organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-hydr­­oxy-4-oxo-3,4-di­hydro-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide monohydrate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 21 September 2008; accepted 25 September 2008; online 30 September 2008)

In the mol­ecule of the title compound, C10H9NO6S·H2O, the benzothia­zine ring adopts an envelope conformation. An intra­molecular N—H⋯O hydrogen bond results in the formation of a nonplanar five-membered ring which has a twisted conformation. In the crystal structure, inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules to form a three-dimensional network. There is a ππ contact between the benzene rings [centroid–centroid distance = 3.972 (2) Å].

Related literature

For general background, see: Shafiq, Khan et al. (2008[Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.]); Shafiq, Tahir et al. (2008[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.]); Tahir et al. (2008[Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.]). For related literature, see: Antsyshkina et al. (2003[Antsyshkina, A. S., Sadikov, G. G., Korshunov, O. Yu., Anpilova, E. L., Bicherov, A. S., Sergienko, V. S., Uflyand, I. E. & Garnovskii, A. D. (2003). Russ. J. Coord. Chem. 29, 724-731.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO6S·H2O

  • Mr = 289.26

  • Orthorhombic, P b c a

  • a = 7.7504 (5) Å

  • b = 14.5638 (9) Å

  • c = 21.0615 (14) Å

  • V = 2377.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 (2) K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.958

  • 14889 measured reflections

  • 2998 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.01

  • 2998 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.78 (3) 2.43 (3) 2.744 (3) 106 (2)
N1—H1⋯O7i 0.78 (3) 2.29 (3) 3.032 (3) 162 (3)
O4—H4O⋯O7ii 0.84 (3) 1.94 (3) 2.773 (3) 175 (2)
O7—H71⋯O3iii 0.83 (3) 2.45 (3) 3.107 (3) 137 (3)
O7—H71⋯O5iv 0.83 (3) 2.45 (3) 3.028 (3) 128 (3)
O7—H72⋯O2 0.83 (4) 2.21 (4) 3.027 (3) 167 (3)
C5—H5⋯O4iv 0.9300 2.4800 3.374 (3) 162.00
C10—H10A⋯O4i 0.9600 2.3100 2.994 (3) 128.00
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) -x+1, -y, -z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound has been prepared in continuation of research on benzo- thiazine derivatives (Shafiq, Khan et al., 2008; Shafiq, Tahir et al., 2008; Tahir et al., 2008) by our research group. The CCDC search (Allen, 2002) shows that a single crystal structure has been reported, in which the same benzothiazine ring exists (Antsyshkina et al., 2003). The title compound differs from the reported structure, due to the hydroxy and methylformate groups. Due to the hydroxy group, the S-configuration in the title compound has been confirmed.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Ring B (S1/N1/C1/C6-C8) is not planar, having total puckering amplitude, QT, of 0.733 (3) Å and envelope conformation [ϕ = 21.21 (3)° and θ = 76.70 (3)°] (Cremer & Pople, 1975) with N1 atom displaced by 0.575 (3) Å from the plane of the other ring atoms. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a nonplanar five-membered ring C (N1/O6/C8/C9/H1), having twisted conformation.

In the crystal structure, intermolecular N-H···O, O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules to form a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg2···Cg2i [symmetry code: (i) -1/2 + x, y, 1/2 - z, where Cg2 is the centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.972 (2) Å.

Related literature top

For related literature, see: Shafiq, Khan et al. (2008); Shafiq, Tahir et al. (2008); Tahir et al. (2008); Antsyshkina et al. (2003); Allen (2002). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, methyl 4-hydroxy-2H-1,2 -benzothiazine-3-carboxylate 1,1-dioxide (0.5 g, 1.95 mmol), N-bromo- succinamide (0.38 g, 2.145 mmol) and dibenzoyl peroxide (0.035 g, 0.15 mmol) were added in CCl4 (10 ml). The mixture was refluxed for 2 h. After the completion of reaction, CCl4 was distilled off under vacuum. The obtained residue was washed with hot water to remove other impurities. The solid product was recrystallized in water and methanol to obtain the suitable crystals for x-ray analysis.

Refinement top

H atoms were located in difference syntheses and refined as [O-H = 0.84 (3) Å (for OH); O-H = 0.83 (3) and 0.83 (4) Å (for H2O); N-H = 0.78 (3) Å (for NH). The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl 3-hydroxy-4-oxo-3,4-dihydro-2H-1,2-benzothiazine-3- carboxylate 1,1-dioxide monohydrate top
Crystal data top
C10H9NO6S·H2OF(000) = 1200
Mr = 289.26Dx = 1.616 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2998 reflections
a = 7.7504 (5) Åθ = 3.0–28.5°
b = 14.5638 (9) ŵ = 0.30 mm1
c = 21.0615 (14) ÅT = 296 K
V = 2377.3 (3) Å3Prismatic, colourless
Z = 80.24 × 0.18 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 7.40 pixels mm-1θmax = 28.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1910
Tmin = 0.934, Tmax = 0.958l = 2827
14889 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0491P)2 + 1.1022P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H9NO6S·H2OV = 2377.3 (3) Å3
Mr = 289.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.7504 (5) ŵ = 0.30 mm1
b = 14.5638 (9) ÅT = 296 K
c = 21.0615 (14) Å0.24 × 0.18 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1895 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.958Rint = 0.065
14889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
2998 reflectionsΔρmin = 0.32 e Å3
184 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18084 (8)0.12546 (4)0.08206 (3)0.0314 (2)
O10.0037 (3)0.32676 (13)0.21865 (9)0.0568 (8)
O20.3475 (2)0.15746 (13)0.06338 (9)0.0450 (7)
O30.1137 (3)0.04539 (12)0.05197 (9)0.0450 (6)
O40.2024 (2)0.33701 (12)0.09947 (10)0.0360 (6)
H4O0.204 (4)0.3501 (19)0.0608 (14)0.0432*
O50.0985 (3)0.42862 (12)0.08273 (10)0.0460 (7)
O60.2498 (2)0.30222 (13)0.10613 (9)0.0413 (6)
O70.7145 (3)0.10998 (15)0.02689 (11)0.0481 (7)
H710.731 (4)0.054 (2)0.0226 (15)0.0577*
H720.615 (5)0.116 (2)0.0412 (16)0.0577*
N10.0398 (3)0.20645 (14)0.07099 (10)0.0308 (6)
H10.052 (4)0.1857 (18)0.0675 (13)0.0370*
C10.1243 (3)0.17959 (16)0.20533 (12)0.0298 (7)
C20.1294 (4)0.16328 (19)0.27020 (13)0.0414 (9)
H20.090910.208300.298120.0497*
C30.1908 (4)0.0814 (2)0.29384 (14)0.0518 (10)
H30.193480.071640.337460.0623*
C40.2479 (5)0.0141 (2)0.25324 (15)0.0525 (10)
H40.289550.040930.269590.0629*
C50.2440 (4)0.02761 (18)0.18834 (14)0.0444 (9)
H50.282390.018040.160880.0533*
C60.1824 (3)0.10985 (16)0.16477 (12)0.0306 (7)
C70.0552 (3)0.26875 (16)0.18234 (12)0.0319 (8)
C80.0514 (3)0.28972 (15)0.11076 (11)0.0284 (7)
C90.1075 (3)0.35000 (17)0.09736 (12)0.0312 (8)
C100.4122 (3)0.3507 (2)0.10026 (15)0.0500 (10)
H10A0.505770.309000.107850.0750*
H10B0.422070.375760.058250.0750*
H10C0.416230.399630.130800.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0315 (3)0.0292 (3)0.0334 (3)0.0025 (3)0.0002 (3)0.0061 (3)
O10.0826 (16)0.0444 (11)0.0433 (12)0.0237 (12)0.0002 (11)0.0134 (9)
O20.0328 (11)0.0479 (11)0.0544 (12)0.0054 (9)0.0128 (9)0.0020 (9)
O30.0591 (13)0.0327 (9)0.0433 (11)0.0012 (9)0.0078 (10)0.0121 (8)
O40.0240 (9)0.0376 (10)0.0463 (11)0.0060 (8)0.0014 (8)0.0029 (9)
O50.0406 (12)0.0312 (10)0.0662 (14)0.0041 (8)0.0023 (10)0.0090 (9)
O60.0220 (9)0.0402 (10)0.0618 (13)0.0003 (8)0.0007 (9)0.0062 (9)
O70.0453 (13)0.0400 (10)0.0590 (14)0.0025 (10)0.0070 (10)0.0005 (10)
N10.0258 (11)0.0296 (10)0.0370 (12)0.0008 (9)0.0049 (10)0.0052 (9)
C10.0261 (12)0.0291 (12)0.0342 (13)0.0004 (10)0.0018 (10)0.0021 (10)
C20.0470 (16)0.0411 (15)0.0362 (14)0.0006 (13)0.0007 (13)0.0049 (12)
C30.063 (2)0.0559 (18)0.0364 (15)0.0002 (17)0.0064 (15)0.0089 (14)
C40.067 (2)0.0393 (15)0.0513 (18)0.0054 (15)0.0086 (16)0.0110 (14)
C50.0503 (17)0.0342 (14)0.0487 (17)0.0069 (13)0.0052 (14)0.0021 (13)
C60.0269 (12)0.0317 (12)0.0332 (13)0.0008 (11)0.0037 (11)0.0016 (10)
C70.0284 (13)0.0296 (12)0.0377 (14)0.0005 (10)0.0013 (11)0.0055 (11)
C80.0240 (12)0.0257 (11)0.0356 (14)0.0001 (10)0.0027 (10)0.0041 (10)
C90.0272 (13)0.0331 (13)0.0332 (14)0.0001 (11)0.0003 (10)0.0017 (10)
C100.0234 (14)0.0674 (19)0.0591 (19)0.0118 (14)0.0015 (13)0.0030 (16)
Geometric parameters (Å, º) top
S1—O21.4284 (17)C1—C71.486 (3)
S1—O31.426 (2)C1—C61.402 (3)
S1—N11.625 (2)C2—C31.377 (4)
S1—C61.757 (3)C3—C41.374 (4)
O1—C71.207 (3)C4—C51.381 (4)
O4—C81.379 (3)C5—C61.382 (4)
O5—C91.188 (3)C7—C81.539 (3)
O6—C91.317 (3)C8—C91.539 (3)
O6—C101.449 (3)C2—H20.9300
O4—H4O0.84 (3)C3—H30.9300
O7—H710.83 (3)C4—H40.9300
O7—H720.83 (4)C5—H50.9300
N1—C81.477 (3)C10—H10C0.9600
N1—H10.78 (3)C10—H10A0.9600
C1—C21.387 (4)C10—H10B0.9600
S1···H10Bi3.0600N1···O62.744 (3)
O1···O42.949 (3)N1···O7xii3.032 (3)
O1···O63.099 (3)C3···C5x3.570 (4)
O1···C4ii3.406 (4)C4···O1ix3.418 (4)
O1···C4iii3.418 (4)C4···O1xiii3.405 (4)
O2···O42.946 (3)C5···C3xi3.570 (4)
O2···O73.027 (3)C5···O4ix3.374 (3)
O2···C9i3.405 (3)C9···O2vii3.405 (3)
O3···C10iv3.393 (3)C10···O4xii2.994 (3)
O3···O7v3.107 (3)C10···O3xiv3.393 (3)
O3···O3vi3.106 (3)C10···H4Oxii3.09 (3)
O4···O52.710 (3)C10···H2x2.9800
O4···C5iii3.374 (3)H1···O62.43 (3)
O4···O7vii2.773 (3)H1···O7xii2.29 (3)
O4···O22.946 (3)H2···H10Axi2.5800
O4···O12.949 (3)H2···O12.5000
O4···C10viii2.994 (3)H2···O6xi2.7300
O5···O7iii3.028 (3)H2···C10xi2.9800
O5···O42.710 (3)H3···O7x2.9200
O6···N12.744 (3)H3···O5xiii2.7800
O6···O13.099 (3)H4···H10Cxiii2.4700
O7···N1viii3.032 (3)H4···O1ix2.7300
O7···O5ix3.028 (3)H4O···C10viii3.09 (3)
O7···O4i2.773 (3)H4O···H10Aviii2.5300
O7···O3v3.107 (3)H4O···O52.65 (3)
O7···O23.027 (3)H4O···O7vii1.94 (3)
O1···H4iii2.7300H4O···H71vii2.25 (4)
O1···H22.5000H4O···H72vii2.31 (4)
O2···H722.21 (4)H5···O32.8000
O2···H10Aviii2.6500H5···O4ix2.4800
O3···H10Bi2.6000H10A···O2xii2.6500
O3···H52.8000H10A···O4xii2.3100
O3···H71v2.45 (3)H10A···H2x2.5800
O3···H10Biv2.8900H10A···H4Oxii2.5300
O4···H5iii2.4800H10B···S1vii3.0600
O4···H10Aviii2.3100H10B···O3vii2.6000
O5···H4O2.65 (3)H10B···O52.6700
O5···H10B2.6700H10B···O3xiv2.8900
O5···H3ii2.7800H10C···O52.7000
O5···H72iii2.87 (3)H10C···H4ii2.4700
O5···H10C2.7000H71···H4Oi2.25 (4)
O5···H71iii2.45 (3)H71···O3v2.45 (3)
O6···H2x2.7300H71···O5ix2.45 (3)
O6···H12.43 (3)H72···O22.21 (4)
O7···H1viii2.29 (3)H72···H4Oi2.31 (5)
O7···H4Oi1.94 (3)H72···O5ix2.87 (3)
O7···H3xi2.9200
O2—S1—O3118.33 (12)O1—C7—C8118.4 (2)
O2—S1—N1109.39 (11)O4—C8—N1111.36 (19)
O2—S1—C6108.01 (11)O4—C8—C7104.59 (19)
O3—S1—N1106.53 (12)O4—C8—C9111.27 (18)
O3—S1—C6109.72 (11)N1—C8—C7113.20 (18)
N1—S1—C6103.94 (11)N1—C8—C9108.41 (19)
C9—O6—C10117.3 (2)C7—C8—C9107.96 (19)
C8—O4—H4O107 (2)O5—C9—C8123.4 (2)
H71—O7—H72107 (3)O6—C9—C8110.1 (2)
S1—N1—C8118.28 (17)O5—C9—O6126.5 (2)
C8—N1—H1115 (2)C3—C2—H2120.00
S1—N1—H1110 (2)C1—C2—H2120.00
C2—C1—C6117.8 (2)C2—C3—H3120.00
C2—C1—C7118.7 (2)C4—C3—H3120.00
C6—C1—C7123.4 (2)C5—C4—H4120.00
C1—C2—C3120.9 (3)C3—C4—H4120.00
C2—C3—C4120.3 (3)C4—C5—H5120.00
C3—C4—C5120.5 (3)C6—C5—H5120.00
C4—C5—C6119.1 (3)O6—C10—H10B109.00
S1—C6—C5118.1 (2)O6—C10—H10C109.00
S1—C6—C1120.56 (18)O6—C10—H10A110.00
C1—C6—C5121.4 (2)H10A—C10—H10C109.00
O1—C7—C1121.6 (2)H10B—C10—H10C109.00
C1—C7—C8120.0 (2)H10A—C10—H10B110.00
O2—S1—N1—C867.0 (2)C2—C1—C7—C8178.7 (2)
O3—S1—N1—C8163.98 (18)C6—C1—C7—O1178.8 (2)
C6—S1—N1—C848.1 (2)C6—C1—C7—C82.4 (3)
O2—S1—C6—C194.5 (2)C1—C2—C3—C40.2 (5)
O2—S1—C6—C584.8 (2)C2—C3—C4—C50.2 (5)
O3—S1—C6—C1135.2 (2)C3—C4—C5—C60.2 (5)
O3—S1—C6—C545.5 (2)C4—C5—C6—S1179.4 (2)
N1—S1—C6—C121.6 (2)C4—C5—C6—C10.1 (4)
N1—S1—C6—C5159.1 (2)O1—C7—C8—O484.6 (3)
C10—O6—C9—O53.0 (4)O1—C7—C8—N1154.0 (2)
C10—O6—C9—C8175.4 (2)O1—C7—C8—C933.9 (3)
S1—N1—C8—O464.3 (2)C1—C7—C8—O494.2 (2)
S1—N1—C8—C753.3 (3)C1—C7—C8—N127.2 (3)
S1—N1—C8—C9173.01 (16)C1—C7—C8—C9147.2 (2)
C6—C1—C2—C30.5 (4)O4—C8—C9—O54.0 (3)
C7—C1—C2—C3179.4 (3)O4—C8—C9—O6177.6 (2)
C2—C1—C6—S1179.7 (2)N1—C8—C9—O5126.8 (3)
C2—C1—C6—C50.4 (4)N1—C8—C9—O654.8 (3)
C7—C1—C6—S11.4 (3)C7—C8—C9—O5110.2 (3)
C7—C1—C6—C5179.3 (2)C7—C8—C9—O668.2 (2)
C2—C1—C7—O10.1 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z; (v) x+1, y, z; (vi) x, y, z; (vii) x1/2, y+1/2, z; (viii) x+1, y, z; (ix) x+1/2, y1/2, z; (x) x1/2, y, z+1/2; (xi) x+1/2, y, z+1/2; (xii) x1, y, z; (xiii) x, y1/2, z+1/2; (xiv) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.78 (3)2.43 (3)2.744 (3)106 (2)
N1—H1···O7xii0.78 (3)2.29 (3)3.032 (3)162 (3)
O4—H4O···O7vii0.84 (3)1.94 (3)2.773 (3)175 (2)
O7—H71···O3v0.83 (3)2.45 (3)3.107 (3)137 (3)
O7—H71···O5ix0.83 (3)2.45 (3)3.028 (3)128 (3)
O7—H72···O20.83 (4)2.21 (4)3.027 (3)167 (3)
C5—H5···O4ix0.93002.48003.374 (3)162.00
C10—H10A···O4xii0.96002.31002.994 (3)128.00
Symmetry codes: (v) x+1, y, z; (vii) x1/2, y+1/2, z; (ix) x+1/2, y1/2, z; (xii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H9NO6S·H2O
Mr289.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.7504 (5), 14.5638 (9), 21.0615 (14)
V3)2377.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.934, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
14889, 2998, 1895
Rint0.065
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.01
No. of reflections2998
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.78 (3)2.43 (3)2.744 (3)106 (2)
N1—H1···O7i0.78 (3)2.29 (3)3.032 (3)162 (3)
O4—H4O···O7ii0.84 (3)1.94 (3)2.773 (3)175 (2)
O7—H71···O3iii0.83 (3)2.45 (3)3.107 (3)137 (3)
O7—H71···O5iv0.83 (3)2.45 (3)3.028 (3)128 (3)
O7—H72···O20.83 (4)2.21 (4)3.027 (3)167 (3)
C5—H5···O4iv0.93002.48003.374 (3)162.00
C10—H10A···O4i0.96002.31002.994 (3)128.00
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x+1/2, y1/2, z.
 

Acknowledgements

Muhammad Nadeem Arshad gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a scholarship under the Indigenous PhD Program (PIN 042-120607-PS2-183).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAntsyshkina, A. S., Sadikov, G. G., Korshunov, O. Yu., Anpilova, E. L., Bicherov, A. S., Sergienko, V. S., Uflyand, I. E. & Garnovskii, A. D. (2003). Russ. J. Coord. Chem. 29, 724–731.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds