metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] tetra­bromidodi­phenyl­plumbate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 August 2008; accepted 27 August 2008; online 6 September 2008)

The PbIV atom of the anion of the title salt, (C7H11N2)2[PbBr4(C6H5)2], is situated on a crystallographic center of inversion and exhibits a tetra­gonally compressed octa­hedral coordination. One of the two independent Br atoms acts as a hydrogen-bond acceptor towards the NH group of the cation.

Related literature

For the structure of isostructural bis­(4-dimethyl­amino­pyridinium) tetra­bromidodiphenyl­stannate, see: Yap et al. (2008[Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[PbBr4(C6H5)2]

  • Mr = 927.39

  • Monoclinic, P 21 /n

  • a = 9.4994 (8) Å

  • b = 13.882 (1) Å

  • c = 10.991 (1) Å

  • β = 92.998 (1)°

  • V = 1447.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.37 mm−1

  • T = 100 (2) K

  • 0.22 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.246, Tmax = 0.549 (expected range = 0.226–0.505)

  • 8227 measured reflections

  • 3309 independent reflections

  • 2879 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.03

  • 3309 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.70 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—C1 2.190 (5)
Pb1—Br1 2.8516 (5)
Pb1—Br2 2.8897 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯Br1 0.88 2.52 3.254 (4) 142

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In an earlier study, the tin-alkyl and one tin-aryl bond of an alkyltriphenyltin compound could be cleaved by 4-dimethylaminopyridine hydrobromide perbromide to form bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate (Yap et al., 2008). In the present study, the organic reagent similarly cleaves two lead-carbon bonds to afford the corresponding plumbate (Scheme I, Fig. 1). The two compounds are isostructural.

Related literature top

For the structure of isostructural bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate, see: Yap et al. (2008).

Experimental top

Tetraphenyllead (1.55 g, 3 mmol) and 4-dimethylaminopyridinium hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for 3 h. The filtered solution when allowed to evaporate yielded large colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The ammonium H atom was similarly constrained (N–H 0.88 Å).

The difference Fourier map had large peaks/deep holes near the lead atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of (C7H11N)2 [PbBr4(C6H5)2] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis[4-(dimethylamino)pyridinium] tetrabromidodiphenylplumbate(IV) top
Crystal data top
(C7H11N2)2[PbBr4(C6H5)2]F(000) = 876
Mr = 927.39Dx = 2.128 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3449 reflections
a = 9.4994 (8) Åθ = 2.3–28.3°
b = 13.882 (1) ŵ = 11.37 mm1
c = 10.991 (1) ÅT = 100 K
β = 92.998 (1)°Prism, colorless
V = 1447.3 (2) Å30.22 × 0.08 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3309 independent reflections
Radiation source: fine-focus sealed tube2879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.246, Tmax = 0.549k = 1718
8227 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0374P)2 + 3.9748P]
where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 1.70 e Å3
Crystal data top
(C7H11N2)2[PbBr4(C6H5)2]V = 1447.3 (2) Å3
Mr = 927.39Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4994 (8) ŵ = 11.37 mm1
b = 13.882 (1) ÅT = 100 K
c = 10.991 (1) Å0.22 × 0.08 × 0.06 mm
β = 92.998 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2879 reflections with I > 2σ(I)
Tmin = 0.246, Tmax = 0.549Rint = 0.029
8227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.03Δρmax = 1.21 e Å3
3309 reflectionsΔρmin = 1.70 e Å3
162 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.50000.50000.50000.00948 (8)
Br10.55832 (5)0.61261 (3)0.29156 (5)0.01773 (12)
Br20.76243 (5)0.40245 (3)0.46044 (4)0.01405 (11)
N11.1998 (4)0.5912 (3)0.0112 (4)0.0149 (8)
N20.8888 (4)0.5868 (3)0.2341 (4)0.0195 (9)
H2n0.81880.58190.28310.023*
C10.6145 (5)0.6028 (3)0.6196 (4)0.0122 (9)
C20.5516 (5)0.6319 (3)0.7245 (4)0.0138 (9)
H20.46240.60710.74430.017*
C30.6230 (5)0.6988 (3)0.8006 (4)0.0171 (10)
H30.58210.72020.87280.021*
C40.7539 (5)0.7339 (3)0.7703 (4)0.0163 (10)
H40.80190.77950.82190.020*
C50.8145 (5)0.7028 (3)0.6654 (4)0.0161 (10)
H50.90410.72690.64550.019*
C60.7450 (5)0.6367 (3)0.5894 (4)0.0136 (9)
H60.78640.61500.51750.016*
C70.8774 (5)0.6473 (4)0.1383 (5)0.0209 (11)
H70.79610.68690.12760.025*
C80.9792 (5)0.6529 (3)0.0567 (5)0.0162 (10)
H80.96910.69610.01020.019*
C91.1018 (5)0.5936 (3)0.0715 (4)0.0115 (9)
C101.1123 (5)0.5358 (4)0.1782 (4)0.0164 (10)
H101.19450.49810.19520.020*
C111.0064 (5)0.5337 (4)0.2559 (5)0.0189 (10)
H111.01500.49440.32660.023*
C121.1934 (6)0.6536 (4)0.1184 (5)0.0235 (12)
H12A1.09490.66960.14050.035*
H12B1.23460.62010.18650.035*
H12C1.24630.71290.10010.035*
C131.3293 (5)0.5345 (4)0.0087 (5)0.0195 (10)
H13A1.39390.56820.06670.029*
H13B1.37440.52640.06880.029*
H13C1.30610.47120.04160.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01089 (12)0.01025 (12)0.00716 (12)0.00156 (9)0.00091 (8)0.00108 (9)
Br10.0182 (2)0.0185 (2)0.0164 (2)0.00011 (18)0.00039 (19)0.00211 (19)
Br20.0142 (2)0.0158 (2)0.0120 (2)0.00186 (17)0.00032 (18)0.00038 (17)
N10.018 (2)0.0146 (19)0.012 (2)0.0033 (16)0.0018 (17)0.0019 (16)
N20.018 (2)0.025 (2)0.016 (2)0.0001 (18)0.0063 (18)0.0024 (18)
C10.014 (2)0.011 (2)0.011 (2)0.0021 (17)0.0035 (18)0.0002 (17)
C20.015 (2)0.013 (2)0.014 (2)0.0022 (18)0.0000 (19)0.0002 (18)
C30.022 (2)0.018 (2)0.011 (2)0.003 (2)0.003 (2)0.0025 (19)
C40.023 (3)0.009 (2)0.016 (3)0.0022 (19)0.008 (2)0.0004 (18)
C50.016 (2)0.016 (2)0.016 (2)0.0037 (19)0.004 (2)0.0035 (19)
C60.020 (2)0.015 (2)0.005 (2)0.0030 (19)0.0028 (18)0.0005 (18)
C70.016 (2)0.021 (3)0.025 (3)0.006 (2)0.005 (2)0.005 (2)
C80.019 (2)0.016 (2)0.013 (2)0.0049 (19)0.002 (2)0.0004 (19)
C90.013 (2)0.011 (2)0.011 (2)0.0004 (17)0.0021 (18)0.0026 (17)
C100.018 (2)0.019 (2)0.012 (2)0.001 (2)0.003 (2)0.000 (2)
C110.019 (2)0.023 (2)0.015 (3)0.001 (2)0.001 (2)0.001 (2)
C120.030 (3)0.023 (3)0.018 (3)0.004 (2)0.003 (2)0.008 (2)
C130.013 (2)0.027 (3)0.018 (3)0.005 (2)0.000 (2)0.003 (2)
Geometric parameters (Å, º) top
Pb1—C12.190 (5)C4—H40.9500
Pb1—C1i2.190 (5)C5—C61.385 (6)
Pb1—Br12.8516 (5)C5—H50.9500
Pb1—Br1i2.8516 (5)C6—H60.9500
Pb1—Br2i2.8897 (5)C7—C81.356 (7)
Pb1—Br22.8897 (5)C7—H70.9500
N1—C91.335 (6)C8—C91.428 (6)
N1—C131.467 (6)C8—H80.9500
N1—C121.461 (6)C9—C101.420 (7)
N2—C71.347 (7)C10—C111.353 (7)
N2—C111.349 (7)C10—H100.9500
N2—H2n0.8800C11—H110.9500
C1—C61.383 (6)C12—H12A0.9800
C1—C21.386 (6)C12—H12B0.9800
C2—C31.401 (7)C12—H12C0.9800
C2—H20.9500C13—H13A0.9800
C3—C41.392 (7)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.384 (7)
C1—Pb1—C1i180.00 (17)C6—C5—C4120.2 (4)
C1—Pb1—Br190.79 (12)C6—C5—H5119.9
C1i—Pb1—Br189.21 (12)C4—C5—H5119.9
C1—Pb1—Br1i89.21 (12)C1—C6—C5119.1 (4)
C1i—Pb1—Br1i90.79 (12)C1—C6—H6120.4
Br1—Pb1—Br1i180.000 (16)C5—C6—H6120.4
C1—Pb1—Br2i90.55 (12)C8—C7—N2121.5 (5)
C1i—Pb1—Br2i89.45 (12)C8—C7—H7119.3
Br1—Pb1—Br2i93.978 (14)N2—C7—H7119.3
Br1i—Pb1—Br2i86.022 (14)C7—C8—C9119.8 (5)
C1—Pb1—Br289.45 (12)C7—C8—H8120.1
C1i—Pb1—Br290.55 (12)C9—C8—H8120.1
Br1—Pb1—Br286.022 (14)N1—C9—C10121.8 (4)
Br1i—Pb1—Br293.978 (14)N1—C9—C8122.0 (4)
Br2i—Pb1—Br2180.0C10—C9—C8116.2 (4)
C9—N1—C13121.4 (4)C11—C10—C9120.7 (5)
C9—N1—C12122.2 (4)C11—C10—H10119.7
C13—N1—C12115.9 (4)C9—C10—H10119.7
C7—N2—C11120.7 (4)C10—C11—N2120.8 (5)
C7—N2—H2n119.6C10—C11—H11119.6
C11—N2—H2n119.6N2—C11—H11119.6
C6—C1—C2122.1 (4)N1—C12—H12A109.5
C6—C1—Pb1120.1 (3)N1—C12—H12B109.5
C2—C1—Pb1117.8 (3)H12A—C12—H12B109.5
C1—C2—C3118.2 (4)N1—C12—H12C109.5
C1—C2—H2120.9H12A—C12—H12C109.5
C3—C2—H2120.9H12B—C12—H12C109.5
C4—C3—C2120.0 (4)N1—C13—H13A109.5
C4—C3—H3120.0N1—C13—H13B109.5
C2—C3—H3120.0H13A—C13—H13B109.5
C5—C4—C3120.4 (4)N1—C13—H13C109.5
C5—C4—H4119.8H13A—C13—H13C109.5
C3—C4—H4119.8H13B—C13—H13C109.5
Br1—Pb1—C1—C646.0 (4)Pb1—C1—C6—C5179.0 (3)
Br1i—Pb1—C1—C6134.0 (4)C4—C5—C6—C10.2 (7)
Br2i—Pb1—C1—C6140.0 (4)C11—N2—C7—C83.9 (8)
Br2—Pb1—C1—C640.0 (4)N2—C7—C8—C90.1 (8)
Br1—Pb1—C1—C2133.8 (3)C13—N1—C9—C105.1 (7)
Br1i—Pb1—C1—C246.2 (3)C12—N1—C9—C10177.1 (5)
Br2i—Pb1—C1—C239.9 (3)C13—N1—C9—C8176.2 (4)
Br2—Pb1—C1—C2140.1 (3)C12—N1—C9—C84.2 (7)
C6—C1—C2—C30.9 (7)C7—C8—C9—N1174.8 (5)
Pb1—C1—C2—C3179.0 (3)C7—C8—C9—C103.9 (7)
C1—C2—C3—C40.3 (7)N1—C9—C10—C11174.7 (5)
C2—C3—C4—C50.2 (7)C8—C9—C10—C114.0 (7)
C3—C4—C5—C60.3 (7)C9—C10—C11—N20.3 (8)
C2—C1—C6—C50.8 (7)C7—N2—C11—C103.8 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···Br10.882.523.254 (4)142

Experimental details

Crystal data
Chemical formula(C7H11N2)2[PbBr4(C6H5)2]
Mr927.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.4994 (8), 13.882 (1), 10.991 (1)
β (°) 92.998 (1)
V3)1447.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)11.37
Crystal size (mm)0.22 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.246, 0.549
No. of measured, independent and
observed [I > 2σ(I)] reflections
8227, 3309, 2879
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.03
No. of reflections3309
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.70

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Pb1—C12.190 (5)Pb1—Br22.8897 (5)
Pb1—Br12.8516 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···Br10.882.523.254 (4)142
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds