organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R)-2-Cinnamoylamino-N-[5-(4-meth­oxy­phen­yl)-1,3,4-thia­diazol-2-yl]propanamide

aState Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, JiangXi, People's Republic of China, and bDepartment of Pharmacy, NanChang University Medical College, 330006 Nanchang, JiangXi, People's Republic of China
*Correspondence e-mail: tugg199@yahoo.com

(Received 29 July 2008; accepted 30 August 2008; online 6 September 2008)

The asymmetric unit of the title compound, C21H20N4O3S, contains two independent mol­ecules. The dihedral angles between the two benzene rings are 47.6 (1) and 30.2 (1)°, the corresponding values between the p-methoxy­benzene and thia­diazol rings are 12.3 (1) and 24.7 (1)°, respectively, for the two mol­ecules. The conformations of the N—H and C=O bonds are anti with respect to each other. The enone groups show a trans configuration. The crystal structure is stabilized by N—H⋯O and N—H⋯N inter­actions. The absolute structure could not be determined from the X-ray data but the absolute configuration has been assigned by reference to an unchanging chiral centre in the synthetic procedure.

Related literature

For 1,3,4-thiadiazole scaffold compounds and their biological activity, see: Tu et al. (2008[Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663-6668.]). For the synthesis, see: Foroumadi et al. (1999[Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035-1038.]); Levy & Palmer (1942[Levy, M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493-495.]); Song et al. (1992[Song, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823-826.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956-o957.]); Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.]) Thiruvalluvar et al. (2008[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N4O3S

  • Mr = 408.48

  • Triclinic, P 1

  • a = 9.082 (3) Å

  • b = 9.849 (3) Å

  • c = 13.644 (4) Å

  • α = 79.587 (4)°

  • β = 83.253 (4)°

  • γ = 65.458 (4)°

  • V = 1090.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 (2) K

  • 0.35 × 0.24 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 6219 measured reflections

  • 3553 independent reflections

  • 2735 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 0.94

  • 3553 reflections

  • 528 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4 0.86 2.10 2.960 (4) 177
N4—H4A⋯N6i 0.86 2.17 3.016 (5) 168
N7—H7A⋯O1ii 0.86 2.09 2.944 (4) 171
N8—H8⋯N2 0.86 2.20 3.036 (5) 165
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In our previous work, 1,3,4-thiadiazole scaffold compounds and their biological activity have been studied (Tu et al., 2008). In view of the importance of these organic materials, the title compound (Fig. 1) was synthesized (Foroumadi et al., 1999; Levy & Palmer 1942; Song et al., 1992) and its crystal structure is reported here. The asymmetric unit of the title compound, C21H20N4O3S, contains two independent molecules. The dihedral angles between the p-methoxybenzene and thiadiazol rings is 12.2 (1) ° and 24.7 (1)°, the corresponding values between the two benzene rings are measured to 47.6 (1)° and 30.2 (1)°, respectively, for the two molecules. The conformations of the N—H and C=O bonds are anti with respect to each other. The enone groups are trans configurated. Bond lengths and angles are in normal ranges and comparable to those in related structures (Gowda et al., 2008; Fun et al., 2008; Thiruvalluvar et al., 2008). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds forming a three-dimensional network (Table 1, Figure 2).

Related literature top

For related literature, see: Fun et al. (2008); Gowda et al. (2008) Thiruvalluvar et al. (2008).

For related literature, see: Foroumadi et al. (1999); Levy & Palmer (1942); Song et al. (1992); Tu et al. (2008).

Experimental top

N,N-Dicyclohexylcarbodiimide (5.7 mmol) was added to a cooled solution of N-cinnamoyl-D-alanine (5.6 mmol) and N-hydroxysuccinimide (5.6 mmol) in freshly distilled dioxane (30 ml). The reaction mixture was stirred overnight at room temperature. The insoluble material was filtered off and washed with cold dioxane. 2-Amino-5-(4-methoxyphenyl)-1,3,4-thiadiazole (5.5 mmol) was added to the filtrate and the reaction mixture was stirred for 48 hr at room temperature. The solvent was removed under reduced pressure. The residual was dissolved in EtOAc and the insoluble material was filtered off. The filtrate was washed successively with saturated Na2CO3 solution (20 ml, x 3), water (20 ml, x 1), 0.1 M HCl (20 ml, x 3) and water (20 ml, x 1). The organic layer was evaporated in vacuo and the residue was recrystallized from methanol (30 ml), yield: 35.2%. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.

Refinement top

H atoms were positioned geometrically and refined using a riding model using SHELXL97 default values (Uĩso(H) = 1.2 Ueq(C) for CH and CH2 groups and Uĩso(H) = 1.5 Ueq(C) for CH3). Refinement with all data (Friedel opposites not merged) led to an unsuitably large error of the Flack parameter. The final refinement was therefore performed with a data set with merged Friedel pairs, hence the calculated Flack parameter is meaningless. The absolute configuration is nevertheless undoubtly as described since enantiomerically pure starting compounds were used and the reaction conditions are not condidered to lead to racemisation or inversion.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two independent molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the a axis with hydrogen bonds drawn as dashed lines.
(2R)-2-Cinnamoylamino-N-[5-(4-methoxyphenyl) -1,3,4-thiadiazol-2-yl]propanamide top
Crystal data top
C21H20N4O3SZ = 2
Mr = 408.48F(000) = 428
Triclinic, P1Dx = 1.244 Mg m3
Hall symbol: P 1Melting point: 450 K
a = 9.082 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.849 (3) ÅCell parameters from 2616 reflections
c = 13.644 (4) Åθ = 2.3–25.0°
α = 79.587 (4)°µ = 0.18 mm1
β = 83.253 (4)°T = 296 K
γ = 65.458 (4)°Bolck, colourles
V = 1090.8 (5) Å30.35 × 0.25 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2735 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
phi and ω scansh = 1010
6219 measured reflectionsk = 1111
3553 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
3553 reflections(Δ/σ)max < 0.001
528 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H20N4O3Sγ = 65.458 (4)°
Mr = 408.48V = 1090.8 (5) Å3
Triclinic, P1Z = 2
a = 9.082 (3) ÅMo Kα radiation
b = 9.849 (3) ŵ = 0.18 mm1
c = 13.644 (4) ÅT = 296 K
α = 79.587 (4)°0.35 × 0.25 × 0.06 mm
β = 83.253 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2735 reflections with I > 2σ(I)
6219 measured reflectionsRint = 0.022
3553 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.94Δρmax = 0.20 e Å3
3553 reflectionsΔρmin = 0.18 e Å3
528 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

# SQUEEZE RESULTS (APPEND TO CIF) loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons 1 0.151 0.591 0.943 19.4 0.7 2 0.269 -0.200 0.408 64.4 11.5

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0057 (8)0.2529 (9)0.5939 (8)0.166 (4)
H1A0.99140.33810.60890.249*
H1B1.06300.21740.64890.249*
H1C1.06690.28240.53510.249*
C20.7380 (5)0.1750 (6)0.5178 (4)0.0752 (13)
C30.7671 (6)0.3158 (6)0.4658 (4)0.0792 (15)
H30.86940.39380.46890.095*
C40.6419 (5)0.3393 (5)0.4090 (4)0.0699 (12)
H40.66120.43470.37360.084*
C50.4885 (5)0.2259 (5)0.4028 (3)0.0527 (10)
C60.4629 (5)0.0841 (5)0.4548 (3)0.0623 (11)
H60.36110.00560.45080.075*
C70.5874 (6)0.0576 (6)0.5131 (4)0.0764 (13)
H70.56940.03770.54830.092*
C80.3565 (5)0.2565 (5)0.3439 (3)0.0534 (10)
C90.1214 (5)0.2590 (5)0.2508 (3)0.0532 (10)
C100.1343 (5)0.1053 (4)0.1705 (3)0.0510 (10)
C110.2964 (5)0.1100 (5)0.1366 (3)0.0565 (10)
H110.27800.21400.10760.068*
C120.3982 (6)0.0670 (7)0.2263 (4)0.0879 (16)
H12A0.42590.03740.25230.132*
H12B0.33790.12810.27670.132*
H12C0.49540.08310.20680.132*
C130.4459 (4)0.0663 (4)0.0225 (3)0.0483 (9)
C140.5593 (5)0.0498 (5)0.0819 (3)0.0544 (10)
H140.57980.15110.06120.065*
C150.6316 (5)0.0082 (5)0.1650 (3)0.0589 (10)
H150.59540.09500.18660.071*
C160.7605 (5)0.1055 (5)0.2260 (3)0.0609 (11)
C170.8502 (6)0.2567 (6)0.1942 (4)0.0853 (15)
H170.82530.30190.13230.102*
C180.9750 (7)0.3400 (7)0.2534 (5)0.106 (2)
H181.03350.44160.23050.128*
C191.0168 (7)0.2809 (8)0.3434 (5)0.0972 (18)
H191.10350.34010.38160.117*
C200.9305 (7)0.1341 (8)0.3774 (4)0.0917 (17)
H200.95660.09230.44010.110*
C210.8028 (6)0.0446 (6)0.3194 (3)0.0773 (14)
H210.74540.05670.34330.093*
C221.1903 (8)0.0712 (8)0.1755 (6)0.115 (2)
H22A1.16870.12880.11530.173*
H22B1.29800.12560.20150.173*
H22C1.11350.05440.22380.173*
C231.0387 (5)0.1557 (6)0.1050 (4)0.0679 (12)
C241.0413 (5)0.2832 (6)0.0771 (4)0.0708 (13)
H241.13290.30430.09140.085*
C250.9095 (5)0.3767 (5)0.0289 (4)0.0643 (11)
H250.91300.46090.00920.077*
C260.7698 (5)0.3508 (5)0.0081 (3)0.0543 (10)
C270.7702 (5)0.2255 (5)0.0358 (4)0.0681 (12)
H270.67730.20620.02270.082*
C280.9036 (6)0.1251 (6)0.0830 (4)0.0763 (13)
H280.90160.03830.09940.092*
C290.6258 (5)0.4600 (4)0.0389 (3)0.0537 (10)
C300.3751 (5)0.6067 (5)0.1151 (3)0.0549 (10)
C310.1097 (5)0.6158 (4)0.1795 (3)0.0488 (9)
C320.0580 (5)0.7268 (4)0.2076 (3)0.0519 (10)
H320.04760.80950.23250.062*
C330.1544 (6)0.7907 (6)0.1143 (4)0.0846 (15)
H33A0.16500.71070.08870.127*
H33B0.09930.83780.06480.127*
H33C0.26010.86410.13010.127*
C340.1692 (5)0.6921 (5)0.3768 (3)0.0572 (10)
C350.2660 (5)0.6200 (5)0.4430 (3)0.0636 (11)
H350.30260.55910.41710.076*
C360.3019 (5)0.6389 (5)0.5363 (3)0.0638 (11)
H360.26490.70220.55890.077*
C370.3926 (5)0.5732 (5)0.6091 (3)0.0626 (11)
C380.4185 (7)0.6053 (7)0.7051 (4)0.0899 (16)
H380.38070.67160.72280.108*
C390.5020 (8)0.5383 (9)0.7766 (4)0.105 (2)
H390.51890.56040.84150.126*
C400.5591 (7)0.4401 (7)0.7516 (5)0.0953 (18)
H400.61580.39700.79880.114*
C410.5316 (8)0.4077 (7)0.6580 (5)0.0948 (17)
H410.56900.34080.64080.114*
C420.4493 (6)0.4714 (6)0.5874 (4)0.0807 (14)
H420.43100.44590.52330.097*
N10.3581 (4)0.3920 (4)0.3237 (3)0.0643 (9)
N20.2200 (4)0.3929 (4)0.2696 (3)0.0641 (9)
N30.0283 (4)0.2369 (4)0.2044 (2)0.0555 (8)
H3A0.05780.31090.19600.067*
N40.3805 (4)0.0138 (4)0.0618 (2)0.0556 (8)
H4A0.38900.07780.07100.067*
N50.6130 (4)0.5942 (4)0.0479 (3)0.0669 (10)
N60.4668 (4)0.6790 (4)0.0918 (3)0.0668 (10)
N70.2200 (4)0.6771 (4)0.1557 (3)0.0567 (8)
H7A0.19110.76810.16670.068*
N80.1393 (4)0.6583 (4)0.2839 (3)0.0603 (9)
H80.16990.59300.26930.072*
O10.1002 (3)0.0005 (3)0.1732 (2)0.0627 (8)
O20.4184 (3)0.2007 (3)0.0448 (2)0.0634 (7)
O40.1420 (3)0.4837 (3)0.1726 (2)0.0652 (8)
O50.1232 (5)0.7795 (4)0.4039 (2)0.0849 (10)
O30.8515 (5)0.1357 (5)0.5771 (4)0.1156 (15)
O61.1766 (4)0.0707 (4)0.1543 (3)0.0913 (11)
S10.18753 (12)0.11853 (11)0.29467 (8)0.0607 (3)
S20.45630 (12)0.42627 (11)0.08513 (8)0.0581 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (4)0.109 (6)0.259 (10)0.022 (4)0.080 (6)0.002 (6)
C20.050 (3)0.069 (3)0.102 (3)0.025 (2)0.016 (2)0.012 (3)
C30.051 (3)0.057 (3)0.119 (4)0.020 (2)0.010 (3)0.001 (3)
C40.062 (3)0.054 (3)0.090 (3)0.023 (2)0.012 (2)0.009 (2)
C50.051 (2)0.052 (2)0.062 (2)0.027 (2)0.0095 (18)0.0178 (19)
C60.053 (2)0.052 (2)0.076 (3)0.018 (2)0.011 (2)0.013 (2)
C70.065 (3)0.064 (3)0.093 (3)0.028 (2)0.014 (2)0.001 (2)
C80.056 (2)0.057 (3)0.058 (2)0.033 (2)0.0139 (18)0.0210 (19)
C90.060 (2)0.052 (2)0.059 (2)0.033 (2)0.0153 (18)0.0218 (18)
C100.060 (2)0.042 (2)0.057 (2)0.029 (2)0.0127 (19)0.0136 (18)
C110.063 (2)0.049 (2)0.068 (3)0.033 (2)0.019 (2)0.023 (2)
C120.074 (3)0.113 (5)0.086 (4)0.040 (3)0.009 (3)0.039 (3)
C130.048 (2)0.047 (2)0.056 (2)0.0267 (19)0.0089 (17)0.0127 (18)
C140.049 (2)0.052 (2)0.065 (3)0.0241 (19)0.0119 (19)0.0139 (19)
C150.054 (2)0.059 (3)0.067 (3)0.027 (2)0.0130 (19)0.015 (2)
C160.058 (2)0.067 (3)0.060 (2)0.027 (2)0.0108 (19)0.020 (2)
C170.082 (3)0.079 (4)0.075 (3)0.020 (3)0.022 (3)0.011 (3)
C180.091 (4)0.089 (4)0.104 (4)0.010 (3)0.036 (3)0.020 (3)
C190.084 (4)0.097 (5)0.096 (4)0.022 (3)0.030 (3)0.036 (3)
C200.094 (4)0.114 (5)0.067 (3)0.045 (4)0.033 (3)0.029 (3)
C210.071 (3)0.082 (3)0.070 (3)0.028 (3)0.023 (2)0.012 (2)
C220.077 (4)0.108 (5)0.150 (6)0.013 (3)0.020 (4)0.066 (4)
C230.053 (2)0.066 (3)0.077 (3)0.015 (2)0.006 (2)0.018 (2)
C240.050 (3)0.067 (3)0.096 (3)0.029 (2)0.013 (2)0.010 (3)
C250.053 (2)0.050 (2)0.095 (3)0.025 (2)0.007 (2)0.018 (2)
C260.046 (2)0.048 (2)0.070 (3)0.0207 (19)0.0022 (19)0.011 (2)
C270.051 (2)0.060 (3)0.096 (3)0.024 (2)0.009 (2)0.021 (2)
C280.058 (3)0.072 (3)0.105 (4)0.024 (2)0.012 (2)0.042 (3)
C290.047 (2)0.047 (2)0.069 (2)0.0249 (19)0.0118 (18)0.0095 (19)
C300.057 (2)0.043 (2)0.069 (2)0.026 (2)0.0072 (19)0.0100 (18)
C310.058 (2)0.039 (2)0.057 (2)0.0277 (19)0.0127 (18)0.0125 (17)
C320.050 (2)0.038 (2)0.074 (3)0.0247 (18)0.0155 (19)0.0167 (18)
C330.066 (3)0.076 (3)0.099 (4)0.024 (3)0.005 (3)0.001 (3)
C340.059 (2)0.048 (2)0.069 (3)0.028 (2)0.014 (2)0.016 (2)
C350.064 (2)0.057 (3)0.079 (3)0.034 (2)0.023 (2)0.023 (2)
C360.069 (3)0.060 (3)0.068 (3)0.033 (2)0.011 (2)0.015 (2)
C370.067 (3)0.061 (3)0.055 (3)0.023 (2)0.007 (2)0.006 (2)
C380.092 (4)0.106 (4)0.069 (3)0.041 (3)0.008 (3)0.012 (3)
C390.108 (5)0.130 (6)0.054 (3)0.035 (4)0.015 (3)0.002 (3)
C400.089 (4)0.076 (4)0.094 (4)0.023 (3)0.020 (3)0.013 (3)
C410.106 (4)0.088 (4)0.091 (4)0.053 (3)0.027 (3)0.001 (3)
C420.085 (3)0.087 (4)0.072 (3)0.042 (3)0.025 (3)0.019 (3)
N10.063 (2)0.056 (2)0.082 (2)0.0328 (18)0.0229 (18)0.0271 (18)
N20.063 (2)0.049 (2)0.089 (2)0.0322 (18)0.0261 (18)0.0242 (17)
N30.062 (2)0.0433 (18)0.072 (2)0.0322 (16)0.0236 (16)0.0238 (15)
N40.0623 (19)0.0468 (19)0.065 (2)0.0313 (17)0.0236 (16)0.0196 (15)
N50.056 (2)0.048 (2)0.101 (3)0.0282 (18)0.0176 (19)0.0173 (19)
N60.058 (2)0.0465 (19)0.104 (3)0.0307 (18)0.0243 (19)0.0248 (18)
N70.0534 (19)0.0418 (18)0.082 (2)0.0264 (16)0.0183 (16)0.0238 (16)
N80.065 (2)0.055 (2)0.076 (2)0.0396 (18)0.0288 (17)0.0303 (17)
O10.0621 (17)0.0437 (17)0.091 (2)0.0305 (15)0.0205 (15)0.0235 (14)
O20.0660 (17)0.0498 (17)0.0777 (18)0.0317 (14)0.0192 (14)0.0115 (14)
O40.0617 (17)0.0434 (17)0.096 (2)0.0289 (14)0.0228 (15)0.0224 (15)
O50.117 (3)0.094 (2)0.078 (2)0.076 (2)0.0206 (19)0.0272 (18)
O30.075 (2)0.089 (3)0.164 (4)0.037 (2)0.050 (2)0.000 (3)
O60.0564 (18)0.097 (3)0.120 (3)0.0218 (18)0.0247 (18)0.054 (2)
S10.0587 (6)0.0450 (6)0.0840 (7)0.0289 (5)0.0226 (5)0.0203 (5)
S20.0546 (6)0.0436 (5)0.0817 (7)0.0264 (5)0.0176 (5)0.0201 (5)
Geometric parameters (Å, º) top
C1—O31.423 (7)C22—H22C0.9600
C1—H1A0.9600C23—O61.362 (5)
C1—H1B0.9600C23—C281.369 (7)
C1—H1C0.9600C23—C241.387 (7)
C2—C31.371 (7)C24—C251.353 (6)
C2—O31.375 (5)C24—H240.9300
C2—C71.380 (7)C25—C261.384 (6)
C3—C41.376 (6)C25—H250.9300
C3—H30.9300C26—C271.353 (6)
C4—C51.382 (6)C26—C291.471 (6)
C4—H40.9300C27—C281.382 (6)
C5—C61.385 (6)C27—H270.9300
C5—C81.470 (5)C28—H280.9300
C6—C71.392 (6)C29—N51.305 (5)
C6—H60.9300C29—S21.732 (4)
C7—H70.9300C30—N61.284 (5)
C8—N11.307 (5)C30—N71.384 (5)
C8—S11.734 (4)C30—S21.724 (4)
C9—N21.302 (5)C31—O41.228 (4)
C9—N31.378 (5)C31—N71.353 (5)
C9—S11.715 (4)C31—C321.514 (5)
C10—O11.198 (4)C32—N81.437 (5)
C10—N31.378 (5)C32—C331.516 (7)
C10—C111.507 (5)C32—H320.9800
C11—N41.445 (5)C33—H33A0.9600
C11—C121.511 (7)C33—H33B0.9600
C11—H110.9800C33—H33C0.9600
C12—H12A0.9600C34—O51.225 (5)
C12—H12B0.9600C34—N81.337 (5)
C12—H12C0.9600C34—C351.481 (6)
C13—O21.227 (4)C35—C361.303 (6)
C13—N41.349 (5)C35—H350.9300
C13—C141.478 (5)C36—C371.450 (6)
C14—C151.330 (5)C36—H360.9300
C14—H140.9300C37—C381.374 (7)
C15—C161.452 (6)C37—C421.389 (7)
C15—H150.9300C38—C391.404 (8)
C16—C171.383 (7)C38—H380.9300
C16—C211.390 (6)C39—C401.377 (9)
C17—C181.364 (7)C39—H390.9300
C17—H170.9300C40—C411.342 (9)
C18—C191.345 (8)C40—H400.9300
C18—H180.9300C41—C421.373 (7)
C19—C201.350 (8)C41—H410.9300
C19—H190.9300C42—H420.9300
C20—C211.391 (7)N1—N21.381 (5)
C20—H200.9300N3—H3A0.8600
C21—H210.9300N4—H4A0.8600
C22—O61.430 (8)N5—N61.376 (5)
C22—H22A0.9600N7—H7A0.8600
C22—H22B0.9600N8—H80.8600
C3—C2—O3124.8 (4)C27—C26—C29122.2 (4)
C3—C2—C7121.4 (4)C25—C26—C29120.2 (4)
O3—C2—C7113.8 (4)C26—C27—C28122.4 (4)
C2—C3—C4118.7 (4)C26—C27—H27118.8
C2—C3—H3120.7C28—C27—H27118.8
C4—C3—H3120.7C23—C28—C27118.9 (5)
C3—C4—C5122.2 (4)C23—C28—H28120.6
C3—C4—H4118.9C27—C28—H28120.6
C5—C4—H4118.9N5—C29—C26122.5 (3)
C4—C5—C6118.0 (4)N5—C29—S2113.4 (3)
C4—C5—C8120.6 (4)C26—C29—S2124.0 (3)
C6—C5—C8121.4 (4)N6—C30—N7120.2 (4)
C5—C6—C7120.9 (4)N6—C30—S2115.0 (3)
C5—C6—H6119.5N7—C30—S2124.7 (3)
C7—C6—H6119.5O4—C31—N7122.2 (4)
C2—C7—C6118.8 (4)O4—C31—C32123.6 (3)
C2—C7—H7120.6N7—C31—C32114.1 (3)
C6—C7—H7120.6N8—C32—C31112.0 (3)
N1—C8—C5122.2 (4)N8—C32—C33110.8 (3)
N1—C8—S1114.3 (3)C31—C32—C33108.2 (4)
C5—C8—S1123.5 (3)N8—C32—H32108.6
N2—C9—N3119.9 (3)C31—C32—H32108.6
N2—C9—S1115.2 (3)C33—C32—H32108.6
N3—C9—S1124.8 (3)O5—C34—N8122.2 (4)
O1—C10—N3122.5 (3)O5—C34—C35122.8 (4)
O1—C10—C11125.7 (4)N8—C34—C35115.0 (4)
N3—C10—C11111.7 (3)C36—C35—C34122.4 (4)
N4—C11—C10112.7 (3)C36—C35—H35118.8
N4—C11—C12110.7 (4)C34—C35—H35118.8
C10—C11—C12109.0 (3)C35—C36—C37127.8 (5)
N4—C11—H11108.1C35—C36—H36116.1
C10—C11—H11108.1C37—C36—H36116.1
C12—C11—H11108.1C38—C37—C42117.4 (4)
O2—C13—N4121.6 (3)C38—C37—C36120.0 (5)
O2—C13—C14122.8 (3)C42—C37—C36122.5 (4)
N4—C13—C14115.4 (3)C37—C38—C39120.1 (6)
C15—C14—C13119.4 (4)C37—C38—H38119.9
C15—C14—H14120.3C39—C38—H38119.9
C13—C14—H14120.3C40—C39—C38120.7 (6)
C14—C15—C16127.4 (4)C40—C39—H39119.7
C14—C15—H15116.3C38—C39—H39119.7
C16—C15—H15116.3C41—C40—C39119.0 (5)
C17—C16—C21117.2 (4)C41—C40—H40120.5
C17—C16—C15123.3 (4)C39—C40—H40120.5
C21—C16—C15119.4 (4)C40—C41—C42121.1 (6)
C18—C17—C16120.2 (5)C40—C41—H41119.4
C18—C17—H17119.9C42—C41—H41119.4
C16—C17—H17119.9C41—C42—C37121.7 (5)
C19—C18—C17122.5 (6)C41—C42—H42119.2
C19—C18—H18118.7C37—C42—H42119.2
C17—C18—H18118.7C8—N1—N2112.0 (3)
C18—C19—C20118.8 (5)C9—N2—N1112.1 (3)
C18—C19—H19120.6C9—N3—C10124.9 (3)
C20—C19—H19120.6C9—N3—H3A117.6
C19—C20—C21120.6 (5)C10—N3—H3A117.6
C19—C20—H20119.7C13—N4—C11120.7 (3)
C21—C20—H20119.7C13—N4—H4A119.7
C16—C21—C20120.5 (5)C11—N4—H4A119.7
C16—C21—H21119.7C29—N5—N6112.9 (3)
C20—C21—H21119.7C30—N6—N5112.2 (3)
O6—C23—C28125.5 (5)C31—N7—C30126.0 (3)
O6—C23—C24114.7 (4)C31—N7—H7A117.0
C28—C23—C24119.7 (4)C30—N7—H7A117.0
C25—C24—C23119.5 (4)C34—N8—C32122.6 (3)
C25—C24—H24120.2C34—N8—H8118.7
C23—C24—H24120.2C32—N8—H8118.7
C24—C25—C26121.9 (4)C2—O3—C1117.5 (5)
C24—C25—H25119.0C23—O6—C22117.9 (4)
C26—C25—H25119.0C9—S1—C886.3 (2)
C27—C26—C25117.5 (4)C30—S2—C2986.49 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.862.102.960 (4)177
N4—H4A···N6i0.862.173.016 (5)168
N7—H7A···O1ii0.862.092.944 (4)171
N8—H8···N20.862.203.036 (5)165
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H20N4O3S
Mr408.48
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.082 (3), 9.849 (3), 13.644 (4)
α, β, γ (°)79.587 (4), 83.253 (4), 65.458 (4)
V3)1090.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.25 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6219, 3553, 2735
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 0.94
No. of reflections3553
No. of parameters528
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: , SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), APEX2 (Bruker, 2004) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.862.102.960 (4)176.9
N4—H4A···N6i0.862.173.016 (5)167.5
N7—H7A···O1ii0.862.092.944 (4)170.9
N8—H8···N20.862.203.036 (5)164.8
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: lishaohua0131@yahoo.com.cn.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationForoumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035–1038.  CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956–o957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLevy, M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493–495.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823–826.  CrossRef CAS Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663–6668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds