organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2,5-di­chloro­benzoate

aDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: nasimhrama@yahoo.com

(Received 15 September 2008; accepted 15 September 2008; online 20 September 2008)

In the mol­ecule of the title compound, C8H6Cl2O2, the benzene ring is oriented with respect to the planar ester group at a dihedral angle of 39.22 (3)°.

Related literature

For general background, see: Zheng et al. (2003[Zheng, X., Li, Z., Wang, Y., Chen, W., Huang, Q., Liu, C. & Song, G. (2003). J. Fluorine Chem. 117, 163-169.]); Al-Talib et al. (1990[Al-Talib, M., Tastoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811-1814.]); Yousif et al. (1986[Yousif, M. Y., Ismail, A. M., Elman, A. A. & El-Kerdawy, M. M. (1986). J. Chem. Soc. Pak. 8, 183-187.]); Ahmad et al. (2001[Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671-1682.]); Al-Soud et al. (2004[Al-Soud, Y. A., Al-Deeri, M. N. & Al-Mosoudi, N. A. (2004). Farmaco, 59, 775-783.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Weinstock et al. (1991[Weinstock, J. et al. (1991). J. Med. Chem. 34, 1514-1517.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); and of MOGUL, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Cl2O2

  • Mr = 205.03

  • Triclinic, [P \overline 1]

  • a = 3.8452 (3) Å

  • b = 7.0158 (4) Å

  • c = 15.8510 (10) Å

  • α = 77.189 (6)°

  • β = 89.130 (7)°

  • γ = 83.741 (5)°

  • V = 414.46 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 150 (1) K

  • 0.68 × 0.11 × 0.06 mm

Data collection
  • Bruker–Nonius Kappa CCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.864, Tmax = 0.971

  • 5966 measured reflections

  • 1840 independent reflections

  • 1455 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.146

  • S = 1.09

  • 1840 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.])and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992)[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EvalCCD (Duisenberg, 1992)[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a lachrymator and a drug intermediate. Methyl 2,5-di- chlorobenzoate is widely employed in synthetic organic chemistry for example, 2,5-dichlorobenzohydrazide, 2,5-disubstituted-1,3,4-oxadiazoles (Zheng et al., 2003; Al-Talib et al., 1990) and 5-substituted-2-mercapto-1,3,4-oxadiazoles (Yousif et al., 1986; Ahmad et al., 2001; Al-Soud et al., 2004; El-Emam et al., 2004). In addition, methyl 4-(bromomethyl)benzoate has been used in the synthesis of 1-(carboxybenzyl)imidazole-5-acrylic acids, which are potent and selective angiotensin II receptor antagonists (Weinstock et al., 1991).In view of the versatility of these compounds, we have synthesized the title compound, and report herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the bond lengths and angles are generally within normal ranges (Cambridge Structural Database, Version 5.28, November 2006; Mogul Version 1.1; Allen, 2002, Bruno et al., 2004). The benzene ring (C1-C6) is oriented with respect to the planar ester group (O1/O2/C1/C7/C8) at a dihedral angle of 39.22 (3)°.

Related literature top

For related literature, see: Zheng et al. (2003); Al-Talib et al. (1990); Yousif et al. (1986); Ahmad et al. (2001); Al-Soud et al. (2004); El-Emam et al. (2004); Weinstock et al. (1991). For bond-length data, see: Allen (2002); Bruno et al. (2004).

Experimental top

For the preparation of the title compound, the mixture of 2,5-dichlorobenzoic acid (2.05 g, 10 mmol) and absolute methanol (50 ml) in the presence of a few drops of suphuric acid was refluxed for 5 h. The excess of solvent was removed by distillation. The solid residue for filltered off, washed with water and recystallized from ethanol (30%) to give the title compound (yied; 88%, m.p. 319-321 K). Suitable single crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Reaction scheme.
methyl 2,5-dichlorobenzoate top
Crystal data top
C8H6Cl2O2Z = 2
Mr = 205.03F(000) = 208
Triclinic, P1Dx = 1.643 Mg m3
Hall symbol: -P 1Melting point: 319(2) K
a = 3.8452 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0158 (4) ÅCell parameters from 6024 reflections
c = 15.851 (1) Åθ = 1–27.5°
α = 77.189 (6)°µ = 0.73 mm1
β = 89.130 (7)°T = 150 K
γ = 83.741 (5)°Needle, colorless
V = 414.46 (5) Å30.68 × 0.11 × 0.06 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
1840 independent reflections
Radiation source: fine-focus sealed tube1455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ and ω scansh = 44
Absorption correction: gaussian
(Coppens, 1970)
k = 98
Tmin = 0.864, Tmax = 0.971l = 2020
5966 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.5264P]
where P = (Fo2 + 2Fc2)/3
1840 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C8H6Cl2O2γ = 83.741 (5)°
Mr = 205.03V = 414.46 (5) Å3
Triclinic, P1Z = 2
a = 3.8452 (3) ÅMo Kα radiation
b = 7.0158 (4) ŵ = 0.73 mm1
c = 15.851 (1) ÅT = 150 K
α = 77.189 (6)°0.68 × 0.11 × 0.06 mm
β = 89.130 (7)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
1840 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
1455 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.971Rint = 0.110
5966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.10Δρmax = 0.44 e Å3
1840 reflectionsΔρmin = 0.57 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6965 (2)0.52269 (12)0.70713 (5)0.0309 (2)
Cl21.3585 (2)0.28182 (13)0.92310 (5)0.0361 (3)
O10.6439 (7)0.0150 (4)0.62680 (14)0.0347 (6)
O20.8542 (6)0.2744 (4)0.57949 (13)0.0288 (5)
C10.9066 (8)0.1286 (5)0.72871 (18)0.0220 (6)
C20.8841 (8)0.2952 (5)0.76262 (19)0.0235 (6)
C31.0100 (9)0.2857 (5)0.8458 (2)0.0278 (7)
H30.99540.39830.86800.033*
C41.1574 (9)0.1080 (5)0.89485 (19)0.0286 (7)
H41.24350.10060.95010.034*
C51.1755 (8)0.0580 (5)0.8613 (2)0.0257 (7)
C61.0489 (8)0.0510 (5)0.77933 (19)0.0245 (6)
H61.05810.16480.75810.029*
C70.7825 (8)0.1206 (5)0.64006 (18)0.0229 (6)
C80.7421 (9)0.2749 (5)0.49289 (19)0.0294 (7)
H8A0.85090.15930.47610.035*
H8B0.80890.38980.45360.035*
H8C0.49240.27570.49140.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0411 (5)0.0249 (4)0.0250 (4)0.0029 (3)0.0044 (3)0.0047 (3)
Cl20.0429 (5)0.0328 (5)0.0276 (4)0.0027 (4)0.0115 (3)0.0014 (3)
O10.0496 (16)0.0344 (14)0.0231 (11)0.0124 (11)0.0066 (10)0.0089 (10)
O20.0368 (13)0.0354 (13)0.0137 (10)0.0082 (10)0.0056 (8)0.0017 (9)
C10.0214 (15)0.0287 (16)0.0156 (13)0.0036 (12)0.0005 (10)0.0039 (11)
C20.0233 (15)0.0256 (16)0.0205 (14)0.0043 (12)0.0010 (11)0.0021 (12)
C30.0331 (18)0.0295 (18)0.0230 (15)0.0050 (13)0.0007 (12)0.0096 (13)
C40.0336 (18)0.0348 (18)0.0172 (14)0.0055 (14)0.0045 (12)0.0042 (12)
C50.0233 (16)0.0303 (17)0.0206 (14)0.0028 (12)0.0014 (11)0.0003 (12)
C60.0302 (17)0.0236 (16)0.0205 (14)0.0008 (12)0.0026 (11)0.0073 (12)
C70.0257 (15)0.0265 (16)0.0166 (13)0.0004 (12)0.0013 (11)0.0062 (11)
C80.0367 (19)0.0368 (19)0.0141 (13)0.0003 (14)0.0047 (12)0.0061 (12)
Geometric parameters (Å, º) top
Cl1—C21.728 (3)C3—H30.9300
Cl2—C51.737 (3)C4—C31.382 (5)
O1—C71.199 (4)C4—C51.378 (5)
O2—C71.326 (4)C4—H40.9300
O2—C81.444 (3)C5—C61.384 (4)
C1—C21.385 (5)C6—H60.9301
C1—C61.395 (4)C8—H8A0.9600
C1—C71.505 (4)C8—H8B0.9600
C2—C31.396 (4)C8—H8C0.9600
C7—O2—C8115.5 (3)C4—C5—Cl2119.7 (2)
C2—C1—C6119.3 (3)C6—C5—Cl2118.9 (3)
C2—C1—C7125.6 (3)C5—C6—C1119.3 (3)
C6—C1—C7115.1 (3)C5—C6—H6120.4
C1—C2—Cl1123.1 (2)C1—C6—H6120.2
C1—C2—C3120.7 (3)O1—C7—O2124.7 (3)
C3—C2—Cl1116.3 (3)O1—C7—C1122.4 (3)
C4—C3—C2119.7 (3)O2—C7—C1112.9 (3)
C4—C3—H3120.1O2—C8—H8A109.4
C2—C3—H3120.3O2—C8—H8B109.5
C5—C4—C3119.5 (3)H8A—C8—H8B109.5
C5—C4—H4120.3O2—C8—H8C109.5
C3—C4—H4120.2H8A—C8—H8C109.5
C4—C5—C6121.4 (3)H8B—C8—H8C109.5

Experimental details

Crystal data
Chemical formulaC8H6Cl2O2
Mr205.03
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)3.8452 (3), 7.0158 (4), 15.851 (1)
α, β, γ (°)77.189 (6), 89.130 (7), 83.741 (5)
V3)414.46 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.68 × 0.11 × 0.06
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.864, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5966, 1840, 1455
Rint0.110
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 1.10
No. of reflections1840
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.57

Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan, and also thank the Ministry of Education of the Czech Republic for financial support (project No. VZ0021627501).

References

First citationAhmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682.  CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAl-Soud, Y. A., Al-Deeri, M. N. & Al-Mosoudi, N. A. (2004). Farmaco, 59, 775–783.  CrossRef PubMed CAS Google Scholar
First citationAl-Talib, M., Tastoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1814.  CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeinstock, J. et al. (1991). J. Med. Chem. 34, 1514–1517.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYousif, M. Y., Ismail, A. M., Elman, A. A. & El-Kerdawy, M. M. (1986). J. Chem. Soc. Pak. 8, 183–187.  CAS Google Scholar
First citationZheng, X., Li, Z., Wang, Y., Chen, W., Huang, Q., Liu, C. & Song, G. (2003). J. Fluorine Chem. 117, 163–169.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds