metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­[2-chloro-6-(1H-1,2,4-triazol-1-yl-κN4)pyridine]cadmium(II)]-di-μ-thio­cyanato-κ2N:S;κ2S:N]: a one-dimensional coordination polymer

aDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: yangzhongnian1978@yahoo.com.cn

(Received 20 September 2008; accepted 22 September 2008; online 27 September 2008)

In the crystal structure of the title complex, [Cd(NCS)2(C7H5ClN4)2]n, the CdII atom lies on a crystallographic inversion center and assumes a distorted octa­hedral geometry. The 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine mol­ecule acts as a terminal ligand. The thio­cyanate ligands function as μ1,3-bridging units connecting adjacent CdII atoms with a separation of 5.7525 (11) Å, forming a one-dimensional chain along the a axis.

Related literature

For a related structure, see: Shi et al. (2006[Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376-380.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C7H5ClN4)2]

  • Mr = 589.76

  • Triclinic, [P \overline 1]

  • a = 5.7525 (11) Å

  • b = 8.0180 (15) Å

  • c = 12.212 (2) Å

  • α = 107.609 (3)°

  • β = 90.095 (2)°

  • γ = 91.950 (3)°

  • V = 536.53 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 298 (2) K

  • 0.23 × 0.21 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.726, Tmax = 0.865

  • 2892 measured reflections

  • 2005 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.03

  • 2005 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N5 2.319 (2)
Cd1—N1 2.328 (2)
Cd1—S1i 2.7696 (9)
N5ii—Cd1—N1 89.51 (9)
N5—Cd1—N1 90.49 (9)
N5—Cd1—S1i 88.71 (7)
N1—Cd1—S1i 90.02 (6)
N5—Cd1—S1iii 91.29 (7)
N1—Cd1—S1iii 89.98 (6)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For a long time, thiocyanate anion has been used as a bridge ligand and a number of complexes with it have been published (Shi et al., 2006). But complex dealing with 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine as a ligand has not been reported as yet as our knowledge. The interest in complexes with mixed bridge ligands resulted in us synthesizing the title complex and here we report its crystal structure, (I).

The asymmetric unit and symmetry-related fragments of (I) are shown in Fig. 1. Atom Cd1 is located on an inversion center and is in a distorted octahedral CdN4S2 coordination geometry (Table 1). In the crystal 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine molecule only acts as a unidentate terminal ligand, and thiocyanate anion functions as a µ-1,3 bridge ligand and joins a pair of CdII ions with separation of 5.7525 (11) Å. In this way a one-dimensional chain along a axis was fabricated as shown in Fig. 2. In addition, there is a weak π-π stacking interaction involving symmetry related 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine molecules, with relevant distances being Cg1···Cg2i = 3.7095 (19) Å, Cg1···Cg2iperp = 3.427 Å, α = 4.24° [symmetry code: (i) -x, 2-y,1-z; Cg1 and Cg2 are the centroids of the pyrazole ring and pyridyl ring, respectively; Cg1···Cg2iperp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between plane Cg1 and plane Cg2i.

Related literature top

For arelated structure, see: Shi et al. (2006).

Experimental top

15 ml H2O solution containing Cd(ClO4)2.6H2O (0.1507 g, 0.359 mmol) and NaSCN (0.0591 g, 0.729 mmol) was added into 15 ml methanol solution of 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine (0.1203 g, 0.666 mmol), and the mixed solution was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about three weeks.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of complex (I), showing the atom numbering scheme with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (i) -x, -y + 2, -z + 2; (ii) x - 1, y, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, -y + 2, -z + 2].
[Figure 2] Fig. 2. Packing diagram of (I), showing one-dimensional chains.
catena-Poly[[bis[2-chloro-6-(1H-1,2,4-triazol-1-yl- κN4)pyridine]cadmium(II)]-di-µ-thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Cd(NCS)2(C7H5ClN4)2]Z = 1
Mr = 589.76F(000) = 290
Triclinic, P1Dx = 1.825 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7525 (11) ÅCell parameters from 1921 reflections
b = 8.0180 (15) Åθ = 2.7–28.1°
c = 12.212 (2) ŵ = 1.49 mm1
α = 107.609 (3)°T = 298 K
β = 90.095 (2)°Block, colorless
γ = 91.950 (3)°0.23 × 0.21 × 0.10 mm
V = 536.53 (18) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2005 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.726, Tmax = 0.865k = 98
2892 measured reflectionsl = 1114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.1572P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2005 reflectionsΔρmax = 0.34 e Å3
143 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (2)
Crystal data top
[Cd(NCS)2(C7H5ClN4)2]γ = 91.950 (3)°
Mr = 589.76V = 536.53 (18) Å3
Triclinic, P1Z = 1
a = 5.7525 (11) ÅMo Kα radiation
b = 8.0180 (15) ŵ = 1.49 mm1
c = 12.212 (2) ÅT = 298 K
α = 107.609 (3)°0.23 × 0.21 × 0.10 mm
β = 90.095 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2005 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1903 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.865Rint = 0.016
2892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
2005 reflectionsΔρmin = 0.36 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0042 (5)0.8697 (4)0.7162 (2)0.0411 (6)
H10.14360.80650.71390.049*
C20.1609 (7)0.7193 (5)0.3111 (3)0.0639 (9)
H20.25490.73100.25180.077*
C30.2948 (5)1.0298 (4)0.7697 (2)0.0534 (8)
H30.40581.10350.81780.064*
C40.5043 (5)1.2276 (4)1.0409 (2)0.0421 (6)
C50.2157 (6)0.8143 (4)0.4239 (2)0.0543 (8)
H50.34440.89130.44260.065*
C60.0695 (5)0.7883 (3)0.5063 (2)0.0406 (6)
C70.1629 (6)0.5969 (4)0.3779 (2)0.0484 (7)
C80.0303 (7)0.6092 (4)0.2872 (2)0.0597 (8)
H80.06960.54460.21210.072*
Cd10.00001.00001.00000.04300 (14)
Cl10.40595 (17)0.45711 (12)0.35184 (8)0.0709 (3)
N10.1037 (4)0.9656 (3)0.81047 (18)0.0446 (5)
N20.1161 (4)0.8768 (3)0.62460 (17)0.0401 (5)
N30.3112 (4)0.9806 (3)0.65819 (19)0.0530 (6)
N40.1181 (4)0.6839 (3)0.48723 (18)0.0420 (5)
N50.3274 (4)1.1798 (4)1.0652 (2)0.0538 (6)
S10.75769 (13)1.29435 (10)1.00393 (6)0.0488 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (14)0.0535 (15)0.0288 (12)0.0045 (11)0.0033 (10)0.0098 (11)
C20.081 (2)0.078 (2)0.0301 (15)0.0033 (18)0.0091 (14)0.0133 (14)
C30.0507 (17)0.073 (2)0.0300 (13)0.0198 (15)0.0021 (12)0.0083 (13)
C40.0382 (15)0.0524 (16)0.0289 (12)0.0036 (12)0.0049 (10)0.0026 (11)
C50.065 (2)0.0628 (19)0.0318 (14)0.0065 (15)0.0078 (13)0.0112 (13)
C60.0517 (16)0.0411 (14)0.0278 (12)0.0034 (12)0.0011 (11)0.0084 (10)
C70.0575 (18)0.0419 (15)0.0413 (15)0.0064 (12)0.0075 (13)0.0052 (11)
C80.083 (2)0.0602 (19)0.0292 (14)0.0067 (17)0.0040 (14)0.0025 (13)
Cd10.02956 (18)0.0703 (2)0.02358 (16)0.01005 (12)0.00224 (10)0.00706 (12)
Cl10.0652 (6)0.0672 (5)0.0659 (5)0.0086 (4)0.0153 (4)0.0000 (4)
N10.0437 (13)0.0585 (14)0.0279 (11)0.0047 (10)0.0042 (9)0.0085 (10)
N20.0434 (13)0.0482 (12)0.0263 (10)0.0039 (10)0.0034 (9)0.0082 (9)
N30.0533 (15)0.0698 (16)0.0312 (12)0.0195 (12)0.0052 (10)0.0105 (11)
N40.0487 (14)0.0434 (12)0.0321 (11)0.0048 (10)0.0018 (9)0.0084 (9)
N50.0360 (14)0.0676 (16)0.0479 (14)0.0086 (11)0.0004 (10)0.0035 (12)
S10.0407 (4)0.0620 (5)0.0401 (4)0.0104 (3)0.0037 (3)0.0113 (3)
Geometric parameters (Å, º) top
C1—N11.316 (3)C6—N21.425 (3)
C1—N21.331 (3)C7—N41.326 (3)
C1—H10.9300C7—C81.372 (5)
C2—C81.361 (5)C7—Cl11.729 (3)
C2—C51.387 (4)C8—H80.9300
C2—H20.9300Cd1—N5i2.319 (2)
C3—N31.303 (3)Cd1—N52.319 (2)
C3—N11.356 (3)Cd1—N12.328 (2)
C3—H30.9300Cd1—N1i2.328 (2)
C4—N51.146 (4)Cd1—S1ii2.7696 (9)
C4—S11.646 (3)Cd1—S1iii2.7696 (9)
C5—C61.371 (4)N2—N31.360 (3)
C5—H50.9300S1—Cd1iv2.7696 (9)
C6—N41.319 (4)
N1—C1—N2109.8 (2)N5—Cd1—N190.49 (9)
N1—C1—H1125.1N5i—Cd1—N1i90.49 (9)
N2—C1—H1125.1N5—Cd1—N1i89.51 (9)
C8—C2—C5120.1 (3)N1—Cd1—N1i180.000 (1)
C8—C2—H2120.0N5i—Cd1—S1ii91.29 (7)
C5—C2—H2120.0N5—Cd1—S1ii88.71 (7)
N3—C3—N1115.0 (3)N1—Cd1—S1ii90.02 (6)
N3—C3—H3122.5N1i—Cd1—S1ii89.98 (6)
N1—C3—H3122.5N5i—Cd1—S1iii88.71 (7)
N5—C4—S1179.1 (3)N5—Cd1—S1iii91.29 (7)
C6—C5—C2116.3 (3)N1—Cd1—S1iii89.98 (6)
C6—C5—H5121.9N1i—Cd1—S1iii90.02 (6)
C2—C5—H5121.9S1ii—Cd1—S1iii180.0
N4—C6—C5125.8 (3)C1—N1—C3103.0 (2)
N4—C6—N2114.1 (2)C1—N1—Cd1127.88 (18)
C5—C6—N2120.1 (3)C3—N1—Cd1129.05 (18)
N4—C7—C8124.9 (3)C1—N2—N3110.0 (2)
N4—C7—Cl1115.9 (2)C1—N2—C6129.0 (2)
C8—C7—Cl1119.2 (2)N3—N2—C6120.9 (2)
C2—C8—C7117.6 (3)C3—N3—N2102.2 (2)
C2—C8—H8121.2C6—N4—C7115.4 (2)
C7—C8—H8121.2C4—N5—Cd1145.7 (2)
N5i—Cd1—N5180.0C4—S1—Cd1iv97.18 (11)
N5i—Cd1—N189.51 (9)
C8—C2—C5—C60.6 (5)N1—C1—N2—N30.1 (3)
C2—C5—C6—N41.0 (5)N1—C1—N2—C6177.3 (3)
C2—C5—C6—N2178.3 (3)N4—C6—N2—C11.0 (4)
C5—C2—C8—C70.0 (5)C5—C6—N2—C1179.6 (3)
N4—C7—C8—C20.3 (5)N4—C6—N2—N3175.9 (2)
Cl1—C7—C8—C2179.4 (3)C5—C6—N2—N33.5 (4)
N2—C1—N1—C30.1 (3)N1—C3—N3—N20.1 (4)
N2—C1—N1—Cd1176.61 (18)C1—N2—N3—C30.0 (3)
N3—C3—N1—C10.1 (4)C6—N2—N3—C3177.5 (3)
N3—C3—N1—Cd1176.6 (2)C5—C6—N4—C70.8 (4)
N5i—Cd1—N1—C11.9 (3)N2—C6—N4—C7178.6 (2)
N5—Cd1—N1—C1178.1 (3)C8—C7—N4—C60.1 (4)
S1ii—Cd1—N1—C193.2 (2)Cl1—C7—N4—C6179.1 (2)
S1iii—Cd1—N1—C186.8 (2)N1—Cd1—N5—C414.4 (5)
N5i—Cd1—N1—C3177.6 (3)N1i—Cd1—N5—C4165.6 (5)
N5—Cd1—N1—C32.4 (3)S1ii—Cd1—N5—C4104.4 (4)
S1ii—Cd1—N1—C391.1 (3)S1iii—Cd1—N5—C475.6 (4)
S1iii—Cd1—N1—C388.9 (3)
Symmetry codes: (i) x, y+2, z+2; (ii) x1, y, z; (iii) x+1, y+2, z+2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C7H5ClN4)2]
Mr589.76
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.7525 (11), 8.0180 (15), 12.212 (2)
α, β, γ (°)107.609 (3), 90.095 (2), 91.950 (3)
V3)536.53 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.23 × 0.21 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.726, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
2892, 2005, 1903
Rint0.016
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.03
No. of reflections2005
No. of parameters143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N52.319 (2)Cd1—S1i2.7696 (9)
Cd1—N12.328 (2)
N5ii—Cd1—N189.51 (9)N1—Cd1—S1i90.02 (6)
N5—Cd1—N190.49 (9)N5—Cd1—S1iii91.29 (7)
N5—Cd1—S1i88.71 (7)N1—Cd1—S1iii89.98 (6)
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.
 

Acknowledgements

This work is supported by the Doctors' Foundation of Binzhou University.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380.  CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds