organic compounds
N-Phenylpyridine-2-carbamide
aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: hieagle@126.com
In the title compound, C12H10N2O, the dihedral angle between the pyridine ring system and the phenyl ring is 1.8 (1)°. There is an intramolecular N—H⋯N hydrogen bond between the pyridine N atom and the amide NH function.
Related literature
For general background, see: Sousa & Filgueiras (1990); Gomes et al. (2007); Morsali et al. (2003); Jacob & Mukherjee (2006); Marumoto et al. (1981); Piatnitski & Kiselyov (2004). For related structures, see: Qi et al. (2003); Zhang et al. (2006); Yin et al. (2007). For the synthesis, see: Chan et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).
Supporting information
10.1107/S1600536808028274/im2083sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028274/im2083Isup2.hkl
The title compound was synthesized from pyridine-2-carboxylic acid and aniline according to the procedure of Chan et al. (2004). The crystal used for data collection was obtained by slow evaporation from a saturated ethanol/water solution at room temperature.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(parent atom).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).Fig. 1. The molecular structure of the title compound, shown with 50% probability displacement ellipsoids. |
C12H10N2O | F(000) = 208 |
Mr = 198.22 | Dx = 1.315 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yac | Cell parameters from 2226 reflections |
a = 5.7469 (2) Å | θ = 2.9–25.1° |
b = 6.2382 (2) Å | µ = 0.09 mm−1 |
c = 14.0158 (3) Å | T = 296 K |
β = 94.752 (2)° | Block, colourless |
V = 500.74 (3) Å3 | 0.15 × 0.14 × 0.09 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 1162 independent reflections |
Radiation source: fine-focus sealed tube | 1036 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 10 pixels mm-1 | θmax = 27.7°, θmin = 2.9° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −8→5 |
Tmin = 0.968, Tmax = 0.992 | l = −18→18 |
5000 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0365P)2 + 0.0548P] where P = (Fo2 + 2Fc2)/3 |
1162 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.11 e Å−3 |
0 restraints | Δρmin = −0.12 e Å−3 |
C12H10N2O | V = 500.74 (3) Å3 |
Mr = 198.22 | Z = 2 |
Monoclinic, Pn | Mo Kα radiation |
a = 5.7469 (2) Å | µ = 0.09 mm−1 |
b = 6.2382 (2) Å | T = 296 K |
c = 14.0158 (3) Å | 0.15 × 0.14 × 0.09 mm |
β = 94.752 (2)° |
Bruker APEXII CCD diffractometer | 1162 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1036 reflections with I > 2σ(I) |
Tmin = 0.968, Tmax = 0.992 | Rint = 0.017 |
5000 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.11 e Å−3 |
1162 reflections | Δρmin = −0.12 e Å−3 |
137 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | −0.0173 (3) | 0.2086 (3) | 0.59409 (11) | 0.0452 (4) | |
H101 | −0.1420 | 0.2510 | 0.6183 | 0.054* | |
C8 | 0.1414 (3) | 0.5113 (3) | 0.68241 (13) | 0.0435 (4) | |
C6 | −0.0401 (3) | 0.0235 (3) | 0.53631 (12) | 0.0412 (4) | |
C1 | 0.1246 (4) | −0.0375 (4) | 0.47407 (15) | 0.0509 (5) | |
H1 | 0.2570 | 0.0459 | 0.4685 | 0.061* | |
C7 | 0.1751 (4) | 0.3270 (3) | 0.61595 (15) | 0.0475 (5) | |
C2 | 0.0901 (4) | −0.2230 (4) | 0.42049 (16) | 0.0569 (5) | |
H2 | 0.1999 | −0.2635 | 0.3787 | 0.068* | |
N2 | −0.0537 (3) | 0.5139 (3) | 0.72828 (12) | 0.0526 (4) | |
C5 | −0.2373 (4) | −0.1016 (3) | 0.54213 (15) | 0.0476 (5) | |
H5 | −0.3507 | −0.0595 | 0.5819 | 0.057* | |
O1 | 0.3656 (3) | 0.2937 (3) | 0.58575 (15) | 0.0753 (6) | |
C10 | 0.2767 (5) | 0.8384 (3) | 0.75234 (17) | 0.0575 (5) | |
H10 | 0.3863 | 0.9481 | 0.7597 | 0.069* | |
C11 | 0.0794 (4) | 0.8441 (4) | 0.80026 (16) | 0.0612 (6) | |
H11 | 0.0523 | 0.9575 | 0.8410 | 0.073* | |
C3 | −0.1044 (4) | −0.3483 (4) | 0.42826 (16) | 0.0553 (5) | |
H3 | −0.1255 | −0.4731 | 0.3923 | 0.066* | |
C12 | −0.0787 (4) | 0.6788 (4) | 0.78711 (17) | 0.0629 (6) | |
H12 | −0.2107 | 0.6823 | 0.8213 | 0.076* | |
C9 | 0.3106 (4) | 0.6677 (3) | 0.69302 (15) | 0.0516 (5) | |
H9 | 0.4451 | 0.6581 | 0.6607 | 0.062* | |
C4 | −0.2676 (4) | −0.2879 (4) | 0.48961 (17) | 0.0553 (5) | |
H4 | −0.3986 | −0.3728 | 0.4956 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0458 (9) | 0.0397 (9) | 0.0515 (9) | −0.0007 (7) | 0.0121 (7) | −0.0031 (7) |
C8 | 0.0478 (10) | 0.0408 (10) | 0.0422 (10) | 0.0013 (8) | 0.0051 (8) | 0.0021 (8) |
C6 | 0.0458 (10) | 0.0369 (10) | 0.0408 (10) | 0.0030 (8) | 0.0042 (8) | 0.0021 (8) |
C1 | 0.0504 (11) | 0.0521 (12) | 0.0517 (11) | −0.0041 (10) | 0.0120 (9) | −0.0028 (10) |
C7 | 0.0497 (11) | 0.0398 (11) | 0.0539 (12) | −0.0030 (9) | 0.0092 (9) | −0.0007 (9) |
C2 | 0.0594 (13) | 0.0609 (14) | 0.0515 (12) | 0.0060 (11) | 0.0117 (9) | −0.0103 (10) |
N2 | 0.0477 (9) | 0.0540 (10) | 0.0566 (10) | −0.0015 (8) | 0.0067 (8) | −0.0096 (8) |
C5 | 0.0464 (10) | 0.0458 (11) | 0.0515 (10) | −0.0004 (9) | 0.0088 (8) | −0.0024 (9) |
O1 | 0.0531 (9) | 0.0669 (11) | 0.1095 (15) | −0.0111 (9) | 0.0283 (9) | −0.0330 (10) |
C10 | 0.0699 (14) | 0.0471 (11) | 0.0550 (11) | −0.0102 (12) | 0.0014 (10) | −0.0007 (11) |
C11 | 0.0714 (16) | 0.0553 (14) | 0.0559 (13) | 0.0065 (12) | −0.0002 (11) | −0.0156 (11) |
C3 | 0.0652 (13) | 0.0459 (11) | 0.0537 (11) | 0.0014 (11) | −0.0023 (10) | −0.0119 (10) |
C12 | 0.0561 (13) | 0.0705 (15) | 0.0635 (14) | 0.0047 (11) | 0.0122 (11) | −0.0168 (12) |
C9 | 0.0559 (11) | 0.0486 (12) | 0.0513 (11) | −0.0086 (10) | 0.0116 (9) | −0.0018 (9) |
C4 | 0.0550 (12) | 0.0506 (13) | 0.0598 (12) | −0.0070 (10) | 0.0027 (10) | −0.0027 (11) |
N1—C7 | 1.344 (3) | N2—C12 | 1.333 (3) |
N1—C6 | 1.410 (2) | C5—C4 | 1.379 (3) |
N1—H101 | 0.8600 | C5—H5 | 0.9300 |
C8—N2 | 1.338 (2) | C10—C11 | 1.365 (4) |
C8—C9 | 1.377 (3) | C10—C9 | 1.375 (3) |
C8—C7 | 1.502 (3) | C10—H10 | 0.9300 |
C6—C5 | 1.384 (3) | C11—C12 | 1.377 (3) |
C6—C1 | 1.392 (3) | C11—H11 | 0.9300 |
C1—C2 | 1.385 (3) | C3—C4 | 1.377 (3) |
C1—H1 | 0.9300 | C3—H3 | 0.9300 |
C7—O1 | 1.223 (3) | C12—H12 | 0.9300 |
C2—C3 | 1.376 (4) | C9—H9 | 0.9300 |
C2—H2 | 0.9300 | C4—H4 | 0.9300 |
C7—N1—C6 | 128.07 (17) | C4—C5—H5 | 119.6 |
C7—N1—H101 | 116.0 | C6—C5—H5 | 119.6 |
C6—N1—H101 | 116.0 | C11—C10—C9 | 118.9 (2) |
N2—C8—C9 | 123.48 (19) | C11—C10—H10 | 120.6 |
N2—C8—C7 | 117.62 (17) | C9—C10—H10 | 120.6 |
C9—C8—C7 | 118.89 (18) | C10—C11—C12 | 118.7 (2) |
C5—C6—C1 | 119.06 (17) | C10—C11—H11 | 120.7 |
C5—C6—N1 | 117.74 (17) | C12—C11—H11 | 120.7 |
C1—C6—N1 | 123.19 (17) | C2—C3—C4 | 119.6 (2) |
C2—C1—C6 | 119.57 (19) | C2—C3—H3 | 120.2 |
C2—C1—H1 | 120.2 | C4—C3—H3 | 120.2 |
C6—C1—H1 | 120.2 | N2—C12—C11 | 123.8 (2) |
O1—C7—N1 | 124.81 (19) | N2—C12—H12 | 118.1 |
O1—C7—C8 | 120.61 (18) | C11—C12—H12 | 118.1 |
N1—C7—C8 | 114.58 (18) | C10—C9—C8 | 118.7 (2) |
C3—C2—C1 | 120.8 (2) | C10—C9—H9 | 120.6 |
C3—C2—H2 | 119.6 | C8—C9—H9 | 120.6 |
C1—C2—H2 | 119.6 | C3—C4—C5 | 120.1 (2) |
C12—N2—C8 | 116.38 (18) | C3—C4—H4 | 119.9 |
C4—C5—C6 | 120.77 (19) | C5—C4—H4 | 119.9 |
Experimental details
Crystal data | |
Chemical formula | C12H10N2O |
Mr | 198.22 |
Crystal system, space group | Monoclinic, Pn |
Temperature (K) | 296 |
a, b, c (Å) | 5.7469 (2), 6.2382 (2), 14.0158 (3) |
β (°) | 94.752 (2) |
V (Å3) | 500.74 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.15 × 0.14 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.968, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5000, 1162, 1036 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.075, 1.00 |
No. of reflections | 1162 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.11, −0.12 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia,1999).
Acknowledgements
The authors are grateful for financial suport from the Key Discipline Open Foundation of Zhejiang University of Technology (grant No. 20080604). The authors thank Mr Jian-Ming Gu (Testing and Analysis Center, Zhejiang University) for guidance in the structure analysis.
References
Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chan, A. S. C., Qi, J. Y., Pai, C. C., Li, X. J., Deng, L. S., Li, W. Z. & Hu, J. Y. (2004). US Patent 6 680 385. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gomes, L., Low, J. N., Valente, M. A. D. C., Freire, C. & Castro, B. (2007). Acta Cryst. C63, m293–m296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565–4573. Web of Science CSD CrossRef CAS Google Scholar
Marumoto, R., Shunsuke, S. & Masao, T. (1981). Eur. Patent EP 38 161. Google Scholar
Morsali, A., Ramazani, A. & Mahjoub, A. R. (2003). J. Coord. Chem. 56, 1555–1566. Web of Science CSD CrossRef CAS Google Scholar
Piatnitski, E. & Kiselyov, A. S. (2004). US Patent 0 017 248. Google Scholar
Qi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o374–o375. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sousa, G. F. & Filgueiras, C. A. L. (1990). Transition Met. Chem. 15, 286–289. CrossRef Google Scholar
Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, o4617. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, Q., Zhang, S.-P. & Shao, S.-C. (2006). Acta Cryst. E62, o4695–o4696. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine-containing amides continue to attract considerable interest as ligands for metals (Sousa & Filgueiras, 1990; Gomes et al., 2007; Jacob & Mukherjee, 2006), building blocks in organic synthesis (Marumoto et al., 1981) and physiologically active compounds (Piatnitski & Kiselyov, 2004). As part of our studies on the synthesis and characterization of these compounds, we report here the crystal structure of the title compound.
The C7—O1 [1.223 (3) Å], N1—C7 [1.344 (3) Å] and N1—C6 [1.410 (2) Å] bond lengths indicate extensive electron delocalization in the amide linkage. The pyridyl and phenyl rings of the title compound are almost coplanar, forming a dihedral angle of 1.8 (1)°. In the crystal structure, there is an intramolecular hydrogen bond (N1—H101···N2) and no intermolecular hydrogen bonds are observed (Table 1).
The reported monoclinic space-group is in a non-standard setting (Pn, #7). There is a strong feature (h + l = 2n) in hkl data. Setting up the space group as Pc results in a β angle of 23° or 157°, respectively. Obviously such an unit-cell division is inappropriate. Therefore, the non-standard setting Pn was chosen.