organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(3,5-Di­meth­oxy­phen­yl)acrylo­hydrazide

aDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: nasimhrama@yahoo.com

(Received 8 September 2008; accepted 10 September 2008; online 13 September 2008)

In the title compound, C11H14N2O3, the planar hydrazide group is oriented with respect to the benzene ring at a dihedral angle of 48.00 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Zheng et al. (2003[Zheng, X., Li, Z., Wang, Y., Chen, W., Huang, Q., Liu, C. & Song, G. (2003). J. Fluorine Chem. 117, 163-169.]); Al-Talib et al. (1990[Al-Talib, M., Tastoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811-1814.]); Yousif et al. (1986[Yousif, M. Y., Ismail, A. M., Elman, A. A. & El-Kerdawy, M. M. (1986). J. Chem. Soc. Pak. 8, 183-187.]); Ahmad et al. (2001[Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671-1682.]); Al-Soud et al. (2004[Al-Soud, Y. A., Al-Deeri, M. N. & Al-Mosoudi, N. A. (2004). Farmaco, 59, 775-783.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Furniss et al. (1978[Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel Textbook of Practical Organic Chemistry, 4th ed., p. 1125. London: Longmann.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O3

  • Mr = 222.24

  • Monoclinic, P 21 /c

  • a = 4.8910 (19) Å

  • b = 30.358 (11) Å

  • c = 8.3440 (14) Å

  • β = 113.02 (3)°

  • V = 1140.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (1) K

  • 0.90 × 0.17 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.961, Tmax = 0.993

  • 7864 measured reflections

  • 2522 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.111

  • wR(F2) = 0.274

  • S = 1.13

  • 2522 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.870 (3) 168
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EvalCCD (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic hydrazides are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocycles such as 2,5-disubstituted-1,3,4-oxadiazoles (Zheng et al., 2003; Al-Talib et al., 1990) and 5-substituted-2-mercapto-1,3,4-oxadiazoles (Yousif et al., 1986; Ahmad et al., 2001; Al-Soud et al., 2004; El-Emam et al., 2004). In view of the versatility of these compounds, we have synthesized the title compound, and report herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The benzene ring (C4-C9) is oriented with respect to the planar hydrazide group (O1/N1/N2/C1) at a dihedral angle of 48.00 (3)°.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Zheng et al. (2003); Al-Talib et al. (1990); Yousif et al. (1986); Ahmad et al. (2001); Al-Soud et al. (2004); El-Emam et al. (2004); Furniss et al. (1978). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the reaction of methyl ester of (E)-3 -(3,5-dimethoxyphenyl)acrylic acid with hdyrazine hydrate according to the literature method (Furniss et al., 1978). For the preparation of the title compound, a mixture of (E)-methyl 3-(3,5-dimethoxyphenyl)acrylate (2.22 g, 10 mmol) and hydrazine hydrate (15 ml, 80%) in absolute ethanol (50 ml) was refluxed for 5 h at 413-423 K. The excess solvent was removed by distillation. The solid residue was filtered off, washed with water and recrystallized from ethanol (30%) to give the title compound (yield; 1.55 g, 70%, m.p. 401-402 K). Colorless single crystals were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH and NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Reaction scheme.
(E)-3-(3,5-dimethoxyphenyl)acrylohydrazide top
Crystal data top
C11H14N2O3F(000) = 472
Mr = 222.24Dx = 1.294 Mg m3
Monoclinic, P21/cMelting point: 401(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.8910 (19) ÅCell parameters from 7914 reflections
b = 30.358 (11) Åθ = 1–27.5°
c = 8.3440 (14) ŵ = 0.10 mm1
β = 113.02 (3)°T = 150 K
V = 1140.4 (7) Å3Needle, colorless
Z = 40.90 × 0.17 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2522 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 56
Absorption correction: gaussian
(Coppens, 1970)
k = 3935
Tmin = 0.961, Tmax = 0.993l = 109
7864 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.111Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.274H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0574P)2 + 2.6221P]
where P = (Fo2 + 2Fc2)/3
2522 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C11H14N2O3V = 1140.4 (7) Å3
Mr = 222.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8910 (19) ŵ = 0.10 mm1
b = 30.358 (11) ÅT = 150 K
c = 8.3440 (14) Å0.90 × 0.17 × 0.12 mm
β = 113.02 (3)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2522 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
1547 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.993Rint = 0.139
7864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1110 restraints
wR(F2) = 0.274H-atom parameters constrained
S = 1.13Δρmax = 0.33 e Å3
2522 reflectionsΔρmin = 0.41 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5287 (7)0.28398 (13)0.5987 (6)0.0682 (12)
O20.4491 (7)0.08832 (12)0.3236 (4)0.0538 (9)
O30.3626 (7)0.04751 (12)0.8379 (5)0.0544 (10)
N10.0720 (8)0.30545 (13)0.5611 (6)0.0468 (10)
H10.09930.29750.55710.056*
N20.1165 (9)0.34981 (14)0.5371 (6)0.0548 (11)
H2A0.28560.35870.54040.066*
H2B0.02560.36830.51860.066*
C10.2785 (10)0.27498 (16)0.5905 (7)0.0469 (12)
C20.1853 (14)0.22916 (18)0.6146 (10)0.074 (2)
H20.03740.22360.65590.089*
C30.3475 (11)0.19327 (16)0.5674 (7)0.0516 (13)
H30.50950.19790.53730.062*
C40.2192 (10)0.14822 (15)0.5752 (6)0.0437 (11)
C50.0544 (10)0.13674 (16)0.4480 (6)0.0451 (11)
H50.15300.15610.35730.054*
C60.1797 (9)0.09645 (15)0.4560 (6)0.0408 (10)
C70.0380 (9)0.06710 (16)0.5864 (6)0.0417 (10)
H70.12330.04000.59120.050*
C80.2389 (10)0.07918 (15)0.7127 (6)0.0404 (10)
C90.3672 (9)0.11891 (15)0.7090 (6)0.0391 (10)
H90.55120.12610.79450.047*
C100.5868 (11)0.0472 (2)0.3233 (7)0.0605 (15)
H10A0.45150.02370.33080.073*
H10B0.76110.04430.21790.073*
H10C0.64200.04610.42170.073*
C110.6609 (10)0.05504 (18)0.9613 (7)0.0547 (13)
H11A0.78790.06020.89990.066*
H11B0.72920.02961.03440.066*
H11C0.66520.08021.03180.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (18)0.061 (2)0.117 (4)0.0048 (17)0.043 (2)0.001 (2)
O20.0457 (18)0.065 (2)0.0394 (19)0.0032 (17)0.0038 (15)0.0008 (16)
O30.0441 (18)0.056 (2)0.049 (2)0.0058 (16)0.0027 (15)0.0103 (16)
N10.0296 (18)0.050 (2)0.062 (3)0.0042 (17)0.0198 (18)0.005 (2)
N20.043 (2)0.049 (2)0.072 (3)0.0035 (19)0.022 (2)0.009 (2)
C10.040 (2)0.050 (3)0.056 (3)0.005 (2)0.024 (2)0.003 (2)
C20.076 (4)0.048 (3)0.134 (6)0.010 (3)0.080 (4)0.008 (3)
C30.048 (3)0.046 (3)0.069 (4)0.000 (2)0.032 (3)0.006 (2)
C40.043 (2)0.047 (3)0.049 (3)0.003 (2)0.026 (2)0.004 (2)
C50.048 (3)0.051 (3)0.035 (2)0.008 (2)0.015 (2)0.008 (2)
C60.038 (2)0.049 (3)0.037 (2)0.002 (2)0.0157 (19)0.006 (2)
C70.040 (2)0.043 (2)0.043 (3)0.005 (2)0.017 (2)0.004 (2)
C80.042 (2)0.045 (3)0.035 (2)0.003 (2)0.0155 (19)0.0017 (19)
C90.033 (2)0.045 (3)0.038 (2)0.0019 (19)0.0119 (18)0.0043 (19)
C100.043 (3)0.078 (4)0.049 (3)0.008 (3)0.006 (2)0.009 (3)
C110.046 (3)0.064 (3)0.045 (3)0.003 (2)0.007 (2)0.006 (2)
Geometric parameters (Å, º) top
O1—C11.230 (5)C4—C51.389 (7)
O2—C61.371 (5)C5—H50.9301
O2—C101.416 (6)C6—C51.381 (7)
O3—C81.374 (5)C6—C71.367 (7)
O3—C111.438 (6)C7—H70.9298
N1—N21.391 (6)C8—C71.402 (6)
N1—C11.320 (6)C8—C91.365 (6)
N1—H10.8600C9—C41.389 (7)
N2—H2A0.8601C9—H90.9300
N2—H2B0.8600C10—H10A0.9598
C1—C21.502 (7)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C21.489 (7)C11—H11A0.9601
C3—C41.517 (7)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
N2—N1—H1118.2C7—C6—C5121.3 (4)
C1—N1—N2123.6 (4)O2—C6—C5115.2 (4)
C1—N1—H1118.2C6—C7—C8117.9 (4)
N1—N2—H2A120.1C6—C7—H7120.9
N1—N2—H2B119.9C8—C7—H7121.1
H2A—N2—H2B120.0C9—C8—O3124.4 (4)
C6—O2—C10117.8 (4)C9—C8—C7122.1 (4)
C8—O3—C11117.1 (4)O3—C8—C7113.4 (4)
O1—C1—N1121.8 (5)C8—C9—C4119.0 (4)
O1—C1—C2123.1 (5)C8—C9—H9120.4
N1—C1—C2115.1 (4)C4—C9—H9120.6
C1—C2—H2122.6O2—C10—H10A109.9
C3—C2—C1114.9 (4)O2—C10—H10B109.6
C3—C2—H2122.5O2—C10—H10C108.9
C2—C3—C4112.1 (4)H10A—C10—H10B109.5
C2—C3—H3124.0H10A—C10—H10C109.5
C4—C3—H3123.9H10B—C10—H10C109.5
C5—C4—C3119.0 (4)O3—C11—H11A109.3
C5—C4—C9119.8 (4)O3—C11—H11B109.3
C9—C4—C3121.2 (4)O3—C11—H11C109.8
C4—C5—H5120.1H11A—C11—H11B109.5
C6—C5—C4119.9 (4)H11A—C11—H11C109.5
C6—C5—H5120.0H11B—C11—H11C109.5
C7—C6—O2123.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.870 (3)168
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H14N2O3
Mr222.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)4.8910 (19), 30.358 (11), 8.3440 (14)
β (°) 113.02 (3)
V3)1140.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.90 × 0.17 × 0.12
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.961, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7864, 2522, 1547
Rint0.139
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.111, 0.274, 1.13
No. of reflections2522
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.41

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.870 (3)168.00
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAhmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682.  CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAl-Soud, Y. A., Al-Deeri, M. N. & Al-Mosoudi, N. A. (2004). Farmaco, 59, 775–783.  CrossRef PubMed CAS Google Scholar
First citationAl-Talib, M., Tastoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1814.  CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel Textbook of Practical Organic Chemistry, 4th ed., p. 1125. London: Longmann.  Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousif, M. Y., Ismail, A. M., Elman, A. A. & El-Kerdawy, M. M. (1986). J. Chem. Soc. Pak. 8, 183–187.  CAS Google Scholar
First citationZheng, X., Li, Z., Wang, Y., Chen, W., Huang, Q., Liu, C. & Song, G. (2003). J. Fluorine Chem. 117, 163–169.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds