N1—C1—H1A | 109.1 | C6—C5—H5B | 108.9 |
N1—C1—H1B | 109.1 | H5A—C5—H5B | 107.7 |
H1A—C1—H1B | 107.9 | C7—C6—C5 | 121.82 (14) |
C2—C1—N1 | 112.33 (11) | C7—C6—H6 | 119.1 |
C2—C1—H1A | 109.1 | C5—C6—H6 | 119.1 |
C2—C1—H1B | 109.1 | C6—C7—H7A | 120.0 |
O1—C2—C1 | 110.74 (12) | C6—C7—H7B | 120.0 |
O1—C2—H2A | 109.5 | H7A—C7—H7B | 120.0 |
O1—C2—H2B | 109.5 | N1—C8—H8A | 108.6 |
C1—C2—H2A | 109.5 | N1—C8—H8B | 108.6 |
C1—C2—H2B | 109.5 | C9—C8—N1 | 114.62 (11) |
H2A—C2—H2B | 108.1 | C9—C8—H8A | 108.6 |
O1—C3—C4 | 111.49 (11) | C9—C8—H8B | 108.6 |
O1—C3—H3A | 109.3 | H8A—C8—H8B | 107.6 |
O1—C3—H3B | 109.3 | C8—C9—H9A | 109.5 |
C4—C3—H3A | 109.3 | C8—C9—H9B | 109.5 |
C4—C3—H3B | 109.3 | H9A—C9—H9B | 109.5 |
H3A—C3—H3B | 108.0 | C8—C9—H9C | 109.5 |
N1—C4—H4A | 109.1 | H9A—C9—H9C | 109.5 |
N1—C4—H4B | 109.1 | H9B—C9—H9C | 109.5 |
C3—C4—N1 | 112.52 (11) | ||
N1—C1—C2—O1 | 57.87 (15) | C1—N1—C5—C6 | 63.78 (14) |
C3—O1—C2—C1 | −63.03 (14) | C4—N1—C5—C6 | −176.51 (11) |
C2—O1—C3—C4 | 62.46 (15) | C8—N1—C5—C6 | −55.91 (15) |
C4—N1—C1—C2 | −49.24 (15) | C1—N1—C8—C9 | 176.57 (12) |
C5—N1—C1—C2 | 70.72 (14) | C4—N1—C8—C9 | 59.07 (15) |
C8—N1—C1—C2 | −167.07 (12) | C5—N1—C8—C9 | −61.48 (15) |
C1—N1—C4—C3 | 48.38 (15) | O1—C3—C4—N1 | −56.48 (16) |
C5—N1—C4—C3 | −72.88 (14) | C7—C6—C5—N1 | −114.26 (16) |
C8—N1—C4—C3 | 165.03 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1i | 0.97 | 2.48 | 3.4446 (19) | 175 |
C2—H2A···Cl1ii | 0.97 | 2.69 | 3.4417 (15) | 135 |
C2—H2B···Cl1iii | 0.97 | 2.72 | 3.6690 (17) | 166 |
C4—H4A···Cl1iv | 0.97 | 2.83 | 3.7513 (16) | 160 |
C4—H4B···Cl1v | 0.97 | 2.71 | 3.5612 (18) | 147 |
C5—H5A···Cl1iv | 0.97 | 2.78 | 3.6871 (16) | 157 |
C5—H5B···Cl1iii | 0.97 | 2.81 | 3.7562 (16) | 166 |
C6—H6···Cl1 | 0.93 | 2.75 | 3.6777 (18) | 173 |
C7—H7A···Cl1iii | 0.93 | 2.92 | 3.776 (2) | 154 |
C7—H7B···O1vi | 0.93 | 2.58 | 3.4456 (19) | 155 |
C9—H9B···O1vii | 0.96 | 2.58 | 3.5359 (19) | 173 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1, −y, −z+1; (v) x+1, y, z; (vi) x−1, y, z; (vii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H18NO+·Cl− |
Mr | 191.69 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 133 |
a, b, c (Å) | 8.5414 (17), 9.0391 (18), 13.124 (3) |
β (°) | 91.03 (3) |
V (Å3) | 1013.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.12 × 0.10 × 0.04 |
Data collection | |
Diffractometer | Rigaku Saturn diffractometer |
Absorption correction | Multi-scan (Jacobson, 1998) |
Tmin, Tmax | 0.961, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5624, 1779, 1605 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.079, 1.08 |
No. of reflections | 1779 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.21 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1i | 0.97 | 2.48 | 3.4446 (19) | 174.9 |
C2—H2A···Cl1ii | 0.97 | 2.69 | 3.4417 (15) | 134.6 |
C2—H2B···Cl1iii | 0.97 | 2.72 | 3.6690 (17) | 166.2 |
C4—H4A···Cl1iv | 0.97 | 2.83 | 3.7513 (16) | 159.5 |
C4—H4B···Cl1v | 0.97 | 2.71 | 3.5612 (18) | 147.2 |
C5—H5A···Cl1iv | 0.97 | 2.78 | 3.6871 (16) | 156.7 |
C5—H5B···Cl1iii | 0.97 | 2.81 | 3.7562 (16) | 165.6 |
C6—H6···Cl1 | 0.93 | 2.75 | 3.6777 (18) | 173.2 |
C7—H7A···Cl1iii | 0.93 | 2.92 | 3.776 (2) | 153.6 |
C7—H7B···O1vi | 0.93 | 2.58 | 3.4456 (19) | 154.8 |
C9—H9B···O1vii | 0.96 | 2.58 | 3.5359 (19) | 172.7 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1, −y, −z+1; (v) x+1, y, z; (vi) x−1, y, z; (vii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors thank Tianjin Natural Science Foundation (grant No. 07JCYBJC02200) for financial support.
References
Abedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510–514. Web of Science CrossRef Google Scholar
Abedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333–2339. Web of Science PubMed Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315–1317. Web of Science CrossRef CAS Google Scholar
Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673–5678. Web of Science CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids (ILs) by ion metathesis (Kim et al., 2005). The excellent conductivity, broad electrochemical window, thermal stability, and low volatility of ILs have made them promising media for electrochemical processes (Abedin et al., 2004; Abedin et al., 2005). In particular, ILs based on the morpholinium cation are favored because of their low cost, easy synthesis and electrochemical stability (Kim et al., 2006). So far, only a few crystallographic studies have been performed on salts. We report herein the crystal structure of the title compound.
In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The morpholine ring (O1/N1/C1-C4) is, of course, not planar, having total puckering amplitude, QT, of 1.085 (3) and chair conformation [ϕ = -154.63 (3)° and θ = 122.70 (3)°] (Cremer & Pople, 1975).
In the crystal structure, intramolecular C-H···Cl and intermolecular C-H···O and C-H···Cl hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.