metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1339-m1340

(4,7-Di­phenyl-1,10-phenanthroline-κ2N,N′)di­iodidomercury(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bDepartment of Chemistry, Shahrood University of Technology, Shahrood, Iran, and cDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 23 September 2008; accepted 24 September 2008; online 27 September 2008)

In the mol­ecule of the title compound, [HgI2(C24H16N2)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the bidentate 4,7-diphenyl-1,10-phenanthroline and two iodide ligands. There is a ππ contact between the pyridine and phenyl rings [centroid-to-centroid distance = 4.2387 (4) Å].

Related literature

For related literature, see: Ahmadi, Amani et al. (2008[Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156-m1157.]); Ahmadi, Kalateh, Ebadi et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.]); Ahmadi, Kalateh, Abedi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Ahmadi, Khalighi et al. (2008[Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]); Yousefi, Khalighi et al. (2008[Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284-m1285.]). For related structures, see: Chen et al. (2006[Chen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289-2300.]); Freire et al. (1999[Freire, E., Baggio, S., Baggio, R. & Suescun, L. (1999). J. Chem. Crystallogr. 29, 825-830.]); Htoon & Ladd (1976[Htoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55-58.]); Yousefi, Tadayon Pour et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C24H16N2)]

  • Mr = 786.78

  • Monoclinic, P 21 /n

  • a = 16.673 (3) Å

  • b = 8.8964 (18) Å

  • c = 16.823 (3) Å

  • β = 109.26 (3)°

  • V = 2355.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.17 mm−1

  • T = 298 (2) K

  • 0.50 × 0.48 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany])Tmin = 0.016, Tmax = 0.080

  • 19129 measured reflections

  • 6340 independent reflections

  • 5356 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.183

  • S = 1.23

  • 6340 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 1.49 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—Hg1 2.6441 (8)
I2—Hg1 2.6555 (9)
N1—Hg1 2.425 (7)
N2—Hg1 2.399 (7)
N2—Hg1—N1 69.4 (2)
N2—Hg1—I1 104.08 (17)
N1—Hg1—I1 110.65 (19)
N2—Hg1—I2 107.53 (17)
N1—Hg1—I2 103.11 (19)
I1—Hg1—I2 139.97 (3)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the syntheses and crystal structures of [Zn(5,5'-dmbpy)Cl2], (II), (Khalighi et al., 2008), [Zn(6-mbpy)Cl2], (III), (Ahmadi, Kalateh, Abedi et al., 2008), [Cd(5,5'-dmbpy)(µ-Cl)2]n, (IV), (Ahmadi, Khalighi et al., 2008), [Hg(5,5'-dmbpy)I2], (V), (Tadayon Pour et al., 2008), [In(4,4'-dmbpy)Cl3(DMSO)], (VI), (Ahmadi, Kalateh, Ebadi et al., 2008), [Cu(5,5'-dcbpy)(en)(H2O)2].2.5H2O, (VII), (Yousefi, Khalighi et al., 2008), [Au(dmphen)Cl2][AuCl4], (VIII), (Ahmadi, Amani et al., 2008), and {[HgCl(dm4bt)]2(µ-Cl)2}, (IX), (Khavasi et al., 2008). [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bi- pyridine, DMSO is dimethyl sulfoxide, 5,5'-dcbpy is 2,2'-bipyridine-5,5'-di- carboxylate, en is ethylenediamine, dmphen is 4,7-diphenyl-1,10- phenanthroline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole]. There are several HgII complexes, with formula, [HgI2(N—N)], such as [HgI2(bipy)], (X), [HgI2(phen)], (XI) and [HgI2(2,9-dmphen)], (XII), (Freire et al., 1999), [HgI2(bipy)][HgI2], (XIII), (Chen et al., 2006), [HgI2(4,4'-dmbpy)], (XIV), (Yousefi, Tadayon Pour et al., 2008) and [HgI2(TMDA)], (XV), (Htoon & Ladd, 1976) [where bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline and TMDA is tetramethylethylenediamine] have been synthesized and characterized by single crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 4,7-diphenyl-1,10-phenanthroline and two I atoms. The Hg—I and Hg—N bond lengths and angles (Table 1) are within normal ranges, as in (X), (XI) and (XIV).

In the crystal structure, the ππ contact (Fig. 2) between the pyridine and phenyl rings, Cg3···Cg4i [symmetry code: (i) 3/2 - x, -1/2 + y, 1/2 - z, where Cg3 and Cg4 are centroids of the rings (N1/C1–C3/C10/C24) and (C4–C9), respectively] may stabilize the structure, with centroid–centroid distance of 4.2387 (4) Å.

Related literature top

For related literature, see: Ahmadi, Amani et al. (2008); Ahmadi, Kalateh, Ebadi et al. (2008); Ahmadi, Kalateh, Abedi et al. (2008); Ahmadi, Khalighi et al. (2008); Chen et al. (2006); Freire et al. (1999); Htoon & Ladd (1976); Khalighi et al. (2008); Khavasi et al. (2008); Tadayon Pour et al. (2008); Yousefi, Khalighi et al. (2008); Yousefi, Tadayon Pour et al. (2008). [It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···." etc. Please revise this section as indicated.]

Experimental top

For the preparation of the title compound, a solution of 4,7-diphenyl-1,10-phenanthroline (0.36 g, 1.10 mmol) in acetonitrile (20 ml) was added to a solution of HgI2 (0.50 g, 1.10 mmol) in methanol (20 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield; 0.62 g, 71.6%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
(4,7-Diphenyl-1,10-phenanthroline-κ2N,N')diiodidomercury(II) top
Crystal data top
[HgI2(C24H16N2)]F(000) = 1440
Mr = 786.78Dx = 2.218 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2356 reflections
a = 16.673 (3) Åθ = 2.1–29.3°
b = 8.8964 (18) ŵ = 9.17 mm1
c = 16.823 (3) ÅT = 298 K
β = 109.26 (3)°Block, colourless
V = 2355.7 (9) Å30.50 × 0.48 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6340 independent reflections
Radiation source: fine-focus sealed tube5356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ϕ and ω scansθmax = 29.3°, θmin = 2.1°
Absorption correction: numerical
shape of crystal determined optically
h = 2219
Tmin = 0.016, Tmax = 0.080k = 1212
19129 measured reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.085P)2 + 4.523P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.009
6340 reflectionsΔρmax = 1.49 e Å3
263 parametersΔρmin = 1.11 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0086 (6)
Crystal data top
[HgI2(C24H16N2)]V = 2355.7 (9) Å3
Mr = 786.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.673 (3) ŵ = 9.17 mm1
b = 8.8964 (18) ÅT = 298 K
c = 16.823 (3) Å0.50 × 0.48 × 0.28 mm
β = 109.26 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6340 independent reflections
Absorption correction: numerical
shape of crystal determined optically
5356 reflections with I > 2σ(I)
Tmin = 0.016, Tmax = 0.080Rint = 0.094
19129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.23Δρmax = 1.49 e Å3
6340 reflectionsΔρmin = 1.11 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.35746 (2)0.27882 (4)0.10505 (2)0.05561 (16)
I10.29465 (5)0.55290 (7)0.06892 (4)0.0694 (2)
I20.32177 (5)0.00283 (7)0.05316 (5)0.0736 (2)
N10.5115 (5)0.2845 (9)0.1529 (4)0.0545 (17)
N20.4136 (4)0.2750 (8)0.2559 (5)0.0495 (14)
C10.5583 (7)0.2946 (13)0.1039 (6)0.065 (2)
H10.53140.30980.04660.078*
C20.6448 (7)0.2837 (13)0.1335 (6)0.068 (3)
H20.67490.29300.09600.081*
C30.6884 (6)0.2594 (10)0.2172 (6)0.0524 (18)
C40.7831 (6)0.2515 (11)0.2502 (7)0.0550 (19)
C50.8260 (8)0.1623 (13)0.2086 (9)0.076 (3)
H50.79630.11180.15920.091*
C60.9151 (9)0.1506 (14)0.2430 (12)0.101 (5)
H60.94420.08690.21820.122*
C70.9601 (9)0.2342 (18)0.3143 (12)0.093 (4)
H71.01900.22740.33620.112*
C80.9178 (7)0.3244 (19)0.3510 (9)0.086 (3)
H80.94770.38150.39760.103*
C90.8304 (6)0.3327 (15)0.3199 (7)0.068 (2)
H90.80240.39480.34670.082*
C100.6399 (5)0.2429 (10)0.2719 (5)0.0487 (16)
C110.6750 (5)0.2082 (11)0.3592 (6)0.0545 (19)
H110.73240.18430.38160.065*
C120.6274 (5)0.2090 (11)0.4100 (5)0.0534 (19)
H120.65270.18550.46670.064*
C130.5399 (5)0.2448 (8)0.3793 (5)0.0411 (14)
C140.4883 (5)0.2524 (9)0.4320 (5)0.0456 (15)
C150.5272 (6)0.2456 (9)0.5252 (5)0.0478 (16)
C160.5965 (6)0.3362 (12)0.5672 (5)0.059 (2)
H160.61760.40410.53700.071*
C170.6343 (7)0.3255 (15)0.6545 (6)0.071 (3)
H170.67980.38750.68240.085*
C180.6042 (9)0.2228 (14)0.6993 (7)0.078 (3)
H180.63000.21400.75730.094*
C190.5350 (9)0.1323 (12)0.6573 (7)0.078 (3)
H190.51500.06220.68730.093*
C200.4958 (8)0.1460 (11)0.5713 (6)0.062 (2)
H200.44820.08810.54410.075*
C210.4019 (6)0.2684 (11)0.3937 (6)0.058 (2)
H210.36640.27430.42610.069*
C220.3682 (5)0.2756 (11)0.3070 (6)0.058 (2)
H220.30940.28140.28300.070*
C230.5005 (5)0.2597 (8)0.2918 (5)0.0420 (14)
C240.5506 (5)0.2610 (9)0.2361 (5)0.0463 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0541 (2)0.0529 (2)0.0461 (2)0.00215 (13)0.00194 (13)0.00031 (12)
I10.0728 (4)0.0484 (3)0.0684 (4)0.0027 (3)0.0018 (3)0.0002 (3)
I20.0846 (5)0.0496 (3)0.0714 (4)0.0056 (3)0.0051 (3)0.0066 (3)
N10.049 (3)0.072 (5)0.036 (3)0.006 (3)0.006 (3)0.002 (3)
N20.041 (3)0.054 (4)0.047 (3)0.001 (3)0.006 (3)0.001 (3)
C10.071 (6)0.084 (7)0.037 (4)0.001 (5)0.012 (4)0.006 (4)
C20.066 (6)0.093 (8)0.051 (5)0.011 (5)0.028 (4)0.006 (5)
C30.052 (4)0.057 (4)0.052 (4)0.005 (4)0.022 (4)0.006 (4)
C40.051 (4)0.055 (4)0.066 (5)0.000 (3)0.029 (4)0.000 (4)
C50.080 (7)0.059 (5)0.104 (8)0.012 (5)0.051 (6)0.017 (6)
C60.086 (8)0.065 (6)0.188 (16)0.005 (6)0.093 (10)0.005 (9)
C70.060 (6)0.107 (10)0.113 (11)0.008 (7)0.028 (7)0.028 (9)
C80.057 (5)0.111 (10)0.085 (8)0.001 (7)0.017 (5)0.003 (8)
C90.047 (4)0.085 (7)0.069 (6)0.001 (5)0.015 (4)0.006 (5)
C100.042 (3)0.052 (4)0.048 (4)0.004 (3)0.010 (3)0.002 (3)
C110.038 (3)0.073 (6)0.049 (4)0.005 (3)0.009 (3)0.010 (4)
C120.045 (4)0.071 (5)0.037 (3)0.002 (4)0.004 (3)0.007 (3)
C130.040 (3)0.045 (3)0.037 (3)0.004 (3)0.011 (3)0.006 (3)
C140.049 (4)0.047 (3)0.041 (3)0.001 (3)0.015 (3)0.002 (3)
C150.057 (4)0.047 (4)0.040 (4)0.000 (3)0.016 (3)0.004 (3)
C160.063 (5)0.063 (5)0.048 (4)0.011 (4)0.013 (4)0.001 (4)
C170.074 (6)0.079 (6)0.050 (5)0.003 (5)0.005 (4)0.019 (5)
C180.104 (9)0.087 (8)0.040 (4)0.004 (7)0.021 (5)0.001 (5)
C190.128 (10)0.060 (5)0.058 (5)0.010 (6)0.048 (6)0.008 (5)
C200.091 (7)0.051 (4)0.052 (4)0.006 (4)0.033 (4)0.004 (4)
C210.050 (4)0.070 (5)0.057 (5)0.000 (4)0.022 (4)0.003 (4)
C220.039 (4)0.072 (6)0.057 (5)0.006 (4)0.008 (3)0.003 (4)
C230.040 (3)0.042 (3)0.040 (3)0.001 (3)0.007 (3)0.001 (3)
C240.047 (4)0.044 (3)0.039 (3)0.002 (3)0.003 (3)0.007 (3)
Geometric parameters (Å, º) top
I1—Hg12.6441 (8)C11—H110.9300
I2—Hg12.6555 (9)C12—C131.415 (11)
N1—Hg12.425 (7)C12—H120.9300
N2—Hg12.399 (7)C13—C231.407 (10)
C1—N11.312 (12)C13—C141.426 (10)
C1—C21.364 (15)C14—C211.379 (12)
C1—H10.9300C14—C151.487 (11)
C2—C31.372 (14)C15—C201.389 (12)
C2—H20.9300C15—C161.394 (12)
C3—C101.420 (12)C16—C171.398 (13)
C3—C41.493 (13)C16—H160.9300
C4—C91.382 (15)C17—C181.380 (18)
C4—C51.401 (14)C17—H170.9300
C5—C61.409 (19)C18—C191.393 (18)
C5—H50.9300C18—H180.9300
C6—C71.40 (2)C19—C201.383 (15)
C6—H60.9300C19—H190.9300
C7—C81.34 (2)C20—H200.9300
C7—H70.9300C21—C221.381 (14)
C8—C91.378 (15)C21—H210.9300
C8—H80.9300C22—N21.320 (12)
C9—H90.9300C22—H220.9300
C10—C241.419 (11)C23—N21.379 (10)
C10—C111.423 (12)C23—C241.447 (11)
C11—C121.345 (13)C24—N11.352 (10)
N2—Hg1—N169.4 (2)C12—C11—C10121.7 (8)
N2—Hg1—I1104.08 (17)C12—C11—H11119.1
N1—Hg1—I1110.65 (19)C10—C11—H11119.1
N2—Hg1—I2107.53 (17)C11—C12—C13121.5 (7)
N1—Hg1—I2103.11 (19)C11—C12—H12119.2
I1—Hg1—I2139.97 (3)C13—C12—H12119.2
C1—N1—C24118.5 (8)C23—C13—C12118.2 (7)
C1—N1—Hg1125.3 (6)C23—C13—C14118.5 (7)
C24—N1—Hg1115.9 (6)C12—C13—C14123.0 (7)
C22—N2—C23117.4 (7)C21—C14—C13117.8 (7)
C22—N2—Hg1125.6 (6)C21—C14—C15121.5 (7)
C23—N2—Hg1116.8 (5)C13—C14—C15120.7 (7)
N1—C1—C2122.9 (8)C20—C15—C16119.2 (8)
N1—C1—H1118.6C20—C15—C14120.0 (8)
C2—C1—H1118.6C16—C15—C14120.8 (8)
C1—C2—C3121.6 (8)C15—C16—C17120.3 (9)
C1—C2—H2119.2C15—C16—H16119.8
C3—C2—H2119.2C17—C16—H16119.8
C2—C3—C10117.4 (8)C18—C17—C16120.0 (11)
C2—C3—C4121.8 (8)C18—C17—H17120.0
C10—C3—C4120.8 (8)C16—C17—H17120.0
C9—C4—C5118.6 (9)C17—C18—C19119.7 (10)
C9—C4—C3121.9 (8)C17—C18—H18120.2
C5—C4—C3119.5 (9)C19—C18—H18120.2
C4—C5—C6118.6 (12)C20—C19—C18120.4 (10)
C4—C5—H5120.7C20—C19—H19119.8
C6—C5—H5120.7C18—C19—H19119.8
C7—C6—C5120.5 (11)C19—C20—C15120.3 (10)
C7—C6—H6119.8C19—C20—H20119.8
C5—C6—H6119.8C15—C20—H20119.8
C8—C7—C6119.7 (12)C14—C21—C22119.8 (8)
C8—C7—H7120.1C14—C21—H21120.1
C6—C7—H7120.1C22—C21—H21120.1
C7—C8—C9120.5 (14)N2—C22—C21124.5 (8)
C7—C8—H8119.8N2—C22—H22117.7
C9—C8—H8119.8C21—C22—H22117.7
C8—C9—C4122.0 (11)N2—C23—C13121.9 (7)
C8—C9—H9119.0N2—C23—C24117.6 (7)
C4—C9—H9119.0C13—C23—C24120.5 (7)
C24—C10—C3117.0 (8)N1—C24—C10122.6 (8)
C24—C10—C11118.7 (7)N1—C24—C23119.2 (7)
C3—C10—C11124.2 (8)C10—C24—C23118.2 (7)
C1—N1—Hg1—N2177.4 (9)C21—C14—C15—C2051.1 (12)
C24—N1—Hg1—N29.2 (6)C13—C14—C15—C20129.9 (9)
C1—N1—Hg1—I179.6 (9)C21—C14—C15—C16130.2 (10)
C24—N1—Hg1—I1107.0 (6)C13—C14—C15—C1648.7 (12)
C1—N1—Hg1—I278.6 (9)C20—C15—C16—C170.7 (15)
C24—N1—Hg1—I294.9 (6)C14—C15—C16—C17177.9 (9)
C22—N2—Hg1—N1177.5 (8)C15—C16—C17—C181.3 (17)
C23—N2—Hg1—N17.5 (5)C16—C17—C18—C191.3 (19)
C22—N2—Hg1—I170.4 (8)C17—C18—C19—C200.7 (19)
C23—N2—Hg1—I1114.6 (5)C18—C19—C20—C152.8 (17)
C22—N2—Hg1—I284.7 (7)C16—C15—C20—C192.7 (15)
C23—N2—Hg1—I290.3 (6)C14—C15—C20—C19175.9 (9)
N1—C1—C2—C30.8 (19)C13—C14—C21—C220.4 (14)
C1—C2—C3—C101.2 (16)C15—C14—C21—C22179.4 (9)
C1—C2—C3—C4178.3 (10)C14—C21—C22—N23.1 (16)
C2—C3—C4—C9130.8 (11)C12—C13—C23—N2171.4 (8)
C10—C3—C4—C948.7 (14)C14—C13—C23—N22.7 (11)
C2—C3—C4—C547.7 (14)C12—C13—C23—C249.3 (11)
C10—C3—C4—C5132.8 (10)C14—C13—C23—C24176.6 (7)
C9—C4—C5—C64.5 (17)C3—C10—C24—N13.7 (13)
C3—C4—C5—C6177.0 (10)C11—C10—C24—N1175.7 (8)
C4—C5—C6—C74 (2)C3—C10—C24—C23174.0 (7)
C5—C6—C7—C81 (2)C11—C10—C24—C236.7 (12)
C6—C7—C8—C91 (2)N2—C23—C24—N13.3 (11)
C7—C8—C9—C41 (2)C13—C23—C24—N1176.0 (7)
C5—C4—C9—C82.2 (18)N2—C23—C24—C10179.0 (7)
C3—C4—C9—C8179.3 (12)C13—C23—C24—C101.7 (11)
C2—C3—C10—C243.3 (13)C21—C22—N2—C232.8 (14)
C4—C3—C10—C24176.3 (8)C21—C22—N2—Hg1177.8 (7)
C2—C3—C10—C11176.0 (9)C13—C23—N2—C220.2 (12)
C4—C3—C10—C114.4 (14)C24—C23—N2—C22179.2 (8)
C24—C10—C11—C127.6 (14)C13—C23—N2—Hg1175.2 (6)
C3—C10—C11—C12173.1 (9)C24—C23—N2—Hg15.5 (9)
C10—C11—C12—C130.1 (15)C2—C1—N1—C240.6 (16)
C11—C12—C13—C238.6 (13)C2—C1—N1—Hg1173.9 (9)
C11—C12—C13—C14177.5 (9)C10—C24—N1—C11.7 (14)
C23—C13—C14—C212.3 (12)C23—C24—N1—C1175.9 (9)
C12—C13—C14—C21171.5 (8)C10—C24—N1—Hg1172.2 (6)
C23—C13—C14—C15176.7 (7)C23—C24—N1—Hg110.2 (10)
C12—C13—C14—C159.5 (12)

Experimental details

Crystal data
Chemical formula[HgI2(C24H16N2)]
Mr786.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)16.673 (3), 8.8964 (18), 16.823 (3)
β (°) 109.26 (3)
V3)2355.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)9.17
Crystal size (mm)0.50 × 0.48 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.016, 0.080
No. of measured, independent and
observed [I > 2σ(I)] reflections
19129, 6340, 5356
Rint0.094
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.183, 1.23
No. of reflections6340
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.49, 1.11

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
I1—Hg12.6441 (8)N1—Hg12.425 (7)
I2—Hg12.6555 (9)N2—Hg12.399 (7)
N2—Hg1—N169.4 (2)N2—Hg1—I2107.53 (17)
N2—Hg1—I1104.08 (17)N1—Hg1—I2103.11 (19)
N1—Hg1—I1110.65 (19)I1—Hg1—I2139.97 (3)
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156–m1157.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289–2300.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreire, E., Baggio, S., Baggio, R. & Suescun, L. (1999). J. Chem. Crystallogr. 29, 825–830.  Web of Science CSD CrossRef CAS Google Scholar
First citationHtoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55–58.  CSD CrossRef CAS Web of Science Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany  Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1339-m1340
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds