organic compounds
Methyl 2,5-dichlorobenzoate
aDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: nasimhrama@yahoo.com
In the molecule of the title compound, C8H6Cl2O2, the benzene ring is oriented with respect to the planar ester group at a dihedral angle of 39.22 (3)°.
Related literature
For general background, see: Zheng et al. (2003); Al-Talib et al. (1990); Yousif et al. (1986); Ahmad et al. (2001); Al-Soud et al. (2004); El-Emam et al. (2004); Weinstock et al. (1991). For a description of the Cambridge Structural Database, see: Allen (2002); and of MOGUL, see: Bruno et al. (2004).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998)and DENZO (Otwinowski & Minor, 1997); cell DIRAX/LSQ (Duisenberg, 1992)); data reduction: EvalCCD (Duisenberg, 1992)); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808029541/hk2533sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029541/hk2533Isup2.hkl
For the preparation of the title compound, the mixture of 2,5-dichlorobenzoic acid (2.05 g, 10 mmol) and absolute methanol (50 ml) in the presence of a few drops of suphuric acid was refluxed for 5 h. The excess of solvent was removed by distillation. The solid residue for filltered off, washed with water and recystallized from ethanol (30%) to give the title compound (yied; 88%, m.p. 319-321 K). Suitable single crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.
H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Hooft, 1998); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Reaction scheme. |
C8H6Cl2O2 | Z = 2 |
Mr = 205.03 | F(000) = 208 |
Triclinic, P1 | Dx = 1.643 Mg m−3 |
Hall symbol: -P 1 | Melting point: 319(2) K |
a = 3.8452 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.0158 (4) Å | Cell parameters from 6024 reflections |
c = 15.851 (1) Å | θ = 1–27.5° |
α = 77.189 (6)° | µ = 0.73 mm−1 |
β = 89.130 (7)° | T = 150 K |
γ = 83.741 (5)° | Needle, colorless |
V = 414.46 (5) Å3 | 0.68 × 0.11 × 0.06 mm |
Bruker–Nonius KappaCCD area-detector diffractometer | 1840 independent reflections |
Radiation source: fine-focus sealed tube | 1455 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.110 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
ϕ and ω scans | h = −4→4 |
Absorption correction: gaussian (Coppens, 1970) | k = −9→8 |
Tmin = 0.864, Tmax = 0.971 | l = −20→20 |
5966 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0527P)2 + 0.5264P] where P = (Fo2 + 2Fc2)/3 |
1840 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
C8H6Cl2O2 | γ = 83.741 (5)° |
Mr = 205.03 | V = 414.46 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 3.8452 (3) Å | Mo Kα radiation |
b = 7.0158 (4) Å | µ = 0.73 mm−1 |
c = 15.851 (1) Å | T = 150 K |
α = 77.189 (6)° | 0.68 × 0.11 × 0.06 mm |
β = 89.130 (7)° |
Bruker–Nonius KappaCCD area-detector diffractometer | 1840 independent reflections |
Absorption correction: gaussian (Coppens, 1970) | 1455 reflections with I > 2σ(I) |
Tmin = 0.864, Tmax = 0.971 | Rint = 0.110 |
5966 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.44 e Å−3 |
1840 reflections | Δρmin = −0.57 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.6965 (2) | 0.52269 (12) | 0.70713 (5) | 0.0309 (2) | |
Cl2 | 1.3585 (2) | −0.28182 (13) | 0.92310 (5) | 0.0361 (3) | |
O1 | 0.6439 (7) | −0.0150 (4) | 0.62680 (14) | 0.0347 (6) | |
O2 | 0.8542 (6) | 0.2744 (4) | 0.57949 (13) | 0.0288 (5) | |
C1 | 0.9066 (8) | 0.1286 (5) | 0.72871 (18) | 0.0220 (6) | |
C2 | 0.8841 (8) | 0.2952 (5) | 0.76262 (19) | 0.0235 (6) | |
C3 | 1.0100 (9) | 0.2857 (5) | 0.8458 (2) | 0.0278 (7) | |
H3 | 0.9954 | 0.3983 | 0.8680 | 0.033* | |
C4 | 1.1574 (9) | 0.1080 (5) | 0.89485 (19) | 0.0286 (7) | |
H4 | 1.2435 | 0.1006 | 0.9501 | 0.034* | |
C5 | 1.1755 (8) | −0.0580 (5) | 0.8613 (2) | 0.0257 (7) | |
C6 | 1.0489 (8) | −0.0510 (5) | 0.77933 (19) | 0.0245 (6) | |
H6 | 1.0581 | −0.1648 | 0.7581 | 0.029* | |
C7 | 0.7825 (8) | 0.1206 (5) | 0.64006 (18) | 0.0229 (6) | |
C8 | 0.7421 (9) | 0.2749 (5) | 0.49289 (19) | 0.0294 (7) | |
H8A | 0.8509 | 0.1593 | 0.4761 | 0.035* | |
H8B | 0.8089 | 0.3898 | 0.4536 | 0.035* | |
H8C | 0.4924 | 0.2757 | 0.4914 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0411 (5) | 0.0249 (4) | 0.0250 (4) | 0.0029 (3) | −0.0044 (3) | −0.0047 (3) |
Cl2 | 0.0429 (5) | 0.0328 (5) | 0.0276 (4) | 0.0027 (4) | −0.0115 (3) | 0.0014 (3) |
O1 | 0.0496 (16) | 0.0344 (14) | 0.0231 (11) | −0.0124 (11) | −0.0066 (10) | −0.0089 (10) |
O2 | 0.0368 (13) | 0.0354 (13) | 0.0137 (10) | −0.0082 (10) | −0.0056 (8) | −0.0017 (9) |
C1 | 0.0214 (15) | 0.0287 (16) | 0.0156 (13) | −0.0036 (12) | −0.0005 (10) | −0.0039 (11) |
C2 | 0.0233 (15) | 0.0256 (16) | 0.0205 (14) | −0.0043 (12) | −0.0010 (11) | −0.0021 (12) |
C3 | 0.0331 (18) | 0.0295 (18) | 0.0230 (15) | −0.0050 (13) | −0.0007 (12) | −0.0096 (13) |
C4 | 0.0336 (18) | 0.0348 (18) | 0.0172 (14) | −0.0055 (14) | −0.0045 (12) | −0.0042 (12) |
C5 | 0.0233 (16) | 0.0303 (17) | 0.0206 (14) | −0.0028 (12) | −0.0014 (11) | 0.0003 (12) |
C6 | 0.0302 (17) | 0.0236 (16) | 0.0205 (14) | −0.0008 (12) | −0.0026 (11) | −0.0073 (12) |
C7 | 0.0257 (15) | 0.0265 (16) | 0.0166 (13) | 0.0004 (12) | −0.0013 (11) | −0.0062 (11) |
C8 | 0.0367 (19) | 0.0368 (19) | 0.0141 (13) | 0.0003 (14) | −0.0047 (12) | −0.0061 (12) |
Cl1—C2 | 1.728 (3) | C3—H3 | 0.9300 |
Cl2—C5 | 1.737 (3) | C4—C3 | 1.382 (5) |
O1—C7 | 1.199 (4) | C4—C5 | 1.378 (5) |
O2—C7 | 1.326 (4) | C4—H4 | 0.9300 |
O2—C8 | 1.444 (3) | C5—C6 | 1.384 (4) |
C1—C2 | 1.385 (5) | C6—H6 | 0.9301 |
C1—C6 | 1.395 (4) | C8—H8A | 0.9600 |
C1—C7 | 1.505 (4) | C8—H8B | 0.9600 |
C2—C3 | 1.396 (4) | C8—H8C | 0.9600 |
C7—O2—C8 | 115.5 (3) | C4—C5—Cl2 | 119.7 (2) |
C2—C1—C6 | 119.3 (3) | C6—C5—Cl2 | 118.9 (3) |
C2—C1—C7 | 125.6 (3) | C5—C6—C1 | 119.3 (3) |
C6—C1—C7 | 115.1 (3) | C5—C6—H6 | 120.4 |
C1—C2—Cl1 | 123.1 (2) | C1—C6—H6 | 120.2 |
C1—C2—C3 | 120.7 (3) | O1—C7—O2 | 124.7 (3) |
C3—C2—Cl1 | 116.3 (3) | O1—C7—C1 | 122.4 (3) |
C4—C3—C2 | 119.7 (3) | O2—C7—C1 | 112.9 (3) |
C4—C3—H3 | 120.1 | O2—C8—H8A | 109.4 |
C2—C3—H3 | 120.3 | O2—C8—H8B | 109.5 |
C5—C4—C3 | 119.5 (3) | H8A—C8—H8B | 109.5 |
C5—C4—H4 | 120.3 | O2—C8—H8C | 109.5 |
C3—C4—H4 | 120.2 | H8A—C8—H8C | 109.5 |
C4—C5—C6 | 121.4 (3) | H8B—C8—H8C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C8H6Cl2O2 |
Mr | 205.03 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 3.8452 (3), 7.0158 (4), 15.851 (1) |
α, β, γ (°) | 77.189 (6), 89.130 (7), 83.741 (5) |
V (Å3) | 414.46 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.68 × 0.11 × 0.06 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector diffractometer |
Absorption correction | Gaussian (Coppens, 1970) |
Tmin, Tmax | 0.864, 0.971 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5966, 1840, 1455 |
Rint | 0.110 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.146, 1.10 |
No. of reflections | 1840 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.57 |
Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan, and also thank the Ministry of Education of the Czech Republic for financial support (project No. VZ0021627501).
References
Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682. CrossRef PubMed CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Al-Soud, Y. A., Al-Deeri, M. N. & Al-Mosoudi, N. A. (2004). Farmaco, 59, 775–783. CrossRef PubMed CAS Google Scholar
Al-Talib, M., Tastoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1814. CrossRef CAS Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436. CrossRef Web of Science IUCr Journals Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weinstock, J. et al. (1991). J. Med. Chem. 34, 1514–1517. CrossRef CAS PubMed Web of Science Google Scholar
Yousif, M. Y., Ismail, A. M., Elman, A. A. & El-Kerdawy, M. M. (1986). J. Chem. Soc. Pak. 8, 183–187. CAS Google Scholar
Zheng, X., Li, Z., Wang, Y., Chen, W., Huang, Q., Liu, C. & Song, G. (2003). J. Fluorine Chem. 117, 163–169. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is a lachrymator and a drug intermediate. Methyl 2,5-di- chlorobenzoate is widely employed in synthetic organic chemistry for example, 2,5-dichlorobenzohydrazide, 2,5-disubstituted-1,3,4-oxadiazoles (Zheng et al., 2003; Al-Talib et al., 1990) and 5-substituted-2-mercapto-1,3,4-oxadiazoles (Yousif et al., 1986; Ahmad et al., 2001; Al-Soud et al., 2004; El-Emam et al., 2004). In addition, methyl 4-(bromomethyl)benzoate has been used in the synthesis of 1-(carboxybenzyl)imidazole-5-acrylic acids, which are potent and selective angiotensin II receptor antagonists (Weinstock et al., 1991).In view of the versatility of these compounds, we have synthesized the title compound, and report herein its crystal structure.
In the molecule of the title compound, (Fig. 1), the bond lengths and angles are generally within normal ranges (Cambridge Structural Database, Version 5.28, November 2006; Mogul Version 1.1; Allen, 2002, Bruno et al., 2004). The benzene ring (C1-C6) is oriented with respect to the planar ester group (O1/O2/C1/C7/C8) at a dihedral angle of 39.22 (3)°.