metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­methyl­pyridine-κN)gold(I) tetra­chloridoaurate(III)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 15 August 2008; accepted 31 August 2008; online 6 September 2008)

In the cation of the title compound, [Au(C7H9N)2][AuCl4], the AuI atom is two-coordinated in a linear arrangement by two N atoms from two 2,6-dimethyl­pyridine ligands. In the anion, the AuIII atom has a virtually square-planar coordination geometry. The Au atoms both are located on centers of inversion. The crystal structure involves inter­molecular C—H⋯Cl hydrogen bonds.

Related literature

For related literature, see: Abbate et al. (2000[Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1-5.]); Adams & Strähle (1982[Adams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]); Ahmadi et al. (2008[Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156-m1157.]); Amani et al. (2008[Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143-m1144.]); Bjerne­mose et al. (2004[Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719-m1721.]); Hayoun et al. (2006[Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120-6122.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Hollis & Lippard (1983[Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293-4299.]); McInnes et al. (1995[McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023-2025.]); Yildirim et al. (2008[Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V., McKee, V., Abedi, A. & Khavasi, H. R. (2008). Acta Cryst. E64, m1189-m1190.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C7H9N)2][AuCl4]

  • Mr = 750.04

  • Monoclinic, C 2/m

  • a = 17.773 (3) Å

  • b = 6.8395 (8) Å

  • c = 8.3728 (14) Å

  • β = 110.929 (12)°

  • V = 950.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.97 mm−1

  • T = 298 (2) K

  • 0.20 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.112, Tmax = 0.275

  • 5473 measured reflections

  • 1384 independent reflections

  • 1123 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.20

  • 1384 reflections

  • 69 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −2.1 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—N1 2.030 (8)
Au2—Cl1 2.280 (3)
Au2—Cl2 2.286 (4)
Cl1i—Au2—Cl2 90.05 (14)
Cl1—Au2—Cl2 89.95 (14)
Symmetry code: (i) -x, y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1ii 0.93 2.77 3.572 (14) 145
Symmetry code: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the syntheses and crystal structures of [Au(dmphen)Cl2][AuCl4], (II), (Ahmadi et al., 2008), [dmpyH][PtCl6], (III), (Amani et al., 2008) and [H2DA18C6][AuCl4].2H2O, (IV), (Hojjat Kashani et al., 2008) (dmphen = 4,7-diphenyl-1,10-phenanthroline; dmpyH = 2,6-dimethylpyridinium and H2DA18C6 = 1,10-diazonia-18-crown-6). Several AuIII complexes with formula [AuCl2L]X, such as [AuCl2(bipy)](BF4), (V), (McInnes et al., 1995), [AuCl2(bipy)](NO3), (VI), (Bjernemose et al., 2004), [AuCl2(bipy)][AuBr4], (VII), (Hayoun et al., 2006), [AuCl2(dtbpy)][AuCl4].CH3CN, (VIII), (Yildirim et al., 2008) and [AuCl2(phen)]Cl.H2O, (IX), (Abbate et al., 2000) (bipy = 2,2'-bipyridine; dtbpy = 4,4'-ditertbutyl-2,2'-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by single-crystal X-ray diffraction methods. Two AuIII complexes with formula [AuCl2L2]X, [AuCl2(py)2][AuCl4], (X), and [AuCl2(py)2]Cl.H2O, (XI), (Adams & Strahle, 1982) (py = pyridine) and only one mixed-valence AuI–AuIII complex, [Au(terpy)Cl]2[AuCl2]3[AuCl4], (XII), (Hollis & Lippard, 1983) (terpy = 2,2',2''-terpyridine) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the cation of the title compound (Fig. 1), the AuI atom is two-coordinated in a linear arrangement by two N atoms from two 2,6-dimethylpyridine ligands. In the anion, the AuIII atom has a square-planar coordination geometry. The Au atoms each are located on an inversion center. In the cation, the Au—N bond length (Table 1) is in good agreement with the corresponding values in (X) and (XI) and in the anion, the Au—Cl bond lengths and angles (Table 1) are within a normal range, comparable with those in (II), (VIII) and (XII). In the crystal structure, intermolecular C—H···Cl hydrogen bonds are observed.

Related literature top

For related literature, see: Abbate et al. (2000); Adams & Strahle (1982); Ahmadi et al. (2008); Amani et al. (2008); Bjernemose et al. (2004); Hayoun et al. (2006); Hojjat Kashani et al. (2008); Hollis & Lippard (1983); McInnes et al. (1995); Yildirim et al. (2008).

Experimental top

A solution of 2,6-dimethylpyridine (0.12 g, 1.09 mmol) in methanol (15 ml) was added to a solution of HAuCl3.3H2O, (0.37 g, 1.09 mmol) in acetonitrile (15 ml). The resulting yellow solution was stirred for 10 min at 313 K, and then it was left to evaporate slowly at room temperature. After one week, yellow block crystals of (I) were isolated (yield 75.8%, 0.31 g; m. p. 489 K).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.90 Å from atom Au2 and the deepest hole 0.81 Å from atom Au2.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) -x, y, 1 - z.]
Bis(2,6-dimethylpyridine-κN)gold(I) tetrachloridoaurate(III) top
Crystal data top
[Au(C7H9N)2][AuCl4]F(000) = 684
Mr = 750.04Dx = 2.62 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 971 reflections
a = 17.773 (3) Åθ = 2.6–29.2°
b = 6.8395 (8) ŵ = 15.97 mm1
c = 8.3728 (14) ÅT = 298 K
β = 110.929 (12)°Block, yellow
V = 950.6 (3) Å30.20 × 0.12 × 0.08 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1123 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.092
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 29.2°, θmin = 2.6°
Tmin = 0.112, Tmax = 0.275h = 2324
5473 measured reflectionsk = 98
1384 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0468P)2 + 5.4887P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.004
S = 1.20Δρmax = 1.76 e Å3
1384 reflectionsΔρmin = 2.1 e Å3
69 parameters
Crystal data top
[Au(C7H9N)2][AuCl4]V = 950.6 (3) Å3
Mr = 750.04Z = 2
Monoclinic, C2/mMo Kα radiation
a = 17.773 (3) ŵ = 15.97 mm1
b = 6.8395 (8) ÅT = 298 K
c = 8.3728 (14) Å0.20 × 0.12 × 0.08 mm
β = 110.929 (12)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1384 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1123 reflections with I > 2σ(I)
Tmin = 0.112, Tmax = 0.275Rint = 0.092
5473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.20Δρmax = 1.76 e Å3
1384 reflectionsΔρmin = 2.1 e Å3
69 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au100.50.50.04157 (18)
Au2000.50.0484 (2)
Cl10.13598 (17)00.6416 (5)0.0656 (9)
Cl20.0196 (2)00.2445 (5)0.0726 (10)
N10.1180 (5)0.50.6531 (12)0.044 (2)
C10.0754 (8)0.50.8993 (16)0.068 (4)
H1A0.08030.61460.96840.081*
H1B0.02380.50.80840.081*
C20.1398 (7)0.50.8262 (15)0.054 (3)
C30.2206 (8)0.50.9317 (17)0.071 (4)
H30.23530.51.050.085*
C40.2774 (8)0.50.859 (2)0.079 (5)
H40.33150.50.92880.095*
C50.2568 (8)0.50.684 (2)0.065 (3)
H50.29650.50.63610.078*
C60.1763 (6)0.50.5816 (15)0.047 (2)
C70.1497 (8)0.50.3949 (19)0.069 (4)
H7A0.17020.3860.35740.083*
H7B0.09190.50.34730.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0319 (3)0.0531 (4)0.0374 (3)00.00961 (19)0
Au20.0327 (3)0.0502 (4)0.0538 (3)00.0053 (2)0
Cl10.0327 (12)0.071 (2)0.077 (2)00.0006 (12)0
Cl20.0641 (19)0.090 (3)0.0611 (18)00.0195 (15)0
N10.024 (3)0.050 (5)0.050 (5)00.002 (3)0
C10.060 (7)0.097 (12)0.045 (6)00.017 (5)0
C20.038 (5)0.065 (8)0.042 (5)00.006 (4)0
C30.047 (6)0.098 (12)0.047 (6)00.008 (5)0
C40.036 (6)0.098 (13)0.086 (10)00.002 (6)0
C50.045 (6)0.075 (10)0.078 (9)00.026 (6)0
C60.040 (5)0.050 (6)0.053 (6)00.020 (4)0
C70.057 (7)0.088 (11)0.074 (9)00.037 (7)0
Geometric parameters (Å, º) top
Au1—N12.030 (8)C2—C31.392 (15)
Au1—N1i2.030 (8)C3—C41.35 (2)
Au2—Cl1i2.280 (3)C3—H30.93
Au2—Cl12.280 (3)C4—C51.38 (2)
Au2—Cl22.286 (4)C4—H40.93
Au2—Cl2i2.286 (4)C5—C61.381 (17)
N1—C21.360 (15)C5—H50.93
N1—C61.370 (14)C6—C71.463 (18)
C1—C21.479 (18)C7—H7A0.96
C1—H1A0.96C7—H7B0.96
C1—H1B0.96
N1—Au1—N1i180.0 (3)C4—C3—C2118.8 (12)
Cl1i—Au2—Cl1180.00 (8)C4—C3—H3120.6
Cl1i—Au2—Cl290.05 (14)C2—C3—H3120.6
Cl1—Au2—Cl289.95 (14)C3—C4—C5121.4 (12)
Cl1i—Au2—Cl2i89.95 (14)C3—C4—H4119.3
Cl1—Au2—Cl2i90.05 (14)C5—C4—H4119.3
Cl2—Au2—Cl2i180.00 (17)C4—C5—C6119.0 (12)
C2—N1—C6119.6 (9)C4—C5—H5120.5
C2—N1—Au1120.7 (8)C6—C5—H5120.5
C6—N1—Au1119.7 (7)N1—C6—C5120.3 (11)
C2—C1—H1A109.5N1—C6—C7117.4 (10)
C2—C1—H1B109.5C5—C6—C7122.3 (11)
H1A—C1—H1B109.5C6—C7—H7A109.5
N1—C2—C3120.9 (12)C6—C7—H7B109.5
N1—C2—C1118.2 (10)H7A—C7—H7B109.5
C3—C2—C1120.9 (11)
C6—N1—C2—C30.000 (4)C3—C4—C5—C60.000 (5)
Au1—N1—C2—C3180.000 (4)C2—N1—C6—C50.000 (4)
C6—N1—C2—C1180.000 (4)Au1—N1—C6—C5180.000 (3)
Au1—N1—C2—C10.000 (3)C2—N1—C6—C7180.000 (3)
N1—C2—C3—C40.000 (6)Au1—N1—C6—C70.000 (3)
C1—C2—C3—C4180.000 (5)C4—C5—C6—N10.000 (4)
C2—C3—C4—C50.000 (6)C4—C5—C6—C7180.000 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1ii0.932.773.572 (14)145
Symmetry code: (ii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Au(C7H9N)2][AuCl4]
Mr750.04
Crystal system, space groupMonoclinic, C2/m
Temperature (K)298
a, b, c (Å)17.773 (3), 6.8395 (8), 8.3728 (14)
β (°) 110.929 (12)
V3)950.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)15.97
Crystal size (mm)0.20 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.112, 0.275
No. of measured, independent and
observed [I > 2σ(I)] reflections
5473, 1384, 1123
Rint0.092
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.20
No. of reflections1384
No. of parameters69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 2.1

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Au1—N12.030 (8)Au2—Cl22.286 (4)
Au2—Cl12.280 (3)
Cl1i—Au2—Cl290.05 (14)Cl1—Au2—Cl289.95 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1ii0.932.773.572 (14)145
Symmetry code: (ii) x+1/2, y+1/2, z+2.
 

Acknowledgements

We are grateful to Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAbbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationAhmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156–m1157.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120–6122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293–4299.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V., McKee, V., Abedi, A. & Khavasi, H. R. (2008). Acta Cryst. E64, m1189–m1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds