organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1882-o1883

2-[(E)-2-(4-Chloro­phen­yl)ethen­yl]-1-methylpyridinium iodide monohydrate

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 22 August 2008; accepted 29 August 2008; online 6 September 2008)

In the title compound, C14H13ClN+·I·H2O, the cation is nearly planar and exists in an E configuration; the dihedral angle between the pyridinium and benzene rings is 0.98 (17)°. The cations stack in an anti-parallel manner along the a axis through two ππ inter­actions between the pyridinium and benzene rings [centroid–centroid distances 3.569 (2) and 3.6818 (13) Å, respectively]. The cation, anion and water mol­ecule are linked into a chain along the a axis by weak C—H⋯O and C—H⋯I inter­actions together with O—H⋯I hydrogen bonds and the chains are further connected into a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Chantrapromma et al. (2007a[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007a). Acta Cryst. E63, o2124-o2126.],b[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007b). Acta Cryst. E63, o2321-o2323.],c[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007c). Anal. Sci. 23, x81-x82.]). For background on non-linear optical properties, see, for example: Lakshmanaperumal et al. (2004[Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth, 265, 260-265.]); Marder et al. (1994[Marder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137-1147.]); Qiu et al. (2007[Qiu, F., Xu, H., Cao, Y., Jiang, Y., Zhou, Y., Liu, J. & Zhang, X. (2007). Mater. Charact. 58, 275-283.]); Williams (1984[Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.]); Zhai et al. (1999[Zhai, J., Huang, C.-H., Wei, T.-X., Yu, A.-C. & Zhao, X.-S. (1999). Solid State Commun. 109, 733-738.]); Zhan et al. (2006[Zhan, C., Li, Y., Li, D., Wang, D. & Nie, Y. (2006). Opt. Mater. 28, 289-293.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN+·I·H2O

  • Mr = 375.62

  • Monoclinic, P 21 /c

  • a = 7.0876 (1) Å

  • b = 9.8096 (2) Å

  • c = 21.0940 (4) Å

  • β = 95.147 (1)°

  • V = 1460.68 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 100.0 (1) K

  • 0.28 × 0.17 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.560, Tmax = 0.845

  • 18928 measured reflections

  • 4241 independent reflections

  • 3486 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.13

  • 4241 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 2.13 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯I1 0.86 2.87 3.592 (4) 143
O1W—H2W1⋯I1i 0.85 2.87 3.567 (4) 141
C14—H14A⋯O1W 0.96 2.50 3.202 (5) 130
C14—H14D⋯O1Wii 0.96 2.56 3.460 (5) 157
C1—H1A⋯I1iii 0.93 3.20 3.830 (4) 127
C2—H2A⋯I1iv 0.93 3.17 3.825 (4) 129
C3—H3A⋯I1iv 0.93 3.21 3.840 (4) 127
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In the last two decades, many efforts were focused on the discovery of new organic materials which exhibit large nonlinear optical (NLO) properties and would have applications in the fields of optoelectronics and photonics (Lakshmanaperumal et al., 2004; Marder et al., 1994; Qiu et al., 2007; Zhai et al., 1999; Zhan et al., 2006). In order to obtain second-order NLO single crystals, the main requirements should be the choice of molecules with large hyperpolarizability (β) and the alignment of these molecules with optimal orientation into a noncentrosymmetric space group in the crystal (Williams, 1984). Among the known organic NLO materials, ionic chromophores are of great interest because they exhibit large first hyperpolarizabilities (β) and have high melting points and hardness of their crystals. At the molecular level, a generally popular approach towards NLO materials is to design and synthesize compounds with extended conjugated π-systems with donor and acceptor groups because such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and to possess polarization. Styryl pyridinium derivatives are considered to be good conjugated π-systems. In continuation of our on-going research on nonlinear optical materials (Chantrapromma et al., 2007a,b,c), the title compound, (I), was synthesized and the X-ray structure analysis was carried out in order to obtain detailed information about the molecular packing. However, compound (I) crystallizes in monoclinic space group P21/c and doesn't exhibit second-order nonlinear optic properties.

The asymmetric unit of the title compound consists of C14H13ClN+ cation, I- anion and one water molecule (Fig. 1). The conformation of the cation is essentially planar as indicated by the dihedral angle between the pyridinium (N1/C1—C5) and the benzene (C8—C13) rings, being 0.98 (17)°. The mean plane through C5/C6/C7/C8 plane makes dihedral angles of 6.1 (4)° and 6.4 (4)° with pyridinium and benzene rings, respectively. The cation exists in the E configuration and the torsion angle C5—C6—C7—C8 = -179.2 (3)°. The bond distances and angles in (I) have normal values (Allen et al., 1987) and comparable with closely related structures (Chantrapromma et al., 2007a,b,c).

The packing of the molecule down the c axis (Fig. 2), showing that the cation is linked with water molecule by weak C—H···O interactions (Table 1) and linked with I- anions by weak C—H···I interactions (Table 1) whereas the I- anion is linked with water molecule by O—H···I hydrogen bonds, forming one-dimensional chains along the a axis. These chains are further connected into a three-dimensional network (Fig. 2). π···π interactions involving pyridinium and benzene rings were also observed with Cg1···Cg2 distances of 3.662 (2) Å (symmetry code; 1 - x, -y, 1 - z) and 3.569 (2) Å (symmetry code; 2 - x, -y, 1 - z); Cg1 and Cg2 are the centroids of the N1/C1–C5 pyridinium and C8–C13 benzene rings, respectively. The crystal is stabilized by O—H···I hydrogen bond, weak C—H···O and C—H···I interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Chantrapromma et al. (2007a,b,c). For background on non-linear optical properties, see, for example: Lakshmanaperumal et al. (2004); Marder et al. (1994); Qiu et al. (2007); Williams (1984); Zhai et al. (1999); Zhan et al. (2006).

Experimental top

The title compound was prepared by mixing solutions of 1,2-dimethylpyridinium iodide, 4-chlorobenzaldehyde and piperidine (1:1:1 molar ratio) in methanol. The resulting solution was refluxed for 12 hr under a nitrogen atmosphere. The solid which formed was filtered and washed with chloroform. Orange plate-like single-crystal suitable for X-ray diffraction analysis was obtained by recrystallization from methanol by slow evaporation of the solvent at ambient temperature after several days, Mp. 492–493 K.

Refinement top

All H atoms were placed in calculated positions (O—H = 0.85–0.86 and C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl C), A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.76 Å from I1 and the deepest hole is located at 0.59 Å from I1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. The O—H···I hydrogen bond was drawn as dashed line.
[Figure 2] Fig. 2. The packing diagram of the title structure viewed approximately along the c axis. Hydrogen bonds were drawn as dashed lines.
2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium iodide monohydrate top
Crystal data top
C14H13ClN+·I·H2OF(000) = 736
Mr = 375.62Dx = 1.708 Mg m3
Monoclinic, P21/cMelting point: 492-493 K K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.0876 (1) ÅCell parameters from 4241 reflections
b = 9.8096 (2) Åθ = 1.9–30.0°
c = 21.0940 (4) ŵ = 2.36 mm1
β = 95.147 (1)°T = 100 K
V = 1460.68 (5) Å3Plate, orange
Z = 40.28 × 0.17 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4241 independent reflections
Radiation source: fine-focus sealed tube3486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.9°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1312
Tmin = 0.561, Tmax = 0.845l = 2629
18928 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.1431P]
where P = (Fo2 + 2Fc2)/3
4241 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 2.13 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C14H13ClN+·I·H2OV = 1460.68 (5) Å3
Mr = 375.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0876 (1) ŵ = 2.36 mm1
b = 9.8096 (2) ÅT = 100 K
c = 21.0940 (4) Å0.28 × 0.17 × 0.07 mm
β = 95.147 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4241 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3486 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.845Rint = 0.038
18928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.13Δρmax = 2.13 e Å3
4241 reflectionsΔρmin = 0.79 e Å3
164 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.96440 (3)0.30947 (2)0.374487 (10)0.02517 (9)
Cl10.65015 (14)0.33018 (11)0.25791 (5)0.0349 (2)
N10.7517 (4)0.2927 (3)0.58820 (14)0.0228 (6)
O1W0.4685 (5)0.3289 (4)0.39663 (18)0.0589 (10)
H1W10.56170.29490.37820.088*
H2W10.36910.28810.38080.088*
C10.7754 (5)0.3535 (4)0.64637 (17)0.0254 (7)
H1A0.75210.44640.64980.030*
C20.8329 (5)0.2805 (4)0.69966 (18)0.0277 (8)
H2A0.84730.32280.73930.033*
C30.8698 (5)0.1412 (4)0.69383 (17)0.0262 (7)
H3A0.91150.09000.72940.031*
C40.8440 (5)0.0817 (4)0.63559 (17)0.0264 (7)
H4A0.86740.01110.63180.032*
C50.7828 (5)0.1569 (4)0.58078 (17)0.0221 (7)
C60.7492 (5)0.0969 (4)0.51828 (17)0.0256 (7)
H6A0.71870.15480.48390.031*
C70.7592 (5)0.0353 (4)0.50694 (17)0.0268 (7)
H7A0.78830.09120.54210.032*
C80.7293 (5)0.1035 (4)0.44465 (16)0.0235 (7)
C90.7663 (5)0.2435 (4)0.44164 (18)0.0266 (7)
H9A0.80750.29030.47860.032*
C100.7425 (5)0.3135 (4)0.38414 (19)0.0271 (8)
H10A0.76800.40630.38240.033*
C110.6808 (5)0.2432 (4)0.33021 (17)0.0238 (7)
C120.6421 (5)0.1050 (4)0.33059 (17)0.0258 (7)
H12A0.60050.05960.29320.031*
C130.6668 (5)0.0354 (4)0.38847 (17)0.0250 (7)
H13A0.64140.05750.38960.030*
C140.6940 (5)0.3805 (4)0.53292 (18)0.0298 (8)
H14D0.68020.47270.54700.045*
H14A0.57540.34890.51260.045*
H14B0.78890.37690.50320.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02744 (14)0.02228 (14)0.02596 (14)0.00264 (9)0.00324 (9)0.00111 (9)
Cl10.0368 (5)0.0385 (6)0.0293 (5)0.0051 (4)0.0027 (4)0.0126 (4)
N10.0206 (13)0.0229 (16)0.0249 (15)0.0010 (11)0.0027 (11)0.0046 (12)
O1W0.0347 (17)0.083 (3)0.058 (2)0.0104 (16)0.0028 (15)0.028 (2)
C10.0246 (17)0.0238 (18)0.0278 (18)0.0003 (14)0.0028 (14)0.0000 (15)
C20.0255 (17)0.032 (2)0.0261 (18)0.0004 (14)0.0028 (14)0.0020 (15)
C30.0209 (16)0.031 (2)0.0263 (17)0.0017 (14)0.0021 (13)0.0030 (15)
C40.0218 (16)0.0267 (19)0.0307 (18)0.0010 (14)0.0017 (14)0.0034 (15)
C50.0175 (15)0.0230 (18)0.0265 (17)0.0009 (12)0.0050 (12)0.0007 (14)
C60.0265 (17)0.0245 (19)0.0258 (17)0.0002 (14)0.0018 (14)0.0001 (14)
C70.0272 (17)0.0261 (19)0.0268 (18)0.0021 (14)0.0002 (14)0.0019 (15)
C80.0227 (16)0.0244 (19)0.0236 (16)0.0012 (13)0.0027 (13)0.0021 (14)
C90.0288 (18)0.0231 (19)0.0272 (18)0.0000 (14)0.0009 (14)0.0014 (15)
C100.0266 (17)0.0195 (18)0.035 (2)0.0016 (14)0.0038 (15)0.0009 (15)
C110.0203 (16)0.0253 (19)0.0257 (17)0.0029 (13)0.0025 (13)0.0064 (14)
C120.0233 (16)0.027 (2)0.0267 (17)0.0026 (14)0.0011 (13)0.0029 (14)
C130.0246 (16)0.0172 (17)0.0329 (19)0.0022 (13)0.0013 (14)0.0009 (14)
C140.037 (2)0.025 (2)0.0281 (18)0.0052 (15)0.0056 (15)0.0032 (15)
Geometric parameters (Å, º) top
Cl1—C111.744 (4)C6—H6A0.9300
N1—C11.361 (5)C7—C81.473 (5)
N1—C51.361 (5)C7—H7A0.9300
N1—C141.478 (5)C8—C131.397 (5)
O1W—H1W10.8628C8—C91.400 (5)
O1W—H2W10.8523C9—C101.391 (5)
C1—C21.364 (5)C9—H9A0.9300
C1—H1A0.9300C10—C111.368 (5)
C2—C31.399 (6)C10—H10A0.9300
C2—H2A0.9300C11—C121.383 (5)
C3—C41.358 (5)C12—C131.396 (5)
C3—H3A0.9300C12—H12A0.9300
C4—C51.407 (5)C13—H13A0.9300
C4—H4A0.9300C14—H14D0.9600
C5—C61.444 (5)C14—H14A0.9600
C6—C71.322 (5)C14—H14B0.9600
C1—N1—C5121.6 (3)C13—C8—C9118.5 (3)
C1—N1—C14117.3 (3)C13—C8—C7123.3 (3)
C5—N1—C14121.0 (3)C9—C8—C7118.2 (3)
H1W1—O1W—H2W1106.3C10—C9—C8121.0 (3)
N1—C1—C2121.1 (4)C10—C9—H9A119.5
N1—C1—H1A119.4C8—C9—H9A119.5
C2—C1—H1A119.4C11—C10—C9118.8 (3)
C1—C2—C3119.0 (4)C11—C10—H10A120.6
C1—C2—H2A120.5C9—C10—H10A120.6
C3—C2—H2A120.5C10—C11—C12122.5 (3)
C4—C3—C2119.2 (3)C10—C11—Cl1119.1 (3)
C4—C3—H3A120.4C12—C11—Cl1118.4 (3)
C2—C3—H3A120.4C11—C12—C13118.4 (3)
C3—C4—C5121.7 (4)C11—C12—H12A120.8
C3—C4—H4A119.2C13—C12—H12A120.8
C5—C4—H4A119.2C12—C13—C8120.9 (3)
N1—C5—C4117.4 (3)C12—C13—H13A119.6
N1—C5—C6119.3 (3)C8—C13—H13A119.6
C4—C5—C6123.4 (3)N1—C14—H14D109.5
C7—C6—C5123.9 (3)N1—C14—H14A109.5
C7—C6—H6A118.0H14D—C14—H14A109.5
C5—C6—H6A118.0N1—C14—H14B109.5
C6—C7—C8127.0 (4)H14D—C14—H14B109.5
C6—C7—H7A116.5H14A—C14—H14B109.5
C8—C7—H7A116.5
C5—N1—C1—C20.5 (5)C5—C6—C7—C8179.2 (3)
C14—N1—C1—C2178.4 (3)C6—C7—C8—C136.4 (6)
N1—C1—C2—C30.7 (5)C6—C7—C8—C9173.2 (4)
C1—C2—C3—C41.3 (5)C13—C8—C9—C100.3 (5)
C2—C3—C4—C50.6 (5)C7—C8—C9—C10179.4 (3)
C1—N1—C5—C41.1 (5)C8—C9—C10—C110.4 (5)
C14—N1—C5—C4177.7 (3)C9—C10—C11—C120.3 (5)
C1—N1—C5—C6177.9 (3)C9—C10—C11—Cl1179.9 (3)
C14—N1—C5—C63.2 (5)C10—C11—C12—C130.2 (5)
C3—C4—C5—N10.6 (5)Cl1—C11—C12—C13179.9 (3)
C3—C4—C5—C6178.4 (3)C11—C12—C13—C80.0 (5)
N1—C5—C6—C7173.9 (3)C9—C8—C13—C120.1 (5)
C4—C5—C6—C75.1 (6)C7—C8—C13—C12179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···I10.862.873.592 (4)143
O1W—H2W1···I1i0.852.873.567 (4)141
C14—H14A···O1W0.962.503.202 (5)130
C14—H14D···O1Wii0.962.563.460 (5)157
C1—H1A···I1iii0.933.203.830 (4)127
C2—H2A···I1iv0.933.183.825 (4)129
C3—H3A···I1iv0.933.213.840 (4)127
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13ClN+·I·H2O
Mr375.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0876 (1), 9.8096 (2), 21.0940 (4)
β (°) 95.147 (1)
V3)1460.68 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.28 × 0.17 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.561, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
18928, 4241, 3486
Rint0.038
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.13
No. of reflections4241
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.13, 0.79

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···I10.862.86583.592 (4)143
O1W—H2W1···I1i0.852.86723.567 (4)141
C14—H14A···O1W0.962.50283.202 (5)130
C14—H14D···O1Wii0.962.55683.460 (5)157
C1—H1A···I1iii0.933.19683.830 (4)127
C2—H2A···I1iv0.933.17483.825 (4)129
C3—H3A···I1iv0.933.20533.840 (4)127
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Footnotes

This paper is dedicated to Her Royal Highness the late Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, is gratefully acknowledged. The authors also thank Prince of Songkla University, the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007a). Acta Cryst. E63, o2124–o2126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007b). Acta Cryst. E63, o2321–o2323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007c). Anal. Sci. 23, x81–x82.  Google Scholar
First citationLakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth, 265, 260–265.  Web of Science CrossRef CAS Google Scholar
First citationMarder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137–1147.  CSD CrossRef CAS Web of Science Google Scholar
First citationQiu, F., Xu, H., Cao, Y., Jiang, Y., Zhou, Y., Liu, J. & Zhang, X. (2007). Mater. Charact. 58, 275–283.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690–703.  CrossRef Web of Science Google Scholar
First citationZhai, J., Huang, C.-H., Wei, T.-X., Yu, A.-C. & Zhao, X.-S. (1999). Solid State Commun. 109, 733–738.  Web of Science CrossRef CAS Google Scholar
First citationZhan, C., Li, Y., Li, D., Wang, D. & Nie, Y. (2006). Opt. Mater. 28, 289–293.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1882-o1883
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds