organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-o-tolyl­benzamide

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 20 September 2008; accepted 25 September 2008; online 30 September 2008)

In the mol­ecule of the title compound, C14H12ClNO, the two benzene rings are close to coplanar [dihedral angle = 7.85 (4)°]. The amide N—C=O plane makes dihedral angles of 34.04 (4) and 39.90 (3)°, respectively, with the 4-chloro- and 2-methyl­phenyl rings. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For a related structure, see: Saeed et al. (2008[Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.71

  • Monoclinic, P 21 /n

  • a = 10.7906 (14) Å

  • b = 4.8793 (6) Å

  • c = 23.522 (3) Å

  • β = 98.125 (3)°

  • V = 1226.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 223 (1) K

  • 0.40 × 0.18 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.928, Tmax = 0.974

  • 14142 measured reflections

  • 3461 independent reflections

  • 1685 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.166

  • S = 1.06

  • 3461 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (2) 2.07 (2) 2.9073 (18) 164.1 (17)
Symmetry code: (i) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: CrystalStructure and PLATON.

Supporting information


Comment top

The background to this study has been described in our earlier paper of 4-chloro-N-(2-chlorophenyl)-benzamide (Saeed et al., 2008).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1–C6) and B (C8–C13) are, of course, planar and the dihedral angle between them is 7.85 (4)°. So, they are also nearly coplanar. The amide plane (N1/O1/C7) is oriented with respect to rings A and B at dihedral angles of 34.04 (4)° and 39.90 (3)°, respectively.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Saeed et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 4-chorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq. 1 M HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (yield; 84%). Anal. calcd. for C14H12ClNO: C 58.67, H 4.92, N 5.70%; found: C 58.61, H 4.96, N 5.79%.

Refinement top

The methyl H atoms were disordered. During the refinement process the disordered atoms were refined with occupancies of 0.80 (2) and 0.20 (2). H1 atom (for NH) was located in difference synthesis and refined isotropically [N—H = 0.86 (2) Å and Uiso(H) = 0.067 (6) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.94 and 0.97 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-Chloro-N-o-tolylbenzamide top
Crystal data top
C14H12ClNOF(000) = 512.00
Mr = 245.71Dx = 1.331 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 7779 reflections
a = 10.7906 (14) Åθ = 3.0–30.0°
b = 4.8793 (6) ŵ = 0.29 mm1
c = 23.522 (3) ÅT = 223 K
β = 98.125 (3)°Block, colorless
V = 1226.0 (3) Å30.40 × 0.18 × 0.09 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
1685 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.046
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 1515
Tmin = 0.928, Tmax = 0.974k = 66
14142 measured reflectionsl = 3333
3461 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0782P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.22 e Å3
3461 reflectionsΔρmin = 0.28 e Å3
159 parameters
Crystal data top
C14H12ClNOV = 1226.0 (3) Å3
Mr = 245.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7906 (14) ŵ = 0.29 mm1
b = 4.8793 (6) ÅT = 223 K
c = 23.522 (3) Å0.40 × 0.18 × 0.09 mm
β = 98.125 (3)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3461 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
1685 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.974Rint = 0.046
14142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049159 parameters
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
3461 reflectionsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.40808 (7)0.32489 (17)0.27042 (3)0.1042 (3)
O10.31241 (13)0.9179 (2)0.51539 (6)0.0709 (4)
N10.25683 (14)0.4881 (3)0.53727 (6)0.0523 (4)
H10.2591 (18)0.319 (4)0.5268 (8)0.067 (6)*
C10.32795 (16)0.5743 (3)0.44582 (8)0.0509 (4)
C20.42185 (17)0.7014 (4)0.42126 (10)0.0653 (5)
H20.46890.84160.44140.078*
C30.4477 (2)0.6259 (4)0.36758 (10)0.0750 (6)
H30.51290.71070.35150.090*
C40.3762 (2)0.4243 (4)0.33802 (9)0.0676 (5)
C50.2816 (2)0.2953 (4)0.36098 (9)0.0686 (5)
H50.23360.15830.34020.082*
C60.25799 (18)0.3701 (4)0.41517 (8)0.0600 (5)
H60.19400.28170.43140.072*
C70.29972 (15)0.6742 (3)0.50259 (8)0.0496 (4)
C80.21114 (17)0.5490 (3)0.58983 (7)0.0520 (4)
C90.10277 (18)0.4181 (4)0.60191 (8)0.0579 (5)
C100.0587 (2)0.4874 (5)0.65275 (9)0.0779 (6)
H100.01380.40060.66180.093*
C110.1170 (3)0.6773 (6)0.68999 (10)0.0923 (8)
H110.08370.72280.72360.111*
C120.2238 (3)0.8005 (5)0.67811 (10)0.0905 (8)
H120.26450.93000.70380.109*
C130.2728 (2)0.7363 (4)0.62834 (9)0.0700 (6)
H130.34730.81910.62070.084*
C140.03458 (18)0.2127 (4)0.56166 (10)0.0674 (5)
H14A0.00890.29800.52460.101*0.80 (2)
H14B0.03870.14810.57720.101*0.80 (2)
H14C0.08940.05920.55710.101*0.80 (2)
H14D0.07820.18940.52870.101*0.20 (2)
H14E0.04980.27720.54900.101*0.20 (2)
H14F0.03120.03860.58130.101*0.20 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1230 (6)0.1310 (7)0.0666 (4)0.0156 (4)0.0405 (4)0.0055 (3)
O10.0955 (10)0.0364 (6)0.0858 (10)0.0028 (6)0.0300 (8)0.0084 (6)
N10.0646 (9)0.0387 (7)0.0550 (9)0.0004 (7)0.0135 (7)0.0055 (6)
C10.0528 (9)0.0422 (8)0.0589 (10)0.0044 (7)0.0127 (8)0.0008 (7)
C20.0615 (11)0.0564 (11)0.0825 (14)0.0036 (9)0.0262 (10)0.0072 (10)
C30.0733 (13)0.0705 (13)0.0893 (16)0.0016 (11)0.0393 (12)0.0029 (12)
C40.0751 (12)0.0740 (13)0.0573 (11)0.0188 (11)0.0219 (10)0.0049 (10)
C50.0737 (12)0.0730 (13)0.0589 (12)0.0012 (11)0.0084 (10)0.0065 (10)
C60.0647 (11)0.0613 (11)0.0558 (11)0.0047 (9)0.0148 (8)0.0007 (8)
C70.0511 (9)0.0370 (8)0.0618 (11)0.0035 (7)0.0114 (8)0.0008 (7)
C80.0647 (10)0.0437 (9)0.0469 (9)0.0117 (8)0.0061 (8)0.0010 (7)
C90.0674 (11)0.0560 (10)0.0516 (10)0.0160 (9)0.0131 (8)0.0093 (8)
C100.0907 (15)0.0869 (15)0.0601 (13)0.0279 (12)0.0244 (11)0.0179 (11)
C110.130 (2)0.1023 (19)0.0465 (12)0.0468 (17)0.0173 (14)0.0015 (12)
C120.127 (2)0.0812 (15)0.0567 (13)0.0293 (16)0.0111 (14)0.0197 (11)
C130.0832 (14)0.0610 (11)0.0621 (13)0.0098 (11)0.0027 (10)0.0134 (9)
C140.0638 (11)0.0617 (11)0.0782 (14)0.0026 (9)0.0154 (10)0.0057 (10)
Geometric parameters (Å, º) top
Cl1—C41.742 (2)C8—C91.396 (3)
O1—C71.2299 (19)C9—C101.390 (3)
N1—C71.346 (2)C9—C141.498 (3)
N1—C81.426 (2)C10—C111.366 (3)
N1—H10.86 (2)C10—H100.9400
C1—C21.382 (3)C11—C121.363 (4)
C1—C61.389 (2)C11—H110.9400
C1—C71.493 (2)C12—C131.387 (3)
C2—C31.381 (3)C12—H120.9400
C2—H20.9400C13—H130.9400
C3—C41.376 (3)C14—H14A0.9700
C3—H30.9400C14—H14B0.9700
C4—C51.374 (3)C14—H14C0.9700
C5—C61.384 (3)C14—H14D0.9699
C5—H50.9400C14—H14E0.9700
C6—H60.9400C14—H14F0.9701
C8—C131.388 (3)
C7—N1—C8125.15 (15)C9—C10—H10118.8
C7—N1—H1116.5 (14)C12—C11—C10119.6 (2)
C8—N1—H1118.3 (14)C12—C11—H11120.2
C2—C1—C6118.81 (18)C10—C11—H11120.2
C2—C1—C7118.80 (16)C11—C12—C13120.5 (2)
C6—C1—C7122.26 (16)C11—C12—H12119.7
C3—C2—C1121.15 (19)C13—C12—H12119.7
C3—C2—H2119.4C12—C13—C8119.7 (2)
C1—C2—H2119.4C12—C13—H13120.2
C4—C3—C2118.77 (19)C8—C13—H13120.2
C4—C3—H3120.6C9—C14—H14A109.5
C2—C3—H3120.6C9—C14—H14B109.5
C5—C4—C3121.57 (19)H14A—C14—H14B109.5
C5—C4—Cl1118.99 (17)C9—C14—H14C109.5
C3—C4—Cl1119.43 (17)H14A—C14—H14C109.5
C4—C5—C6119.0 (2)H14B—C14—H14C109.5
C4—C5—H5120.5C9—C14—H14D109.5
C6—C5—H5120.5H14A—C14—H14D56.0
C5—C6—C1120.66 (19)H14B—C14—H14D141.0
C5—C6—H6119.7H14C—C14—H14D56.5
C1—C6—H6119.7C9—C14—H14E109.5
O1—C7—N1122.69 (17)H14A—C14—H14E56.5
O1—C7—C1120.33 (15)H14B—C14—H14E56.0
N1—C7—C1116.95 (14)H14C—C14—H14E141.1
C13—C8—C9120.40 (18)H14D—C14—H14E109.5
C13—C8—N1120.71 (18)C9—C14—H14F109.5
C9—C8—N1118.89 (15)H14A—C14—H14F141.1
C10—C9—C8117.52 (19)H14B—C14—H14F56.5
C10—C9—C14120.6 (2)H14C—C14—H14F56.0
C8—C9—C14121.86 (17)H14D—C14—H14F109.5
C11—C10—C9122.3 (2)H14E—C14—H14F109.5
C11—C10—H10118.8
C6—C1—C2—C30.9 (3)C6—C1—C7—N134.7 (2)
C7—C1—C2—C3176.85 (16)C7—N1—C8—C1342.7 (2)
C1—C2—C3—C41.4 (3)C7—N1—C8—C9136.99 (18)
C2—C3—C4—C50.8 (3)C13—C8—C9—C101.4 (3)
C2—C3—C4—Cl1179.63 (15)N1—C8—C9—C10178.29 (15)
C3—C4—C5—C60.1 (3)C13—C8—C9—C14179.35 (17)
Cl1—C4—C5—C6178.64 (14)N1—C8—C9—C141.0 (2)
C4—C5—C6—C10.6 (3)C8—C9—C10—C110.5 (3)
C2—C1—C6—C50.1 (3)C14—C9—C10—C11178.77 (18)
C7—C1—C6—C5175.69 (16)C9—C10—C11—C121.5 (3)
C8—N1—C7—O15.6 (3)C10—C11—C12—C130.6 (4)
C8—N1—C7—C1172.29 (15)C11—C12—C13—C81.3 (3)
C2—C1—C7—O132.5 (2)C9—C8—C13—C122.3 (3)
C6—C1—C7—O1143.28 (18)N1—C8—C13—C12177.40 (16)
C2—C1—C7—N1149.49 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)2.07 (2)2.9073 (18)164.1 (17)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)10.7906 (14), 4.8793 (6), 23.522 (3)
β (°) 98.125 (3)
V3)1226.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.18 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.928, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
14142, 3461, 1685
Rint0.046
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.166, 1.06
No. of reflections3461
No. of parameters159
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)2.07 (2)2.9073 (18)164.1 (17)
Symmetry code: (i) x, y1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds