metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(6-methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Kazeroon Branch, Kazeroon, Fars, Iran, and cDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 8 September 2008; accepted 9 September 2008; online 13 September 2008)

In the mol­ecule of the title compound, [ZnCl2(C11H10N2)], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the 6-methyl-2,2′-bipyridine ligand and by two Cl atoms. There are ππ contacts between the pyridine ring and the five-membered ring, and also between the pyridine rings, [centroid–centroid distances = 3.685 (3) and 3.757 (3) Å, respectively].

Related literature

For related literature, see: Ahmadi et al. (2008[Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64 m1259.]); Khan & Tuck (1984[Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.]); Gruia et al. (2007[Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825-1840.]); Kozhevnikov et al. (2006[Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025-7029.]); Reimann et al. (1966[Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185-1189.]); Preston & Kennard (1969[Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965-1968.]); Liu et al. (2004[Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Steffen & Palenik (1976[Steffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298-300.], 1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.]); Qin et al. (1999[Qin, J., Su, N., Dai, C., Yang, C., Liu, D., Day, M. W., Wu, B. & Chen, C. (1999). Polyhedron, 18, 3461-3464.]); Lundberg (1966[Lundberg, B. K. S. (1966). Acta Cryst. 21, 901-909.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C11H10N2)]

  • Mr = 306.50

  • Monoclinic, P 21 /n

  • a = 7.4674 (15) Å

  • b = 9.5105 (17) Å

  • c = 17.656 (4) Å

  • β = 96.551 (18)°

  • V = 1245.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 298 (2) K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.802

  • 10401 measured reflections

  • 3358 independent reflections

  • 2576 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.130

  • S = 1.17

  • 3358 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.066 (4)
Zn1—N2 2.053 (4)
Zn1—Cl1 2.2236 (15)
Zn1—Cl2 2.1995 (13)
N1—Zn1—Cl1 111.08 (11)
N2—Zn1—Cl1 109.16 (11)
Cl2—Zn1—Cl1 116.72 (5)
N1—Zn1—Cl2 116.84 (11)
N2—Zn1—Cl2 117.28 (10)
N2—Zn1—N1 80.31 (15)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the syntheses and crystal structures of [Cd(5,5'-dmbpy)(µ-Cl)2]n, (II), (Ahmadi et al., 2008) and [Hg(4,4'-dmbpy)I2], (III), (Yousefi et al., 2008) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bi- pyridine]. There are several ZnII complexes, with formula, [ZnCl2(N-N)], such as [ZnCl2(bipy)], (IV), (Khan & Tuck, 1984), [ZnCl2(biim)], (V), (Gruia et al., 2007), [ZnCl2(phbipy)], (VI), (Kozhevnikov et al., 2006), [ZnCl2(phen)], (VII), (Reimann et al., 1966), [ZnCl2(dmphen)], (VIII), (Preston & Kennard, 1969), [ZnCl2(dpdmbip)], (IX), (Liu et al., 2004), [ZnCl2(dm4bt)], (X), (Khavasi et al., 2008) and [Zn(5,5'-dmbpy)Cl2], (XI), (Khalighi et al., 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine and dm4bt is 2,2'-dimethyl-4,4'-bithiazole] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are several ZnII complexes, with formula, [ZnCl2L2], such as [ZnCl2(py)2], (XII), (Steffen & Palenik, 1976), [ZnCl2(4-cypy)2], (XIII), (Steffen & Palenik, 1977), [ZnCl2(2-ampy)2], (XIV), (Qin et al., 1999) and [ZnCl2(im)2], (XV), (Lundberg, 1966) [where py is pyridine, 4-cypy is 4-cyanopyridine, 2-ampy is 2-aminopyridine and im is imidazole] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (I), (Fig. 1), the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 6-methyl-2,2'-bi- pyridine and two Cl atoms. The Zn-Cl and Zn-N bond lengths and angles (Table 1) are within normal ranges, as in (IV), (VII), (X) and (XI).

In the crystal structure, the ππ contacts (Fig. 2) between the rings A (Zn1/N1/N2/C5/C6) and C (N2/C6-C10), and also between the pyridine rings B (N1/C1-C5) and C, Cg1···Cg3i and Cg2···Cg3ii [symmetry codes: (i) -x, -y, -z; (ii) 1 - x, -y, -z, where Cg1, Cg2 and Cg3 are the centroids of the rings A (Zn1/N1/N2/C5/C6), B (N1/C1-C5) and C (N2/C6-C10), respectively] may stabilize the structure, with centroid-centroid distances of 3.685 (3) Å and 3.757 (3) Å, respectively.

Related literature top

For related literature, see: Ahmadi et al. (2008); Yousefi et al. (2008); Khan & Tuck (1984); Gruia et al. (2007); Kozhevnikov et al. (2006); Reimann et al. (1966); Preston & Kennard (1969); Liu et al. (2004); Khavasi et al. (2008); Khalighi et al. (2008); Steffen & Palenik (1976, 1977); Qin et al. (1999); Lundberg (1966).

Experimental top

For the preparation of the title compound, (I), a solution of 6-methyl-2,2' -bipyridine (0.15 g, 0.88 mmol) in methanol (10 ml) was added to a solution of ZnCl2 (0.12 g, 0.88 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 20 min at at 313 K, and then it was left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield; 0.19 g, 70.4%).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
Dichlorido(6-methyl-2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[ZnCl2(C11H10N2)]F(000) = 616
Mr = 306.50Dx = 1.634 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1987 reflections
a = 7.4674 (15) Åθ = 2.3–29.2°
b = 9.5105 (17) ŵ = 2.37 mm1
c = 17.656 (4) ÅT = 298 K
β = 96.551 (18)°Block, colorless
V = 1245.7 (4) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 29.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1010
Tmin = 0.668, Tmax = 0.802k = 1213
10401 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.9318P]
where P = (Fo2 + 2Fc2)/3
3358 reflections(Δ/σ)max = 0.004
145 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[ZnCl2(C11H10N2)]V = 1245.7 (4) Å3
Mr = 306.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4674 (15) ŵ = 2.37 mm1
b = 9.5105 (17) ÅT = 298 K
c = 17.656 (4) Å0.30 × 0.15 × 0.10 mm
β = 96.551 (18)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3358 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2576 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.802Rint = 0.078
10401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.17Δρmax = 1.05 e Å3
3358 reflectionsΔρmin = 0.70 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.26730 (7)0.26879 (5)0.08829 (3)0.04730 (16)
Cl10.53626 (17)0.30874 (16)0.15251 (8)0.0708 (4)
Cl20.04386 (18)0.40228 (15)0.11668 (9)0.0701 (4)
N10.2881 (5)0.2367 (4)0.0261 (2)0.0494 (8)
N20.2225 (5)0.0559 (4)0.0820 (2)0.0460 (8)
C10.3141 (7)0.3363 (6)0.0782 (3)0.0619 (12)
H10.31450.43040.06390.074*
C20.3400 (8)0.3028 (7)0.1517 (3)0.0741 (16)
H20.35730.37330.18670.089*
C30.3401 (8)0.1653 (7)0.1730 (3)0.0726 (16)
H30.35900.14140.22260.087*
C40.3121 (6)0.0608 (6)0.1210 (3)0.0626 (13)
H40.31200.03350.13500.075*
C50.2840 (5)0.1004 (5)0.0466 (2)0.0465 (9)
C60.2434 (5)0.0003 (5)0.0127 (3)0.0469 (9)
C70.2248 (7)0.1435 (5)0.0005 (3)0.0606 (12)
H70.24120.18240.04650.073*
C80.1819 (7)0.2268 (6)0.0589 (4)0.0698 (15)
H80.16680.32300.05120.084*
C90.1608 (7)0.1700 (6)0.1293 (4)0.0679 (14)
H90.13230.22680.16920.082*
C100.1834 (6)0.0254 (5)0.1392 (3)0.0566 (11)
C110.1652 (11)0.0450 (7)0.2132 (3)0.091 (2)
H11A0.06990.11320.20630.109*
H11B0.27630.09120.23110.109*
H11C0.13760.02390.24980.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0498 (3)0.0446 (3)0.0483 (3)0.0009 (2)0.0092 (2)0.0117 (2)
Cl10.0512 (6)0.0826 (9)0.0770 (9)0.0013 (6)0.0008 (6)0.0358 (7)
Cl20.0599 (7)0.0712 (8)0.0801 (9)0.0137 (6)0.0111 (6)0.0207 (7)
N10.0449 (18)0.056 (2)0.0475 (19)0.0037 (16)0.0055 (15)0.0037 (17)
N20.0411 (18)0.0465 (18)0.050 (2)0.0016 (14)0.0053 (15)0.0024 (15)
C10.060 (3)0.068 (3)0.059 (3)0.005 (2)0.012 (2)0.007 (2)
C20.078 (4)0.096 (5)0.051 (3)0.004 (3)0.015 (3)0.010 (3)
C30.068 (3)0.107 (5)0.044 (3)0.010 (3)0.011 (2)0.004 (3)
C40.052 (3)0.077 (3)0.056 (3)0.014 (2)0.001 (2)0.023 (3)
C50.0370 (19)0.058 (2)0.043 (2)0.0091 (18)0.0018 (16)0.0112 (18)
C60.0346 (19)0.048 (2)0.056 (2)0.0026 (17)0.0032 (17)0.0144 (19)
C70.057 (3)0.049 (3)0.074 (3)0.001 (2)0.004 (2)0.014 (2)
C80.058 (3)0.043 (2)0.106 (4)0.000 (2)0.001 (3)0.009 (3)
C90.057 (3)0.058 (3)0.088 (4)0.003 (2)0.003 (3)0.022 (3)
C100.050 (2)0.060 (3)0.059 (3)0.002 (2)0.003 (2)0.002 (2)
C110.129 (6)0.093 (5)0.053 (3)0.010 (4)0.025 (4)0.013 (3)
Geometric parameters (Å, º) top
Zn1—N12.066 (4)C5—C61.475 (7)
Zn1—N22.053 (4)C6—N21.360 (5)
Zn1—Cl12.2236 (15)C6—C71.384 (6)
Zn1—Cl22.1995 (13)C7—C81.367 (8)
C1—N11.350 (6)C7—H70.9300
C1—C21.371 (7)C8—C91.381 (8)
C1—H10.9300C8—H80.9300
C2—C31.361 (9)C9—C101.394 (7)
C2—H20.9300C9—H90.9300
C3—C41.385 (8)C10—N21.329 (6)
C3—H30.9300C10—C111.488 (8)
C4—C51.406 (6)C11—H11A0.9600
C4—H40.9300C11—H11B0.9600
C5—N11.345 (6)C11—H11C0.9600
N1—Zn1—Cl1111.08 (11)N1—C5—C4120.5 (5)
N2—Zn1—Cl1109.16 (11)N1—C5—C6115.8 (4)
Cl2—Zn1—Cl1116.72 (5)C4—C5—C6123.7 (4)
N1—Zn1—Cl2116.84 (11)N2—C6—C7120.5 (5)
N2—Zn1—Cl2117.28 (10)N2—C6—C5115.9 (4)
N2—Zn1—N180.31 (15)C7—C6—C5123.6 (4)
C1—N1—Zn1126.6 (3)C8—C7—C6118.7 (5)
C5—N1—Zn1113.8 (3)C8—C7—H7120.6
C5—N1—C1119.6 (4)C6—C7—H7120.6
C6—N2—Zn1113.6 (3)C7—C8—C9120.9 (5)
C10—N2—Zn1125.5 (3)C7—C8—H8119.5
C10—N2—C6120.8 (4)C9—C8—H8119.5
N1—C1—C2121.9 (5)C8—C9—C10118.2 (5)
N1—C1—H1119.0C8—C9—H9120.9
C2—C1—H1119.0C10—C9—H9120.9
C3—C2—C1119.3 (5)N2—C10—C9120.9 (5)
C3—C2—H2120.3N2—C10—C11117.1 (5)
C1—C2—H2120.3C9—C10—C11122.1 (5)
C2—C3—C4120.1 (5)C10—C11—H11A109.5
C2—C3—H3120.0C10—C11—H11B109.5
C4—C3—H3120.0H11A—C11—H11B109.5
C3—C4—C5118.5 (5)C10—C11—H11C109.5
C3—C4—H4120.7H11A—C11—H11C109.5
C5—C4—H4120.7H11B—C11—H11C109.5
N2—Zn1—N1—C56.9 (3)C6—C5—N1—Zn17.2 (5)
Cl2—Zn1—N1—C5122.7 (3)C6—C5—N1—C1176.3 (4)
Cl1—Zn1—N1—C5100.0 (3)N1—C5—C6—N22.7 (5)
N2—Zn1—N1—C1176.9 (4)C4—C5—C6—N2179.1 (4)
Cl2—Zn1—N1—C161.1 (4)N1—C5—C6—C7176.6 (4)
Cl1—Zn1—N1—C176.2 (4)C4—C5—C6—C71.6 (7)
Cl1—Zn1—N2—C1073.8 (4)C5—C6—N2—Zn13.3 (4)
Cl2—Zn1—N2—C1061.8 (4)C5—C6—N2—C10179.1 (4)
N1—Zn1—N2—C10177.1 (4)C7—C6—N2—Zn1177.4 (3)
Cl1—Zn1—N2—C6103.7 (3)C7—C6—N2—C100.2 (6)
Cl2—Zn1—N2—C6120.7 (3)N2—C6—C7—C81.2 (7)
N1—Zn1—N2—C65.4 (3)C5—C6—C7—C8178.1 (4)
C2—C1—N1—C51.2 (7)C6—C7—C8—C91.2 (8)
C2—C1—N1—Zn1174.8 (4)C7—C8—C9—C100.3 (8)
N1—C1—C2—C30.2 (9)C8—C9—C10—N20.7 (8)
C1—C2—C3—C40.8 (9)C8—C9—C10—C11179.4 (6)
C2—C3—C4—C50.0 (8)C9—C10—N2—Zn1178.0 (4)
C3—C4—C5—N11.4 (7)C9—C10—N2—C60.7 (7)
C3—C4—C5—C6176.7 (4)C11—C10—N2—Zn12.0 (6)
C4—C5—N1—Zn1174.5 (3)C11—C10—N2—C6179.3 (5)
C4—C5—N1—C12.0 (6)

Experimental details

Crystal data
Chemical formula[ZnCl2(C11H10N2)]
Mr306.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.4674 (15), 9.5105 (17), 17.656 (4)
β (°) 96.551 (18)
V3)1245.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.668, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
10401, 3358, 2576
Rint0.078
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.130, 1.17
No. of reflections3358
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.70

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N12.066 (4)Zn1—Cl12.2236 (15)
Zn1—N22.053 (4)Zn1—Cl22.1995 (13)
N1—Zn1—Cl1111.08 (11)N1—Zn1—Cl2116.84 (11)
N2—Zn1—Cl1109.16 (11)N2—Zn1—Cl2117.28 (10)
Cl2—Zn1—Cl1116.72 (5)N2—Zn1—N180.31 (15)
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025–7029.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073–2079.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLundberg, B. K. S. (1966). Acta Cryst. 21, 901–909.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPreston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965–1968.  Google Scholar
First citationQin, J., Su, N., Dai, C., Yang, C., Liu, D., Day, M. W., Wu, B. & Chen, C. (1999). Polyhedron, 18, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationReimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298–300.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1127.  CSD CrossRef CAS Web of Science Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64 m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds