metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ-3,4-di­carb­oxy­tetra­hydro­furan-2,5-di­carboxyl­ato-κ4O1,O2,O5:O2′)(1,10-phenanthroline-κ2N,N′)copper(II)] 0.69-hydrate]

aDepartment of Chemistry, Dezhou University, University West Road 566, Dezhou, 253023, People's Republic of China
*Correspondence e-mail: yqlu@dzu.edu.cn

(Received 12 August 2008; accepted 1 September 2008; online 6 September 2008)

In the crystal structure of the title compound, {[Cu(C8H6O9)(C12H8N2)]·0.69H2O}n, the CuII atom has a distorted octa­hedral geometry, coordinated by four O atoms from two 3,4-dicarboxy­tetra­hydro­furan-2,5-dicarboxyl­ate ligands and two N atoms from one 1,10-phenanthroline ligand. One of the carboxylate groups bridges the CuII atoms, forming a zigzag chain running along the b axis. The chains are linked by a ππ inter­action between aromatic rings with a centroid-to-centroid distance of 3.567 (1) Å, and by hydrogen bonds between the carboxyl­ate group and the disordered water mol­ecule, forming a three-dimensional network.

Related literature

For related literature, see: Guillem et al. (1993[Guillem, M. C., Latorre, J., Martinez-Manez, R., Paya, J., Garcia-Granda, S., Perez-Carreno, E. & Gomez-Beltran, F. (1993). Polyhedron, 12, 1681-1687.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H6O9)(C12H8N2)]·0.69H2O

  • Mr = 502.30

  • Monoclinic, P 21 /n

  • a = 12.9215 (7) Å

  • b = 8.5454 (5) Å

  • c = 17.597 (1) Å

  • β = 90.960 (3)°

  • V = 1942.85 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 296 (2) K

  • 0.20 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.797, Tmax = 0.910

  • 24533 measured reflections

  • 4444 independent reflections

  • 3829 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.104

  • S = 1.06

  • 4444 reflections

  • 306 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O5i 0.89 (2) 2.47 (10) 2.793 (6) 102 (7)
O6—H6⋯O2ii 0.82 1.84 2.646 (2) 166
O3—H3⋯O2 0.82 1.83 2.641 (2) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an infinite zigzag chain structure. The Cu(II) atom in the structure is coordinated by four O atoms form two different deprotonated tetrahydrofuran-2,3,4,5-tetracarboxylic acid and two N atoms from a 1,10-phenanthroline molecule. Two N atoms and two carboxyl O atoms occupy the equatorial plane, while the axial positions are occupied by the furan O atom and the carboxyl O atom from another tetrahydrofuran-2,3,4,5-tetracarboxylate ligand. The bond distances are comparable to the structures reported by Guillem et al. (1993). The Cu atom has an octahedral coordination with the pronounced tetragonal distortion (Fig. 1).

The tetrahydrofuran-2,3,4,5-tetracarboxylate ligand coordinated to two Cu(II) atoms at the same time. While one deprotonated carboylate group coordinated to Cu(II) in a monodentate mode, the other one links two adjacent Cu(II) atoms in a bridging mode into an infinite zigzag chain along the b axis. Strong ππ interactions between the adjacent chains are indicated by the short distance value of 3.501 (3) Å between the adjacent 1,10-phenanthroline molecules from different chains. The distance between two centres of the overlapped phenyl rings equals to 3.567 (1) Å. Chains are packed together by the ππ interactions into sheets parallel to the (101) plane. Strong hydrogen bonds between H2O and carboxylate groups and between different carboxylate groups are observed and the sheets along (101) are linked together by the hydrogen bonds into a three-dimensional framework (Fig. 2).

Related literature top

For related literature, see: Guillem et al. (1993).

Experimental top

Cu(NO3)2.6H2O (0.25 mmol), tetrahydrofuran-2,3,4,5-tetracarboxylic acid (0.25 mmol), and 1,10-pentathroline (0.3 mmol) were dissolved into 30 ml mixed solvent of distilled water and CH3OH (1:1). The solution was heated to reflux for 30 min, and then filtered. The filtrate was allowed to evaporate at room temperature. Blue plate crystals of (I) were obtained after three days, the crystals are washed with cold EtOH and dried in the air. A water molecule with the occupation factor of 0.69 is located in the structure. The percentage of H2O molecule in the structure has been proved by the 2.5% (Calc. 0.69 H2O per unit cell) of weight lost above 123 centigrade degree.

Refinement top

H atoms of water molecule were located in a difference Fourier map and were refined with distance restraints [O—H = 0.85 (2) and H···H = 1.48 (2) Å]. The occupancy of the water molecule was fixed to 0.69 according to the TG result. Other H atoms were positioned geometrically (C—H = 0.93–0.98 and O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The unlabeled atoms are derived from the reference atoms by means of the (3/2 - x, 1/2 + y, 1/2 - z) symmetry transformation.
[Figure 2] Fig. 2. A packing diagram, viewed down the b axis, The hydrogen bonds are shown as dotted lines.
Poly[[(µ-3,4-dicarboxytetrahydrofuran-2,5-dicarboxylato- κ4O1,O2,O5:O2')(1,10- phenanthroline-κ2N,N')copper(II)] 0.69-hydrate] top
Crystal data top
[Cu(C8H6O9)(C12H8N2)]·0.69H2OF(000) = 1023.6
Mr = 502.30Dx = 1.717 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6566 reflections
a = 12.9215 (7) Åθ = 2.6–27.5°
b = 8.5454 (5) ŵ = 1.19 mm1
c = 17.597 (1) ÅT = 296 K
β = 90.960 (3)°Plate, blue
V = 1942.85 (19) Å30.20 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4444 independent reflections
Radiation source: fine-focus sealed tube3829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.797, Tmax = 0.910k = 1111
24533 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.9393P]
where P = (Fo2 + 2Fc2)/3
4444 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.91 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C8H6O9)(C12H8N2)]·0.69H2OV = 1942.85 (19) Å3
Mr = 502.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9215 (7) ŵ = 1.19 mm1
b = 8.5454 (5) ÅT = 296 K
c = 17.597 (1) Å0.20 × 0.16 × 0.08 mm
β = 90.960 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4444 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3829 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.910Rint = 0.020
24533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.91 e Å3
4444 reflectionsΔρmin = 0.39 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.871218 (18)0.24503 (2)0.184653 (12)0.02868 (10)
C11.01853 (16)0.2951 (2)0.30370 (12)0.0349 (4)
C21.03192 (14)0.1182 (2)0.30175 (10)0.0278 (4)
H21.10410.09270.29070.033*
C31.00314 (14)0.0481 (2)0.37973 (10)0.0277 (4)
H3A0.95460.12040.40360.033*
C41.09486 (16)0.0275 (2)0.43410 (11)0.0345 (4)
C50.94334 (15)0.1007 (2)0.35956 (11)0.0295 (4)
H50.89240.12580.39840.035*
C61.01493 (19)0.2386 (2)0.34529 (14)0.0381 (5)
C70.89004 (14)0.0507 (2)0.28438 (10)0.0270 (4)
H70.87640.14420.25350.032*
C80.78735 (14)0.0374 (2)0.29592 (10)0.0272 (4)
O10.95434 (13)0.36239 (16)0.26139 (9)0.0423 (4)
O21.07474 (14)0.36491 (17)0.35212 (10)0.0516 (4)
O31.15462 (14)0.15169 (19)0.44451 (10)0.0527 (4)
H31.13220.22470.41890.063*
O41.11204 (13)0.09137 (19)0.46799 (9)0.0458 (4)
O51.0856 (2)0.2330 (2)0.30242 (14)0.0725 (7)
O60.98836 (14)0.36266 (18)0.38404 (11)0.0508 (4)
H61.02090.43870.36900.061*
O70.77478 (11)0.16687 (17)0.26127 (8)0.0361 (3)
O80.72265 (10)0.02515 (17)0.33703 (8)0.0343 (3)
O90.96504 (10)0.04507 (15)0.24653 (7)0.0271 (3)
N10.80817 (13)0.1145 (2)0.09986 (9)0.0353 (4)
N20.97214 (14)0.2981 (2)0.10238 (11)0.0397 (4)
C90.72683 (18)0.0188 (3)0.10127 (15)0.0476 (5)
H90.69180.00660.14660.057*
C100.6920 (2)0.0641 (3)0.03716 (19)0.0641 (8)
H100.63520.13050.04050.077*
C110.7409 (3)0.0473 (3)0.02927 (18)0.0666 (8)
H110.71770.10160.07210.080*
C120.8263 (2)0.0516 (3)0.03391 (13)0.0585 (8)
C130.8850 (3)0.0778 (4)0.10042 (16)0.0767 (10)
H130.86470.02980.14570.092*
C140.9682 (3)0.1693 (4)0.09929 (15)0.0776 (12)
H141.00410.18350.14410.093*
C151.0052 (3)0.2479 (3)0.03111 (18)0.0621 (9)
C161.0919 (3)0.3406 (4)0.0257 (2)0.0772 (11)
H161.13220.35640.06840.093*
C171.1194 (2)0.4099 (4)0.0416 (2)0.0764 (11)
H171.17890.47090.04520.092*
C181.05587 (19)0.3877 (3)0.10668 (18)0.0587 (7)
H181.07350.43640.15230.070*
C190.9471 (2)0.2285 (3)0.03524 (13)0.0436 (6)
C200.85840 (18)0.1310 (3)0.03349 (11)0.0406 (5)
O100.2766 (4)0.0628 (9)0.2674 (5)0.152 (2)0.69
H10A0.254 (7)0.154 (5)0.250 (6)0.183*0.69
H10B0.252 (7)0.029 (4)0.265 (6)0.183*0.69
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03234 (15)0.02857 (15)0.02512 (15)0.00120 (8)0.00022 (10)0.00266 (8)
C10.0418 (11)0.0240 (9)0.0384 (10)0.0040 (8)0.0064 (9)0.0026 (8)
C20.0296 (8)0.0238 (8)0.0300 (9)0.0004 (7)0.0021 (7)0.0006 (7)
C30.0336 (9)0.0226 (8)0.0270 (8)0.0035 (7)0.0007 (7)0.0013 (7)
C40.0380 (10)0.0323 (10)0.0332 (10)0.0039 (8)0.0037 (8)0.0007 (8)
C50.0346 (9)0.0239 (8)0.0301 (9)0.0016 (7)0.0031 (7)0.0020 (7)
C60.0474 (12)0.0248 (10)0.0420 (12)0.0042 (8)0.0035 (10)0.0000 (8)
C70.0331 (9)0.0213 (8)0.0267 (8)0.0034 (7)0.0035 (7)0.0029 (6)
C80.0315 (9)0.0275 (9)0.0225 (8)0.0021 (7)0.0008 (7)0.0041 (7)
O10.0551 (9)0.0250 (7)0.0461 (8)0.0004 (6)0.0193 (7)0.0028 (6)
O20.0656 (11)0.0234 (7)0.0646 (10)0.0047 (7)0.0331 (9)0.0008 (7)
O30.0572 (10)0.0370 (8)0.0629 (10)0.0039 (7)0.0292 (8)0.0070 (7)
O40.0514 (9)0.0397 (8)0.0459 (9)0.0053 (7)0.0104 (7)0.0108 (7)
O50.0888 (16)0.0467 (11)0.0834 (15)0.0316 (10)0.0424 (13)0.0149 (9)
O60.0561 (10)0.0223 (7)0.0738 (12)0.0018 (7)0.0037 (8)0.0087 (7)
O70.0374 (7)0.0350 (7)0.0361 (7)0.0080 (6)0.0074 (6)0.0078 (6)
O80.0347 (7)0.0350 (7)0.0334 (7)0.0061 (6)0.0072 (6)0.0018 (6)
O90.0315 (6)0.0257 (6)0.0242 (6)0.0027 (5)0.0033 (5)0.0019 (5)
N10.0404 (9)0.0342 (9)0.0311 (8)0.0079 (7)0.0029 (7)0.0030 (7)
N20.0337 (9)0.0369 (9)0.0488 (10)0.0056 (7)0.0069 (8)0.0160 (8)
C90.0450 (12)0.0412 (12)0.0563 (14)0.0001 (10)0.0087 (10)0.0069 (11)
C100.0611 (16)0.0495 (15)0.081 (2)0.0049 (12)0.0246 (15)0.0201 (14)
C110.081 (2)0.0538 (16)0.0642 (18)0.0209 (15)0.0334 (16)0.0241 (14)
C120.0860 (19)0.0555 (15)0.0337 (11)0.0405 (15)0.0073 (12)0.0057 (10)
C130.117 (3)0.077 (2)0.0367 (14)0.039 (2)0.0063 (16)0.0066 (14)
C140.122 (3)0.077 (2)0.0342 (13)0.054 (2)0.0328 (16)0.0123 (14)
C150.0724 (19)0.0581 (17)0.0568 (16)0.0342 (14)0.0349 (15)0.0264 (12)
C160.074 (2)0.074 (2)0.084 (2)0.0359 (18)0.0415 (18)0.0384 (19)
C170.0376 (13)0.0631 (18)0.129 (3)0.0090 (12)0.0241 (16)0.050 (2)
C180.0396 (12)0.0516 (14)0.0852 (19)0.0005 (11)0.0057 (12)0.0284 (14)
C190.0554 (14)0.0421 (12)0.0337 (11)0.0246 (10)0.0138 (10)0.0129 (9)
C200.0537 (12)0.0383 (11)0.0299 (10)0.0203 (10)0.0003 (9)0.0014 (8)
O100.075 (3)0.173 (6)0.211 (6)0.005 (4)0.054 (3)0.054 (6)
Geometric parameters (Å, º) top
Cu1—O71.9680 (14)O6—H60.8200
Cu1—O11.9835 (15)O8—Cu1ii2.3363 (14)
Cu1—N22.0164 (18)N1—C91.332 (3)
Cu1—N12.0235 (17)N1—C201.353 (3)
Cu1—O8i2.3363 (14)N2—C181.326 (3)
Cu1—O92.3519 (13)N2—C191.357 (3)
C1—O11.246 (2)C9—C101.400 (4)
C1—O21.261 (3)C9—H90.9300
C1—C21.522 (3)C10—C111.346 (5)
C2—O91.433 (2)C10—H100.9300
C2—C31.548 (2)C11—C121.394 (5)
C2—H20.9800C11—H110.9300
C3—C41.521 (3)C12—C201.422 (3)
C3—C51.527 (3)C12—C131.423 (4)
C3—H3A0.9800C13—C141.329 (5)
C4—O41.197 (3)C13—H130.9300
C4—O31.323 (3)C14—C151.449 (5)
C5—C61.521 (3)C14—H140.9300
C5—C71.542 (3)C15—C161.374 (5)
C5—H50.9800C15—C191.408 (3)
C6—O51.195 (3)C16—C171.367 (5)
C6—O61.309 (3)C16—H160.9300
C7—O91.440 (2)C17—C181.433 (4)
C7—C81.542 (3)C17—H170.9300
C7—H70.9800C18—H180.9300
C8—O81.236 (2)C19—C201.417 (4)
C8—O71.272 (2)O10—H10A0.89 (2)
O3—H30.8200O10—H10B0.85 (2)
O7—Cu1—O192.69 (7)C1—O1—Cu1121.38 (13)
O7—Cu1—N2173.13 (7)C4—O3—H3109.5
O1—Cu1—N291.47 (8)C6—O6—H6109.5
O7—Cu1—N193.81 (7)C8—O7—Cu1123.11 (12)
O1—Cu1—N1170.96 (7)C8—O8—Cu1ii128.49 (12)
N2—Cu1—N181.48 (8)C2—O9—C7109.69 (13)
O7—Cu1—O8i93.68 (5)C2—O9—Cu1107.31 (10)
O1—Cu1—O8i87.70 (6)C7—O9—Cu1106.35 (10)
N2—Cu1—O8i91.94 (6)C9—N1—C20118.0 (2)
N1—Cu1—O8i98.13 (6)C9—N1—Cu1129.25 (16)
O7—Cu1—O976.32 (5)C20—N1—Cu1112.71 (15)
O1—Cu1—O977.47 (5)C18—N2—C19119.0 (2)
N2—Cu1—O999.28 (6)C18—N2—Cu1128.7 (2)
N1—Cu1—O997.98 (6)C19—N2—Cu1112.27 (16)
O8i—Cu1—O9161.54 (5)N1—C9—C10122.6 (3)
O1—C1—O2123.73 (19)N1—C9—H9118.7
O1—C1—C2121.33 (18)C10—C9—H9118.7
O2—C1—C2114.90 (17)C11—C10—C9119.8 (3)
O9—C2—C1112.38 (15)C11—C10—H10120.1
O9—C2—C3106.34 (14)C9—C10—H10120.1
C1—C2—C3109.59 (15)C10—C11—C12120.0 (2)
O9—C2—H2109.5C10—C11—H11120.0
C1—C2—H2109.5C12—C11—H11120.0
C3—C2—H2109.5C11—C12—C20117.4 (3)
C4—C3—C5115.85 (15)C11—C12—C13125.3 (3)
C4—C3—C2113.96 (16)C20—C12—C13117.3 (3)
C5—C3—C2104.14 (14)C14—C13—C12121.5 (3)
C4—C3—H3A107.5C14—C13—H13119.3
C5—C3—H3A107.5C12—C13—H13119.3
C2—C3—H3A107.5C13—C14—C15122.7 (3)
O4—C4—O3120.58 (19)C13—C14—H14118.6
O4—C4—C3123.20 (19)C15—C14—H14118.6
O3—C4—C3116.18 (17)C16—C15—C19117.1 (3)
C6—C5—C3112.12 (16)C16—C15—C14125.6 (3)
C6—C5—C7109.70 (16)C19—C15—C14117.3 (3)
C3—C5—C7100.71 (14)C17—C16—C15120.6 (3)
C6—C5—H5111.3C17—C16—H16119.7
C3—C5—H5111.3C15—C16—H16119.7
C7—C5—H5111.3C16—C17—C18119.4 (3)
O5—C6—O6124.8 (2)C16—C17—H17120.3
O5—C6—C5123.10 (19)C18—C17—H17120.3
O6—C6—C5112.1 (2)N2—C18—C17120.6 (3)
O9—C7—C5105.07 (14)N2—C18—H18119.7
O9—C7—C8111.73 (14)C17—C18—H18119.7
C5—C7—C8113.30 (14)N2—C19—C15123.2 (3)
O9—C7—H7108.9N2—C19—C20117.23 (19)
C5—C7—H7108.9C15—C19—C20119.6 (3)
C8—C7—H7108.9N1—C20—C19116.2 (2)
O8—C8—O7125.07 (18)N1—C20—C12122.2 (2)
O8—C8—C7117.21 (16)C19—C20—C12121.5 (2)
O7—C8—C7117.70 (15)H10A—O10—H10B133 (6)
O1—C1—C2—O90.9 (3)N1—Cu1—O9—C773.04 (11)
O2—C1—C2—O9179.11 (18)O8i—Cu1—O9—C777.61 (18)
O1—C1—C2—C3117.1 (2)O7—Cu1—N1—C92.64 (19)
O2—C1—C2—C361.1 (2)O1—Cu1—N1—C9138.5 (4)
O9—C2—C3—C4144.82 (15)N2—Cu1—N1—C9177.6 (2)
C1—C2—C3—C493.47 (19)O8i—Cu1—N1—C991.63 (19)
O9—C2—C3—C517.66 (18)O9—Cu1—N1—C979.35 (19)
C1—C2—C3—C5139.37 (16)O7—Cu1—N1—C20177.48 (14)
C5—C3—C4—O410.3 (3)O1—Cu1—N1—C2041.6 (5)
C2—C3—C4—O4131.1 (2)N2—Cu1—N1—C202.51 (14)
C5—C3—C4—O3171.93 (18)O8i—Cu1—N1—C2088.24 (14)
C2—C3—C4—O351.1 (2)O9—Cu1—N1—C20100.77 (14)
C4—C3—C5—C642.0 (2)O7—Cu1—N2—C18130.7 (5)
C2—C3—C5—C683.97 (19)O1—Cu1—N2—C183.3 (2)
C4—C3—C5—C7158.57 (16)N1—Cu1—N2—C18177.7 (2)
C2—C3—C5—C732.60 (17)O8i—Cu1—N2—C1884.4 (2)
C3—C5—C6—O551.7 (3)O9—Cu1—N2—C1880.9 (2)
C7—C5—C6—O559.3 (3)O7—Cu1—N2—C1948.8 (6)
C3—C5—C6—O6129.65 (19)O1—Cu1—N2—C19176.18 (14)
C7—C5—C6—O6119.3 (2)N1—Cu1—N2—C191.86 (14)
C6—C5—C7—O981.17 (18)O8i—Cu1—N2—C1996.07 (14)
C3—C5—C7—O937.17 (17)O9—Cu1—N2—C1998.63 (14)
C6—C5—C7—C8156.60 (16)C20—N1—C9—C100.1 (3)
C3—C5—C7—C885.06 (17)Cu1—N1—C9—C10179.79 (18)
O9—C7—C8—O8170.15 (15)N1—C9—C10—C110.5 (4)
C5—C7—C8—O851.7 (2)C9—C10—C11—C120.4 (4)
O9—C7—C8—O711.3 (2)C10—C11—C12—C200.3 (4)
C5—C7—C8—O7129.76 (17)C10—C11—C12—C13179.3 (3)
O2—C1—O1—Cu1178.38 (18)C11—C12—C13—C14177.2 (3)
C2—C1—O1—Cu13.6 (3)C20—C12—C13—C141.8 (4)
O7—Cu1—O1—C178.65 (18)C12—C13—C14—C150.2 (5)
N2—Cu1—O1—C195.88 (18)C13—C14—C15—C16178.3 (3)
N1—Cu1—O1—C157.3 (5)C13—C14—C15—C192.2 (4)
O8i—Cu1—O1—C1172.23 (18)C19—C15—C16—C170.1 (4)
O9—Cu1—O1—C13.30 (17)C14—C15—C16—C17179.7 (3)
O8—C8—O7—Cu1170.39 (14)C15—C16—C17—C181.2 (4)
C7—C8—O7—Cu18.0 (2)C19—N2—C18—C170.4 (3)
O1—Cu1—O7—C891.67 (15)Cu1—N2—C18—C17179.09 (18)
N2—Cu1—O7—C835.6 (6)C16—C17—C18—N21.4 (4)
N1—Cu1—O7—C882.04 (15)C18—N2—C19—C150.8 (3)
O8i—Cu1—O7—C8179.54 (15)Cu1—N2—C19—C15179.66 (17)
O9—Cu1—O7—C815.26 (14)C18—N2—C19—C20178.61 (19)
O7—C8—O8—Cu1ii111.36 (19)Cu1—N2—C19—C201.0 (2)
C7—C8—O8—Cu1ii67.1 (2)C16—C15—C19—N20.9 (3)
C1—C2—O9—C7113.58 (17)C14—C15—C19—N2178.7 (2)
C3—C2—O9—C76.33 (18)C16—C15—C19—C20178.5 (2)
C1—C2—O9—Cu11.55 (17)C14—C15—C19—C202.0 (3)
C3—C2—O9—Cu1121.46 (11)C9—N1—C20—C19177.37 (19)
C5—C7—O9—C227.77 (17)Cu1—N1—C20—C192.7 (2)
C8—C7—O9—C295.47 (16)C9—N1—C20—C120.8 (3)
C5—C7—O9—Cu1143.52 (11)Cu1—N1—C20—C12179.11 (16)
C8—C7—O9—Cu120.27 (15)N2—C19—C20—N11.2 (3)
O7—Cu1—O9—C298.38 (11)C15—C19—C20—N1178.19 (19)
O1—Cu1—O9—C22.43 (11)N2—C19—C20—C12179.37 (19)
N2—Cu1—O9—C287.02 (12)C15—C19—C20—C120.0 (3)
N1—Cu1—O9—C2169.62 (11)C11—C12—C20—N10.9 (3)
O8i—Cu1—O9—C239.7 (2)C13—C12—C20—N1180.0 (2)
O7—Cu1—O9—C718.96 (10)C11—C12—C20—C19177.2 (2)
O1—Cu1—O9—C7114.90 (11)C13—C12—C20—C192.0 (3)
N2—Cu1—O9—C7155.65 (11)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O5i0.89 (2)2.47 (10)2.793 (6)102 (7)
O6—H6···O2iii0.821.842.646 (2)166
O3—H3···O20.821.832.641 (2)172
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H6O9)(C12H8N2)]·0.69H2O
Mr502.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.9215 (7), 8.5454 (5), 17.597 (1)
β (°) 90.960 (3)
V3)1942.85 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.20 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
24533, 4444, 3829
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.104, 1.06
No. of reflections4444
No. of parameters306
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.39

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O5i0.89 (2)2.47 (10)2.793 (6)102 (7)
O6—H6···O2ii0.821.842.646 (2)166.1
O3—H3···O20.821.832.641 (2)171.5
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y1, z.
 

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuillem, M. C., Latorre, J., Martinez-Manez, R., Paya, J., Garcia-Granda, S., Perez-Carreno, E. & Gomez-Beltran, F. (1993). Polyhedron, 12, 1681–1687.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds