organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-2-[(E)-phen­yl(1,2,3,4-tetra­hydro-1-naphthyl­imino)meth­yl]phenol

aSchool of Chemistry, Jinan University, Jinan 250022, People's Republic of China, bQilu Pharmaceutical Co. Ltd, Shandong, Jinan 250100, People's Republic of China, and cGraduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
*Correspondence e-mail: yangting365@hotmail.com

(Received 17 September 2008; accepted 21 September 2008; online 24 September 2008)

In the crystal structure of the title compound, C24H23NO, the phenyl ring makes dihedral angles of 81.53 (11) and 75.35 (12)°, respectively, with the methyl-substituted and the fused benzene rings. The dihedral angle between the two benzene rings is 71.10 (10)°. There is an intra­molecular O—H⋯N hydrogen bond.

Related literature

For related structures, see: Elmali & Eleman (1998[Elmali, A. & Eleman, Y. (1998). J. Mol. Struct. 442, 31-37.]); Elmali et al. (1998[Elmali, A., Eleman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct. 443, 123-130.]). For general background, see: Bernaldi et al. (1996[Bernaldi, A., Colombo, G. & Seolastico, C. (1996). Tetrahedron Lett. 37, 8921-8924.]); Cavell et al. (2002[Cavell, R. G., Aparna, K., Kamalesh Babu, R. P. & Wang, Q. (2002). J. Mol. Catal. A. Chem. 189, 137-138.]); Desimani et al. (1995[Desimani, G., Dasi, G., Paita, G., Quadrelle, P. & Righille, P. (1995). Tetrahedron, 51, 4131-4144.]); Jacobsen et al. (1997[Jacobsen, E. N., Kakiuch, F., Konsler, R. G., Larrow, J. F. & Tokunaga, M. (1997). Tetrahedron Lett. 38, 773-776.]); Kureshy et al. (1996[Kureshy, R., Khan, M. & Abdi, S. (1996). J. Mol. Catal. A. Chem. 189, 137-138.]); Nakayama et al. (2004[Nakayama, Y., Bando, H., Sonobe, Y. & Fujita, T. (2004). J. Mol. Catal. A. Chem. 213, 141-142.]); Takenaka et al. (2002[Takenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299-8305.]); Varlamov et al. (2003[Varlamov, A. V., Zubkov, F. I., Boltukhina, E. V., Sidorenko, N. V. & Borisov, R. S. (2003). Tetrahedron Lett. 44, 3641-3643.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23NO

  • Mr = 341.43

  • Triclinic, [P \overline 1]

  • a = 10.121 (3) Å

  • b = 10.370 (2) Å

  • c = 10.482 (2) Å

  • α = 95.181 (3)°

  • β = 112.830 (3)°

  • γ = 106.243 (4)°

  • V = 948.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.41 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 5027 measured reflections

  • 3467 independent reflections

  • 2220 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.02

  • 3467 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.81 2.541 (2) 147

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of Schiff bases with a variety of functionalities is an important subject of research because this class of compounds are easily synthesized and have been widely used as ligands in the formation of almost all metal ions and asymmetric reactions (Elmali & Eleman, 1998; Elmali et al., 1998; Cavell et al., 2002; Nakayama et al., 2004; Varlamov et al., 2003; Takenaka et al., 2002; Desimani et al., 1995; Bernaldi et al., 1996; Kureshy et al., 1996; Jacobsen et al., 1997).

In this paper, we report the molecular structure of 4-methyl-2-[(E)-phenyl(1,2,3,4-tetrahydronaphthalen-1-ylimino)methyl]phenol, (I), which was initially prepared to test its catalytic activity. The Schiff base was prepared by conventional condensation of 1,2,3,4-tetrahydronaphthalen-1-amine with (2-hydroxy-5-methylphenyl)(phenyl)methanone in methanol.

There is an intramolecular O1—H1···N1 hydrogen bond (Table 1). Phenol atom O1 acts as a hydrogen-bond donor to atom N1, with O1··· N1= 2.541 (2) Å, which indicates a comparatively strong intramolecular hydrogen bond. This distance is significantly shorter than the sum (3.07 Å) of the van der Waals radii for N and O atoms. The O1—H1···N1 hydrogen bond in (I) completes a six-membered ring (C11/C18/C24/O1/H1/N1), which increases the stability of this compound. However, no aromatic π-π stacking interactions are present in the structure of (I).

The C12—C17 and C18—C24 aromatic rings are approximately vertical, the dihedral angle between their planes being 81.53 (11)°; the dihedral angle between the planes of the C4—C9 and C12—C17 aromatic rings is 75.35 (12)°, while that between the C4—C9 and C19—C24 planes is 71.1 (10)°.

Related literature top

For related structures, see: Elmali & Eleman (1998); Elmali et al. (1998). For general background, see: Bernaldi et al. (1996); Cavell et al. (2002); Desimani et al. (1995); Jacobsen et al. (1997); Kureshy et al. (1996); Nakayama et al. (2004); Takenaka et al. (2002); Varlamov et al. (2003).

Experimental top

1,2,3,4-Tetrahydronaphthalen-1-amine (0.9 mmol) and (2-hydroxy-5-methylphenyl)(phenyl)methanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, the yellow solid was obtained. Single crystals suitable for X-ray diffraction were grown by slow evaporation from an ethanol solution at room temperature.

Refinement top

All H atoms were included in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å, aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, methylene C—H = 0.97 Å and methine C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram of (I), view down the b axis, showing the O1—H1···N1 hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted.
4-Methyl-2-[(E)-phenyl(1,2,3,4-tetrahydro-1-naphthylimino)methyl]phenol top
Crystal data top
C24H23NOZ = 2
Mr = 341.43F(000) = 364
Triclinic, P1Dx = 1.195 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.121 (3) ÅCell parameters from 1182 reflections
b = 10.370 (2) Åθ = 2.3–23.4°
c = 10.482 (2) ŵ = 0.07 mm1
α = 95.181 (3)°T = 298 K
β = 112.830 (3)°Block, yellow
γ = 106.243 (4)°0.41 × 0.21 × 0.20 mm
V = 948.7 (4) Å3
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2220 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
ϕ and ω scansh = 1112
5027 measured reflectionsk = 912
3467 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.046P]
where P = (Fo2 + 2Fc2)/3
3467 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C24H23NOγ = 106.243 (4)°
Mr = 341.43V = 948.7 (4) Å3
Triclinic, P1Z = 2
a = 10.121 (3) ÅMo Kα radiation
b = 10.370 (2) ŵ = 0.07 mm1
c = 10.482 (2) ÅT = 298 K
α = 95.181 (3)°0.41 × 0.21 × 0.20 mm
β = 112.830 (3)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2220 reflections with I > 2σ(I)
5027 measured reflectionsRint = 0.015
3467 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
3467 reflectionsΔρmin = 0.15 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1262 (2)0.4914 (2)0.3438 (2)0.0635 (5)
H1A0.17750.47510.43720.076*
H1B0.14200.43440.27630.076*
C20.0430 (2)0.4527 (2)0.3033 (2)0.0674 (6)
H2A0.08320.35910.31210.081*
H2B0.05950.51380.36680.081*
C30.1248 (2)0.4641 (2)0.1520 (2)0.0668 (6)
H3A0.12290.39170.08800.080*
H3B0.23070.45050.13050.080*
C40.0538 (2)0.60102 (18)0.12713 (18)0.0504 (5)
C50.1381 (2)0.6473 (2)0.0128 (2)0.0628 (5)
H50.23840.59270.04700.075*
C60.0767 (3)0.7713 (2)0.0136 (2)0.0746 (6)
H60.13520.80040.09050.089*
C70.0713 (3)0.8527 (2)0.0731 (2)0.0760 (6)
H70.11380.93680.05490.091*
C80.1561 (2)0.8091 (2)0.1869 (2)0.0643 (5)
H80.25630.86480.24590.077*
C90.0960 (2)0.68399 (18)0.21587 (18)0.0492 (4)
C100.19315 (19)0.64187 (19)0.34485 (18)0.0529 (5)
H100.20320.69840.43050.063*
C110.4687 (2)0.72766 (17)0.46336 (18)0.0485 (4)
C120.47002 (19)0.76700 (19)0.60484 (18)0.0495 (4)
C130.4491 (2)0.8879 (2)0.6440 (2)0.0685 (6)
H130.43490.94710.58230.082*
C140.4492 (3)0.9210 (3)0.7741 (3)0.0938 (8)
H140.43491.00240.79990.113*
C150.4702 (3)0.8349 (4)0.8654 (3)0.0999 (9)
H150.47070.85820.95340.120*
C160.4906 (2)0.7147 (3)0.8285 (2)0.0863 (7)
H160.50390.65590.89070.104*
C170.4912 (2)0.6809 (2)0.6982 (2)0.0656 (6)
H170.50610.59950.67330.079*
C180.61531 (19)0.75267 (17)0.45517 (19)0.0489 (4)
C190.7536 (2)0.81930 (18)0.5754 (2)0.0547 (5)
H190.75090.84830.66060.066*
C200.8942 (2)0.8440 (2)0.5731 (2)0.0609 (5)
C211.0404 (2)0.9151 (2)0.7060 (2)0.0814 (7)
H21A1.05350.85470.77060.122*
H21B1.03570.99780.75020.122*
H21C1.12500.93790.68160.122*
C220.8940 (3)0.7998 (2)0.4443 (3)0.0730 (6)
H220.98680.81410.43970.088*
C230.7608 (3)0.7353 (2)0.3232 (3)0.0747 (6)
H230.76490.70680.23850.090*
C240.6212 (2)0.7125 (2)0.3262 (2)0.0592 (5)
N10.34550 (17)0.67080 (15)0.34810 (15)0.0552 (4)
O10.49367 (17)0.65077 (17)0.20388 (15)0.0813 (5)
H10.41830.64500.21820.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0662 (13)0.0706 (14)0.0607 (13)0.0295 (11)0.0287 (11)0.0228 (10)
C20.0667 (14)0.0671 (13)0.0752 (14)0.0204 (10)0.0374 (11)0.0244 (11)
C30.0538 (12)0.0704 (14)0.0669 (14)0.0124 (10)0.0241 (10)0.0094 (10)
C40.0490 (11)0.0586 (12)0.0431 (10)0.0193 (9)0.0203 (9)0.0052 (8)
C50.0535 (12)0.0779 (15)0.0499 (12)0.0257 (11)0.0147 (10)0.0070 (10)
C60.0799 (16)0.0851 (17)0.0579 (13)0.0412 (14)0.0188 (12)0.0217 (12)
C70.0871 (17)0.0626 (14)0.0782 (15)0.0278 (12)0.0320 (14)0.0266 (12)
C80.0586 (12)0.0538 (13)0.0659 (13)0.0134 (10)0.0171 (10)0.0102 (10)
C90.0486 (11)0.0530 (11)0.0436 (10)0.0189 (9)0.0179 (8)0.0053 (8)
C100.0490 (11)0.0632 (13)0.0457 (10)0.0216 (9)0.0189 (9)0.0081 (9)
C110.0509 (11)0.0511 (11)0.0477 (11)0.0221 (8)0.0218 (9)0.0132 (8)
C120.0383 (10)0.0594 (12)0.0466 (10)0.0142 (8)0.0166 (8)0.0084 (9)
C130.0674 (14)0.0650 (14)0.0663 (14)0.0160 (10)0.0296 (11)0.0015 (10)
C140.0892 (18)0.098 (2)0.0801 (18)0.0179 (14)0.0410 (15)0.0227 (15)
C150.0812 (18)0.146 (3)0.0532 (15)0.0165 (17)0.0319 (13)0.0062 (17)
C160.0619 (15)0.134 (2)0.0597 (15)0.0237 (14)0.0266 (12)0.0350 (15)
C170.0585 (13)0.0866 (15)0.0605 (13)0.0296 (11)0.0294 (10)0.0264 (11)
C180.0505 (11)0.0514 (11)0.0546 (11)0.0239 (9)0.0267 (9)0.0182 (8)
C190.0558 (12)0.0598 (12)0.0603 (12)0.0262 (9)0.0307 (10)0.0227 (9)
C200.0527 (12)0.0612 (12)0.0824 (15)0.0251 (10)0.0359 (11)0.0316 (11)
C210.0521 (13)0.0895 (17)0.1002 (18)0.0228 (12)0.0291 (13)0.0329 (13)
C220.0632 (15)0.0807 (15)0.1012 (18)0.0317 (12)0.0543 (14)0.0319 (13)
C230.0822 (16)0.0838 (16)0.0843 (16)0.0341 (13)0.0577 (14)0.0206 (13)
C240.0635 (13)0.0644 (13)0.0600 (13)0.0256 (10)0.0344 (11)0.0149 (10)
N10.0512 (9)0.0688 (10)0.0468 (9)0.0252 (8)0.0197 (8)0.0108 (7)
O10.0767 (10)0.1065 (12)0.0592 (9)0.0281 (9)0.0338 (8)0.0020 (8)
Geometric parameters (Å, º) top
C1—C101.514 (3)C12—C171.379 (2)
C1—C21.515 (3)C12—C131.382 (3)
C1—H1A0.9700C13—C141.375 (3)
C1—H1B0.9700C13—H130.9300
C2—C31.511 (3)C14—C151.365 (4)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.365 (4)
C3—C41.498 (3)C15—H150.9300
C3—H3A0.9700C16—C171.382 (3)
C3—H3B0.9700C16—H160.9300
C4—C51.391 (2)C17—H170.9300
C4—C91.392 (2)C18—C191.399 (2)
C5—C61.366 (3)C18—C241.407 (3)
C5—H50.9300C19—C201.383 (3)
C6—C71.371 (3)C19—H190.9300
C6—H60.9300C20—C221.385 (3)
C7—C81.374 (3)C20—C211.509 (3)
C7—H70.9300C21—H21A0.9600
C8—C91.385 (2)C21—H21B0.9600
C8—H80.9300C21—H21C0.9600
C9—C101.517 (2)C22—C231.375 (3)
C10—N11.472 (2)C22—H220.9300
C10—H100.9800C23—C241.380 (3)
C11—N11.286 (2)C23—H230.9300
C11—C181.471 (2)C24—O11.351 (2)
C11—C121.496 (2)O1—H10.8200
C10—C1—C2110.10 (15)C17—C12—C13118.94 (19)
C10—C1—H1A109.6C17—C12—C11119.75 (17)
C2—C1—H1A109.6C13—C12—C11121.31 (17)
C10—C1—H1B109.6C14—C13—C12120.2 (2)
C2—C1—H1B109.6C14—C13—H13119.9
H1A—C1—H1B108.2C12—C13—H13119.9
C3—C2—C1109.48 (17)C15—C14—C13120.2 (2)
C3—C2—H2A109.8C15—C14—H14119.9
C1—C2—H2A109.8C13—C14—H14119.9
C3—C2—H2B109.8C14—C15—C16120.5 (2)
C1—C2—H2B109.8C14—C15—H15119.8
H2A—C2—H2B108.2C16—C15—H15119.8
C4—C3—C2112.22 (16)C15—C16—C17119.6 (2)
C4—C3—H3A109.2C15—C16—H16120.2
C2—C3—H3A109.2C17—C16—H16120.2
C4—C3—H3B109.2C12—C17—C16120.5 (2)
C2—C3—H3B109.2C12—C17—H17119.8
H3A—C3—H3B107.9C16—C17—H17119.8
C5—C4—C9118.63 (18)C19—C18—C24117.86 (17)
C5—C4—C3119.88 (18)C19—C18—C11120.89 (16)
C9—C4—C3121.49 (16)C24—C18—C11121.24 (16)
C6—C5—C4121.44 (19)C20—C19—C18122.96 (18)
C6—C5—H5119.3C20—C19—H19118.5
C4—C5—H5119.3C18—C19—H19118.5
C5—C6—C7120.02 (19)C19—C20—C22117.00 (19)
C5—C6—H6120.0C19—C20—C21121.0 (2)
C7—C6—H6120.0C22—C20—C21121.95 (19)
C6—C7—C8119.4 (2)C20—C21—H21A109.5
C6—C7—H7120.3C20—C21—H21B109.5
C8—C7—H7120.3H21A—C21—H21B109.5
C7—C8—C9121.49 (19)C20—C21—H21C109.5
C7—C8—H8119.3H21A—C21—H21C109.5
C9—C8—H8119.3H21B—C21—H21C109.5
C8—C9—C4118.98 (17)C23—C22—C20121.99 (19)
C8—C9—C10119.51 (16)C23—C22—H22119.0
C4—C9—C10121.50 (17)C20—C22—H22119.0
N1—C10—C1110.00 (14)C22—C23—C24120.6 (2)
N1—C10—C9107.72 (15)C22—C23—H23119.7
C1—C10—C9112.97 (15)C24—C23—H23119.7
N1—C10—H10108.7O1—C24—C23118.30 (19)
C1—C10—H10108.7O1—C24—C18122.10 (17)
C9—C10—H10108.7C23—C24—C18119.60 (19)
N1—C11—C18117.95 (16)C11—N1—C10122.17 (15)
N1—C11—C12123.35 (16)C24—O1—H1109.5
C18—C11—C12118.69 (15)
C10—C1—C2—C365.2 (2)C12—C13—C14—C150.1 (3)
C1—C2—C3—C451.8 (2)C13—C14—C15—C160.4 (4)
C2—C3—C4—C5159.33 (17)C14—C15—C16—C170.6 (4)
C2—C3—C4—C920.9 (3)C13—C12—C17—C160.4 (3)
C9—C4—C5—C60.2 (3)C11—C12—C17—C16179.06 (17)
C3—C4—C5—C6179.57 (18)C15—C16—C17—C120.6 (3)
C4—C5—C6—C70.3 (3)N1—C11—C18—C19177.33 (16)
C5—C6—C7—C80.6 (3)C12—C11—C18—C193.8 (2)
C6—C7—C8—C90.4 (3)N1—C11—C18—C241.7 (2)
C7—C8—C9—C40.0 (3)C12—C11—C18—C24177.24 (16)
C7—C8—C9—C10178.60 (18)C24—C18—C19—C201.6 (3)
C5—C4—C9—C80.3 (3)C11—C18—C19—C20179.42 (15)
C3—C4—C9—C8179.40 (17)C18—C19—C20—C220.2 (3)
C5—C4—C9—C10178.29 (16)C18—C19—C20—C21179.38 (17)
C3—C4—C9—C102.0 (3)C19—C20—C22—C230.6 (3)
C2—C1—C10—N1165.74 (15)C21—C20—C22—C23179.87 (19)
C2—C1—C10—C945.3 (2)C20—C22—C23—C240.1 (3)
C8—C9—C10—N145.2 (2)C22—C23—C24—O1178.91 (19)
C4—C9—C10—N1136.15 (17)C22—C23—C24—C181.5 (3)
C8—C9—C10—C1166.94 (16)C19—C18—C24—O1178.26 (16)
C4—C9—C10—C114.5 (2)C11—C18—C24—O10.8 (3)
N1—C11—C12—C1798.4 (2)C19—C18—C24—C232.2 (3)
C18—C11—C12—C1780.5 (2)C11—C18—C24—C23178.77 (16)
N1—C11—C12—C1381.1 (2)C18—C11—N1—C10179.77 (14)
C18—C11—C12—C13100.0 (2)C12—C11—N1—C101.4 (3)
C17—C12—C13—C140.2 (3)C1—C10—N1—C11100.19 (19)
C11—C12—C13—C14179.30 (18)C9—C10—N1—C11136.28 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.812.541 (2)147

Experimental details

Crystal data
Chemical formulaC24H23NO
Mr341.43
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.121 (3), 10.370 (2), 10.482 (2)
α, β, γ (°)95.181 (3), 112.830 (3), 106.243 (4)
V3)948.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.41 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5027, 3467, 2220
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.02
No. of reflections3467
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.812.541 (2)147
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shandong Province China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

References

First citationBernaldi, A., Colombo, G. & Seolastico, C. (1996). Tetrahedron Lett. 37, 8921–8924.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavell, R. G., Aparna, K., Kamalesh Babu, R. P. & Wang, Q. (2002). J. Mol. Catal. A. Chem. 189, 137–138.  Web of Science CrossRef CAS Google Scholar
First citationDesimani, G., Dasi, G., Paita, G., Quadrelle, P. & Righille, P. (1995). Tetrahedron, 51, 4131–4144.  Google Scholar
First citationElmali, A. & Eleman, Y. (1998). J. Mol. Struct. 442, 31–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationElmali, A., Eleman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct. 443, 123–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobsen, E. N., Kakiuch, F., Konsler, R. G., Larrow, J. F. & Tokunaga, M. (1997). Tetrahedron Lett. 38, 773–776.  CrossRef CAS Web of Science Google Scholar
First citationKureshy, R., Khan, M. & Abdi, S. (1996). J. Mol. Catal. A. Chem. 189, 137–138.  Google Scholar
First citationNakayama, Y., Bando, H., Sonobe, Y. & Fujita, T. (2004). J. Mol. Catal. A. Chem. 213, 141–142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299–8305.  Web of Science CrossRef CAS Google Scholar
First citationVarlamov, A. V., Zubkov, F. I., Boltukhina, E. V., Sidorenko, N. V. & Borisov, R. S. (2003). Tetrahedron Lett. 44, 3641–3643.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds