organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[Bi­phenyl-2,2′-diylbis(­­oxy)]di­acetic acid monohydrate

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, England
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 23 July 2008; accepted 4 September 2008; online 13 September 2008)

In the crystal structure of the title compound, C16H14O6·H2O, the dihedral angle between the benzene rings is 60.8 (3)°. Mol­ecules are linked through a bifurcated O—H⋯O hydrogen bond, forming a zigzag chain along the b axis. The chains are further linked by O—H⋯O hydrogen bonds mediated by water mol­ecules.

Related literature

For the crystal structures of related compounds, see: Ali, Hussain et al. (2008[Ali, Q., Hussain, Z., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1377.]); Ali, Ibad et al. (2008[Ali, Q., Ibad, F., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1408.]); Ali, Shah & VanDerveer (2008[Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.]); Ibad et al. (2008[Ibad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130-o1131.]). For biological applications, see: Baudry et al. (2006[Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater. 16, 169-179.]); Kamoda et al. (2006[Kamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062-3069.]); Litvinchuk et al. (2004[Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067-10075.]); MacNeil & Decken (1999[MacNeil, D. D. & Decken, A. (1999). Acta Cryst. C55, 628-630.]); Park (2000[Park, S. K. (2000). J. Photochem. Photobiol. A Chem. 135, 155-162.]); Sisson et al. (2006[Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269-1286.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O6·H2O

  • Mr = 320.29

  • Monoclinic, P 21 /c

  • a = 13.7590 (17) Å

  • b = 6.7875 (9) Å

  • c = 16.446 (2) Å

  • β = 104.698 (2)°

  • V = 1485.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • 0.17 × 0.13 × 0.08 mm

Data collection
  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.991

  • 10352 measured reflections

  • 2612 independent reflections

  • 1555 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.088

  • S = 0.85

  • 2612 reflections

  • 216 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 1.87 2.671 (2) 158
O3—H3⋯O4i 0.84 2.66 3.285 (2) 133
O6—H6⋯O7ii 0.84 1.76 2.584 (3) 165
O7—H7A⋯O2 0.833 (16) 2.30 (2) 2.958 (3) 136 (2)
O7—H7B⋯O1 0.820 (16) 2.50 (2) 3.153 (3) 138 (3)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

By virtue of their role as pharmacophore, the biphenyl structural motif is found to be an integral part of several important biologically active compounds (Kamoda et al., 2006). The biphenyl system have been extensively studied by X-ray crystallography (Ali, Hussain et al., 2008; Ali, Ibad et al., 2008; Ali, Shah & VanDerveer, 2008; Ibad et al., 2008) and their role have been elaborated in the domain of photophysics (Park, 2000). Our interest in the chemistry of biphenyl compounds stems from their use as starting material for the synthesis of oligo(p-phenylene)s (Sisson et al., 2006; Litvinchuk et al., 2004). The cylindrical self-assembly of suitably substituted oligo(p-phenylene)s result in the formation of functionalized pores (Baudry et al., 2006). We report now the synthesis and crystal structure of 2,2'-[biphenyl-2,2'-diylbis(oxy)]diacetic acid.

The dihedral angle between the planes of the benzene rings is 60.8 (3)°. The inter ring C6—C7 distance is 1.488 (3) Å, which compares well with the reported value (MacNeil & Decken 1999). The molecules of the title compound (Fig. 1) are interacting through intermolecular and intramolecular hydrogen bonding (Table 1) involving carbonyl and hydrogen of the type CO···HO (Fig. 2). The intermolecular hydrogen bonding is mediated by water molecules (Fig. 2). The two carboxylic acid groups are oriented in the same directions (Fig. 1) due to hydrogen bonding contrary to its hydrazide (Ibad et al., 2008) and ester analogue (Ali, Hussain et al., 2008; Ali, Ibad et al., 2008; Ali, Shah & VanDerveer, 2008) where both carboxylic acids are oriented in different directions. The C14—O2 and C16—O5 distances in the title compound are 1.207 (5) and 1.194 (5) Å, respectively, typical of double bonds (Ibad et al., 2008). The OCH2COOH substituent are having torsion angle 165.3 (4)° (C13—O1—C1—C6) and 178.6 (4)° (C15—O4—C12—C7) with respect to phenyl rings.

Related literature top

For the crystal structures of related compounds, see: Ali, Hussain et al. (2008); Ali, Ibad et al. (2008); Ali, Shah & VanDerveer (2008); Ibad et al. (2008). For applications, see: Baudry et al. (2006); Kamoda et al. (2006); Litvinchuk et al. (2004); MacNeil & Decken (1999); Park (2000); Sisson et al. (2006).

Experimental top

The title compound 1 was synthesized in two steps. In the first step tert-butyl 2-({2'-[2-(tert-butoxy)-2-oxoethoxy][1,1'-biphenyl]-2- yl}oxy) acetate (compound 2) was prepared and in the second step the tert-butyl group was removed to obtain the title compound 1. The experimental procedure of the both steps is presented below. 1. Synthesis of tert-butyl 2-({2'-[2-(tert-butoxy)-2-oxoethoxy][1,1'-biphenyl] -2- yl}oxy)acetate 2: K2CO3 (414 mg, 3 mmol) and 2,2'-dihydroxybiphenyl (186 mg, 1 mmol) in 15 ml of acetone were stirred for 10 minutes, followed by addition of tertiary butyl bromoacetate (371 mg, 3 mmol). The reaction mixture was stirred at room temperature for three hours. Solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The aqueous layer was extracted three times with dichloromethane.The combined organic phases were evaporated under reduced pressure and the solid residue was dissolved in hot hexane and slow evaporation of hot hexane give us colorless crystals (736 mg) in 80% yield. 2. Synthesis of 2,2'-[biphenyl-2,2'-diylbis(oxy)]diacetic acid 1: 500 mg (1.2 mmol) of was dissolved in 10 ml of dichloromethane and 5 ml of TFA was added to the stirred solution. The reaction was monitor with thin layer chromatography (hexane:choroform 2:8) after each 10 minutes of interval. After 30 minutes the starting material disappeared. All the TFA and solvent were removed through freeze drying and the solid residue was dissolved in methanol, slow evaporation of methanol at room temperature yielded colorless crystals (310 mg, 85%).

Refinement top

Water H atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.83 (2) and H···H = 1.35 (2) Å. Other H atoms were placed at calculated positions (C—H = 0.95 - 0.99 and O—H = 0.84 Å) and were treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram, viewed along the c axis.
2,2'-[Biphenyl-2,2'-diylbis(oxy)]diacetic acid monohydrate top
Crystal data top
C16H14O6·H2OF(000) = 672
Mr = 320.29Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 765 reflections
a = 13.7590 (17) Åθ = 2.6–23.3°
b = 6.7875 (9) ŵ = 0.11 mm1
c = 16.446 (2) ÅT = 150 K
β = 104.698 (2)°Block, colourless
V = 1485.6 (3) Å30.17 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2612 independent reflections
Radiation source: fine-focus sealed tube1555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.981, Tmax = 0.991k = 88
10352 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0212P)2]
where P = (Fo2 + 2Fc2)/3
2612 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.16 e Å3
3 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H14O6·H2OV = 1485.6 (3) Å3
Mr = 320.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7590 (17) ŵ = 0.11 mm1
b = 6.7875 (9) ÅT = 150 K
c = 16.446 (2) Å0.17 × 0.13 × 0.08 mm
β = 104.698 (2)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1555 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.078
10352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.16 e Å3
2612 reflectionsΔρmin = 0.17 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66330 (12)0.7028 (2)0.14229 (10)0.0345 (5)
O20.77830 (14)0.9862 (3)0.10441 (13)0.0575 (6)
O30.64570 (12)1.1309 (3)0.01909 (11)0.0425 (5)
H30.68761.21870.01580.064*
O40.81532 (12)0.4297 (2)0.13157 (10)0.0358 (5)
O50.74938 (13)0.4148 (3)0.03373 (11)0.0401 (5)
O60.88580 (13)0.5688 (3)0.05041 (11)0.0537 (6)
H60.85640.55730.10160.080*
C10.60904 (18)0.5402 (4)0.15417 (15)0.0291 (6)
C20.50827 (18)0.5152 (4)0.11531 (15)0.0324 (7)
H20.47380.60840.07520.039*
C30.45771 (19)0.3522 (4)0.13553 (15)0.0336 (7)
H3A0.38830.33520.10940.040*
C40.50694 (18)0.2161 (4)0.19259 (15)0.0354 (7)
H40.47240.10380.20530.043*
C50.60788 (19)0.2438 (4)0.23173 (15)0.0336 (7)
H50.64150.15090.27250.040*
C60.66082 (18)0.4036 (4)0.21279 (15)0.0281 (6)
C70.76791 (18)0.4314 (3)0.25873 (15)0.0294 (6)
C80.7942 (2)0.4382 (4)0.34570 (17)0.0396 (7)
H80.74300.42840.37490.048*
C90.8932 (2)0.4588 (4)0.39121 (17)0.0445 (8)
H90.90960.46340.45090.053*
C100.9674 (2)0.4726 (4)0.34935 (18)0.0428 (7)
H101.03530.48780.38030.051*
C110.94422 (19)0.4646 (4)0.26314 (17)0.0383 (7)
H110.99620.47230.23470.046*
C120.84508 (19)0.4451 (4)0.21760 (16)0.0319 (6)
C130.61476 (18)0.8429 (3)0.08196 (15)0.0314 (6)
H13A0.56000.90810.10090.038*
H13B0.58520.77690.02760.038*
C140.6906 (2)0.9920 (4)0.07165 (16)0.0326 (6)
C150.88486 (18)0.4850 (4)0.08631 (16)0.0394 (7)
H15A0.94160.39060.09700.047*
H15B0.91190.61780.10390.047*
C160.8314 (2)0.4852 (4)0.00470 (17)0.0352 (7)
O70.81871 (18)0.9230 (3)0.28791 (13)0.0573 (6)
H7A0.814 (2)1.003 (3)0.2488 (15)0.086*
H7B0.795 (2)0.818 (3)0.2670 (18)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (11)0.0300 (10)0.0373 (11)0.0022 (9)0.0012 (8)0.0097 (9)
O20.0260 (11)0.0528 (13)0.0867 (17)0.0005 (10)0.0012 (11)0.0256 (12)
O30.0379 (12)0.0388 (12)0.0470 (12)0.0057 (9)0.0037 (10)0.0132 (10)
O40.0298 (10)0.0457 (12)0.0344 (11)0.0067 (9)0.0127 (9)0.0042 (9)
O50.0323 (11)0.0433 (12)0.0435 (12)0.0070 (10)0.0076 (9)0.0037 (9)
O60.0405 (12)0.0756 (15)0.0449 (13)0.0172 (11)0.0108 (10)0.0141 (12)
C10.0306 (15)0.0295 (16)0.0297 (16)0.0015 (13)0.0124 (13)0.0012 (13)
C20.0333 (16)0.0354 (16)0.0282 (16)0.0033 (13)0.0069 (13)0.0061 (13)
C30.0268 (16)0.0404 (17)0.0340 (17)0.0015 (14)0.0082 (13)0.0039 (14)
C40.0329 (17)0.0366 (17)0.0399 (18)0.0051 (14)0.0151 (14)0.0011 (14)
C50.0333 (17)0.0367 (17)0.0332 (16)0.0060 (13)0.0128 (13)0.0077 (13)
C60.0293 (15)0.0315 (16)0.0248 (15)0.0030 (13)0.0096 (12)0.0026 (13)
C70.0311 (16)0.0245 (15)0.0312 (16)0.0016 (12)0.0057 (13)0.0043 (12)
C80.0394 (18)0.0409 (18)0.0387 (18)0.0030 (14)0.0101 (14)0.0079 (14)
C90.0443 (19)0.0484 (19)0.0352 (18)0.0009 (16)0.0004 (15)0.0086 (15)
C100.0321 (16)0.0431 (19)0.0453 (19)0.0002 (15)0.0048 (14)0.0042 (15)
C110.0277 (16)0.0381 (17)0.0480 (19)0.0023 (14)0.0079 (14)0.0029 (14)
C120.0323 (16)0.0286 (16)0.0336 (17)0.0022 (13)0.0061 (13)0.0028 (13)
C130.0332 (16)0.0282 (15)0.0306 (16)0.0018 (13)0.0039 (13)0.0071 (13)
C140.0362 (17)0.0300 (16)0.0320 (17)0.0057 (14)0.0094 (13)0.0074 (13)
C150.0295 (15)0.0489 (19)0.0411 (18)0.0045 (14)0.0113 (14)0.0051 (14)
C160.0322 (16)0.0340 (17)0.0416 (18)0.0028 (14)0.0134 (14)0.0062 (14)
O70.0706 (15)0.0440 (13)0.0565 (15)0.0038 (13)0.0144 (13)0.0040 (11)
Geometric parameters (Å, º) top
O1—C11.374 (3)C6—C71.488 (3)
O1—C131.414 (3)C7—C81.384 (3)
O2—C141.191 (3)C7—C121.399 (3)
O3—C141.322 (3)C8—C91.386 (3)
O3—H30.8400C8—H80.9500
O4—C121.374 (3)C9—C101.371 (3)
O4—C151.404 (3)C9—H90.9500
O5—C161.207 (3)C10—C111.373 (3)
O6—C161.317 (3)C10—H100.9500
O6—H60.8400C11—C121.386 (3)
C1—C21.382 (3)C11—H110.9500
C1—C61.396 (3)C13—C141.494 (3)
C2—C31.391 (3)C13—H13A0.9900
C2—H20.9500C13—H13B0.9900
C3—C41.367 (3)C15—C161.491 (3)
C3—H3A0.9500C15—H15A0.9900
C4—C51.387 (3)C15—H15B0.9900
C4—H40.9500O7—H7A0.833 (16)
C5—C61.385 (3)O7—H7B0.820 (16)
C5—H50.9500
C1—O1—C13117.58 (19)C8—C9—H9120.3
C14—O3—H3109.5C9—C10—C11120.6 (3)
C12—O4—C15117.41 (19)C9—C10—H10119.7
C16—O6—H6109.5C11—C10—H10119.7
O1—C1—C2123.4 (2)C10—C11—C12120.0 (3)
O1—C1—C6115.6 (2)C10—C11—H11120.0
C2—C1—C6120.9 (2)C12—C11—H11120.0
C1—C2—C3119.4 (2)O4—C12—C11124.0 (2)
C1—C2—H2120.3O4—C12—C7115.4 (2)
C3—C2—H2120.3C11—C12—C7120.6 (2)
C4—C3—C2120.7 (2)O1—C13—C14108.4 (2)
C4—C3—H3A119.7O1—C13—H13A110.0
C2—C3—H3A119.7C14—C13—H13A110.0
C3—C4—C5119.4 (3)O1—C13—H13B110.0
C3—C4—H4120.3C14—C13—H13B110.0
C5—C4—H4120.3H13A—C13—H13B108.4
C6—C5—C4121.5 (2)O2—C14—O3124.9 (2)
C6—C5—H5119.2O2—C14—C13125.7 (2)
C4—C5—H5119.2O3—C14—C13109.5 (2)
C5—C6—C1118.0 (2)O4—C15—C16107.7 (2)
C5—C6—C7119.7 (2)O4—C15—H15A110.2
C1—C6—C7122.2 (2)C16—C15—H15A110.2
C8—C7—C12117.8 (2)O4—C15—H15B110.2
C8—C7—C6119.6 (2)C16—C15—H15B110.2
C12—C7—C6122.6 (2)H15A—C15—H15B108.5
C7—C8—C9121.6 (3)O5—C16—O6123.7 (3)
C7—C8—H8119.2O5—C16—C15124.8 (2)
C9—C8—H8119.2O6—C16—C15111.5 (2)
C10—C9—C8119.4 (3)H7A—O7—H7B107 (2)
C10—C9—H9120.3
C13—O1—C1—C25.2 (3)C6—C7—C8—C9178.3 (2)
C13—O1—C1—C6178.4 (2)C7—C8—C9—C100.1 (4)
O1—C1—C2—C3175.6 (2)C8—C9—C10—C110.5 (4)
C6—C1—C2—C30.5 (4)C9—C10—C11—C120.9 (4)
C1—C2—C3—C40.7 (4)C15—O4—C12—C1116.4 (3)
C2—C3—C4—C51.3 (4)C15—O4—C12—C7166.3 (2)
C3—C4—C5—C61.7 (4)C10—C11—C12—O4177.9 (2)
C4—C5—C6—C11.5 (4)C10—C11—C12—C70.7 (4)
C4—C5—C6—C7177.6 (2)C8—C7—C12—O4177.5 (2)
O1—C1—C6—C5175.5 (2)C6—C7—C12—O40.5 (3)
C2—C1—C6—C50.9 (4)C8—C7—C12—C110.1 (4)
O1—C1—C6—C70.5 (3)C6—C7—C12—C11177.9 (2)
C2—C1—C6—C7176.9 (2)C1—O1—C13—C14172.89 (19)
C5—C6—C7—C854.7 (3)O1—C13—C14—O24.7 (4)
C1—C6—C7—C8121.3 (3)O1—C13—C14—O3176.4 (2)
C5—C6—C7—C12123.2 (3)C12—O4—C15—C16171.5 (2)
C1—C6—C7—C1260.8 (3)O4—C15—C16—O512.6 (4)
C12—C7—C8—C90.3 (4)O4—C15—C16—O6168.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.841.872.671 (2)158
O3—H3···O4i0.842.663.285 (2)133
O6—H6···O7ii0.841.762.584 (3)165
O7—H7A···O20.83 (2)2.30 (2)2.958 (3)136 (2)
O7—H7B···O10.82 (2)2.50 (2)3.153 (3)138 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H14O6·H2O
Mr320.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.7590 (17), 6.7875 (9), 16.446 (2)
β (°) 104.698 (2)
V3)1485.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.13 × 0.08
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10352, 2612, 1555
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.088, 0.85
No. of reflections2612
No. of parameters216
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.841.872.671 (2)158
O3—H3···O4i0.842.663.285 (2)133
O6—H6···O7ii0.841.762.584 (3)165
O7—H7A···O20.833 (16)2.30 (2)2.958 (3)136 (2)
O7—H7B···O10.820 (16)2.50 (2)3.153 (3)138 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thanks the Organization for the Prohibition of Chemical Weapons and COMSTECH–ISECO for financial support.

References

First citationAli, Q., Hussain, Z., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, Q., Ibad, F., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater. 16, 169–179.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIbad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130–o1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062–3069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLitvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067–10075.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacNeil, D. D. & Decken, A. (1999). Acta Cryst. C55, 628–630.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPark, S. K. (2000). J. Photochem. Photobiol. A Chem. 135, 155–162.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269–1286.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds