metal-organic compounds
A novel double-chain silver(I) coordination polymer: catena-poly[[[μ-aqua-aquadisilver(I)]-bis(μ3-5-methylpyrazine-2-carboxylato)] dihydrate]
aDepartment of Chemistry, Shangqiu Normal University, Shangqiu 476000, Henan, People's Republic of China
*Correspondence e-mail: zhaibin1978@163.com
In the title silver(I) coordination polymer, {[Ag2(C6H5N2O2)2(H2O)2]·2H2O}n, the [Ag2(μ2-H2O)(H2O)] cores are extended by antiparallel 5-methylpyrazine-2-carboxylate (L) ligands, forming a novel double-chain structure. Both Ag+ cations show a distorted square-pyramidal coordination. Ag1 is bonded to two water molecules, one L N atom, one N atom and one carboxylate O atom from a neighbouring L, whereas Ag2 is surrounded by two L N atoms, two L carboxylate O atoms and one bridging water molecule. O—H⋯O hydrogen-bonding interactions involving water clusters and carboxylate O atoms link the molecules into a three-dimensional supramolecular architecture, which is further consolidated by weak C—H⋯O interactions and π–π stacking interactions [centroid–centroid distance 3.643 (5) Å].
Related literature
For related literature, see: Ciurtin et al. (2001, 2003); Dong et al. (2000); Garribba et al. (2006); Liu et al. (2007); Ptasiewicz-Bak & Leciejewicz (2000); Shang et al. (2007); Tanase et al. (2006); Etter (1990).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S160053680802984X/kj2095sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680802984X/kj2095Isup2.hkl
{[Ag2(L)2(H2O)2]2H2O}n (I) was prepared under the hydrotheraml conditions. AgNO3 (0.2 mmol), 5-methylpyrazine-2-carboxylic acid (0.2 mmol) was added into a 25 ml reaction vessel. the reaction vessel was then sealed and subsequently placed in an oven for 140 h at 120°C. The well shaped colorless block crystals suitable for single-crystal X-ray
can be obtained.H atoms of water molecules were placed in calculated positions as riding atoms attached to non-riding atoms with O—H distances of 0.85 Å and with Uiso(H) = 1.5Ueq(O). H atoms bound to C atoms were placed geometrically and refined using a riding model with C(methyl)—H = 0.93 Å and C(phenyl)—H = 0.96 Å. The methyl H atoms were treated with AFIX137.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A one-dimensional double chain structure of the title compound comprising the Ag2O2 core. [Symmetry codes: A 2 - x, 1 - y, 1 - z; B 1 - x, 1 - y, -z; C x - 1, y, z - 1.]. Displacement ellipsoids are drawn at the 15% probability level. | |
Fig. 2. The detailed environment of O—H···O and C—H···O hydrogen bonds interactions. | |
Fig. 3. Three-dimensional supramolecular architecture of the title compound. Hydrogen bonds are indicated by dashed lines. |
[Ag2(C6H5N2O2)2(H2O)2]·2H2O | Z = 2 |
Mr = 562.04 | F(000) = 552 |
Triclinic, P1 | Dx = 2.185 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9481 (5) Å | Cell parameters from 2098 reflections |
b = 10.1827 (8) Å | θ = 3.1–27.8° |
c = 13.483 (1) Å | µ = 2.34 mm−1 |
α = 107.503 (1)° | T = 293 K |
β = 100.185 (1)° | Block, colourless |
γ = 103.164 (1)° | 0.24 × 0.20 × 0.16 mm |
V = 854.4 (1) Å3 |
Bruker APEX CCD area-detector diffractometer | 2982 independent reflections |
Radiation source: fine-focus sealed tube | 2518 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→7 |
Tmin = 0.581, Tmax = 0.698 | k = −12→12 |
4422 measured reflections | l = −7→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0298P)2 + 0.2298P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.071 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.39 e Å−3 |
2982 reflections | Δρmin = −0.51 e Å−3 |
236 parameters |
[Ag2(C6H5N2O2)2(H2O)2]·2H2O | γ = 103.164 (1)° |
Mr = 562.04 | V = 854.4 (1) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9481 (5) Å | Mo Kα radiation |
b = 10.1827 (8) Å | µ = 2.34 mm−1 |
c = 13.483 (1) Å | T = 293 K |
α = 107.503 (1)° | 0.24 × 0.20 × 0.16 mm |
β = 100.185 (1)° |
Bruker APEX CCD area-detector diffractometer | 2982 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2518 reflections with I > 2σ(I) |
Tmin = 0.581, Tmax = 0.698 | Rint = 0.014 |
4422 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.39 e Å−3 |
2982 reflections | Δρmin = −0.51 e Å−3 |
236 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.51241 (5) | 0.71236 (3) | 0.76748 (2) | 0.04603 (12) | |
Ag2 | 0.92839 (4) | 0.50359 (3) | 1.21079 (2) | 0.04547 (11) | |
O1 | 0.6620 (4) | 0.2358 (3) | 0.8569 (2) | 0.0435 (6) | |
O2 | 0.8186 (4) | 0.2942 (3) | 1.0300 (2) | 0.0440 (6) | |
O3 | 0.2277 (4) | 0.2659 (3) | 0.5098 (2) | 0.0475 (7) | |
O4 | 0.3568 (4) | 0.4346 (3) | 0.6721 (2) | 0.0508 (7) | |
O5 | 0.1848 (4) | 0.7679 (3) | 0.7910 (2) | 0.0525 (7) | |
H5A | 0.1404 | 0.8206 | 0.7600 | 0.079* | |
H5B | 0.1849 | 0.7866 | 0.8568 | 0.079* | |
O6 | 0.7016 (5) | 0.9584 (3) | 0.7828 (3) | 0.0646 (9) | |
H6A | 0.8065 | 0.9640 | 0.7582 | 0.097* | |
H6B | 0.6753 | 1.0373 | 0.8091 | 0.097* | |
O7 | 0.9786 (4) | 0.0754 (3) | 0.3171 (2) | 0.0489 (7) | |
H7A | 0.8716 | 0.0125 | 0.3142 | 0.073* | |
H7B | 1.0455 | 0.1352 | 0.3798 | 0.073* | |
O8 | 0.3319 (4) | 0.1221 (3) | 0.6643 (3) | 0.0627 (8) | |
H8A | 0.4339 | 0.1576 | 0.7196 | 0.094* | |
H8B | 0.3065 | 0.1766 | 0.6301 | 0.094* | |
N1 | 0.6624 (4) | 0.6564 (3) | 0.9057 (2) | 0.0309 (6) | |
N2 | 0.8050 (4) | 0.5719 (3) | 1.0748 (2) | 0.0282 (6) | |
N3 | 0.3601 (4) | 0.6478 (3) | 0.5860 (2) | 0.0315 (6) | |
N4 | 0.1450 (4) | 0.5712 (3) | 0.3731 (2) | 0.0325 (6) | |
C1 | 0.6657 (5) | 0.5205 (3) | 0.8899 (3) | 0.0283 (7) | |
H1 | 0.6178 | 0.4531 | 0.8201 | 0.034* | |
C2 | 0.7365 (4) | 0.4767 (3) | 0.9722 (3) | 0.0268 (7) | |
C3 | 0.8019 (5) | 0.7062 (4) | 1.0902 (3) | 0.0327 (8) | |
H3 | 0.8484 | 0.7734 | 1.1601 | 0.039* | |
C4 | 0.7324 (5) | 0.7511 (4) | 1.0068 (3) | 0.0308 (7) | |
C5 | 0.7297 (6) | 0.9034 (4) | 1.0286 (3) | 0.0481 (10) | |
H5A' | 0.6457 | 0.9094 | 0.9663 | 0.072* | |
H5B' | 0.6748 | 0.9339 | 1.0892 | 0.072* | |
H5C' | 0.8668 | 0.9649 | 1.0442 | 0.072* | |
C6 | 0.7382 (5) | 0.3213 (4) | 0.9515 (3) | 0.0301 (7) | |
C7 | 0.3370 (5) | 0.7465 (4) | 0.5428 (3) | 0.0348 (8) | |
H7 | 0.3963 | 0.8436 | 0.5852 | 0.042* | |
C8 | 0.2759 (5) | 0.5087 (4) | 0.5229 (3) | 0.0290 (7) | |
C9 | 0.1744 (5) | 0.4725 (4) | 0.4164 (3) | 0.0323 (7) | |
H9 | 0.1242 | 0.3755 | 0.3727 | 0.039* | |
C10 | 0.2270 (5) | 0.7099 (4) | 0.4361 (3) | 0.0325 (8) | |
C11 | 0.1903 (6) | 0.8224 (4) | 0.3919 (3) | 0.0446 (9) | |
H11A | 0.0462 | 0.8116 | 0.3739 | 0.067* | |
H11B | 0.2389 | 0.8117 | 0.3284 | 0.067* | |
H11C | 0.2623 | 0.9164 | 0.4451 | 0.067* | |
C12 | 0.2901 (5) | 0.3943 (4) | 0.5726 (3) | 0.0337 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0615 (2) | 0.04191 (18) | 0.02887 (17) | 0.01567 (14) | −0.00615 (14) | 0.01461 (14) |
Ag2 | 0.0587 (2) | 0.04844 (19) | 0.02474 (17) | 0.01533 (15) | −0.00451 (14) | 0.01602 (14) |
O1 | 0.0578 (16) | 0.0322 (13) | 0.0318 (14) | 0.0159 (12) | 0.0002 (12) | 0.0042 (12) |
O2 | 0.0594 (16) | 0.0437 (15) | 0.0361 (15) | 0.0211 (13) | 0.0066 (13) | 0.0235 (13) |
O3 | 0.0637 (17) | 0.0331 (15) | 0.0403 (15) | 0.0112 (13) | 0.0052 (14) | 0.0129 (13) |
O4 | 0.0679 (17) | 0.0483 (16) | 0.0298 (15) | 0.0125 (13) | −0.0072 (13) | 0.0203 (13) |
O5 | 0.0775 (19) | 0.0463 (16) | 0.0371 (15) | 0.0244 (14) | 0.0124 (14) | 0.0168 (13) |
O6 | 0.085 (2) | 0.0323 (15) | 0.085 (2) | 0.0153 (14) | 0.0464 (19) | 0.0196 (16) |
O7 | 0.0594 (16) | 0.0432 (15) | 0.0392 (16) | 0.0134 (13) | 0.0068 (13) | 0.0128 (13) |
O8 | 0.0576 (17) | 0.0515 (17) | 0.076 (2) | 0.0076 (14) | −0.0009 (16) | 0.0351 (17) |
N1 | 0.0363 (15) | 0.0281 (15) | 0.0233 (15) | 0.0079 (12) | −0.0021 (12) | 0.0093 (12) |
N2 | 0.0315 (14) | 0.0321 (15) | 0.0185 (14) | 0.0094 (12) | 0.0025 (12) | 0.0078 (12) |
N3 | 0.0347 (15) | 0.0332 (16) | 0.0236 (15) | 0.0097 (12) | 0.0001 (12) | 0.0107 (13) |
N4 | 0.0339 (15) | 0.0387 (17) | 0.0248 (15) | 0.0108 (13) | 0.0034 (12) | 0.0137 (13) |
C1 | 0.0310 (17) | 0.0273 (17) | 0.0220 (17) | 0.0086 (14) | 0.0012 (14) | 0.0054 (14) |
C2 | 0.0208 (15) | 0.0322 (18) | 0.0238 (17) | 0.0060 (13) | 0.0006 (13) | 0.0097 (15) |
C3 | 0.0385 (18) | 0.0325 (18) | 0.0203 (17) | 0.0102 (15) | 0.0018 (15) | 0.0036 (15) |
C4 | 0.0318 (17) | 0.0305 (18) | 0.0285 (18) | 0.0096 (14) | 0.0031 (15) | 0.0109 (15) |
C5 | 0.073 (3) | 0.0265 (19) | 0.036 (2) | 0.0127 (18) | 0.001 (2) | 0.0071 (17) |
C6 | 0.0303 (17) | 0.0310 (18) | 0.033 (2) | 0.0109 (14) | 0.0105 (15) | 0.0143 (16) |
C7 | 0.0382 (19) | 0.0315 (18) | 0.0309 (19) | 0.0081 (15) | 0.0041 (16) | 0.0105 (16) |
C8 | 0.0245 (16) | 0.0384 (19) | 0.0276 (18) | 0.0127 (14) | 0.0065 (14) | 0.0143 (16) |
C9 | 0.0357 (18) | 0.0324 (18) | 0.0274 (18) | 0.0125 (15) | 0.0046 (15) | 0.0093 (15) |
C10 | 0.0319 (17) | 0.040 (2) | 0.0323 (19) | 0.0138 (15) | 0.0096 (15) | 0.0196 (17) |
C11 | 0.057 (2) | 0.042 (2) | 0.039 (2) | 0.0143 (18) | 0.0074 (19) | 0.0222 (19) |
C12 | 0.0296 (17) | 0.037 (2) | 0.037 (2) | 0.0119 (15) | 0.0048 (15) | 0.0170 (17) |
Ag1—N1 | 2.260 (3) | N2—C2 | 1.353 (4) |
Ag1—N3 | 2.311 (3) | N3—C7 | 1.330 (4) |
Ag1—O6 | 2.478 (3) | N3—C8 | 1.339 (4) |
Ag1—O5 | 2.517 (3) | N4—C10 | 1.335 (4) |
Ag1—O4 | 2.598 (3) | N4—C9 | 1.340 (4) |
Ag2—N4i | 2.233 (3) | N4—Ag2iii | 2.233 (3) |
Ag2—N2 | 2.250 (3) | C1—C2 | 1.369 (4) |
Ag2—O2 | 2.558 (3) | C1—H1 | 0.9300 |
Ag2—O5ii | 2.688 (3) | C2—C6 | 1.525 (4) |
Ag2—O4ii | 2.809 (3) | C3—C4 | 1.387 (5) |
O1—C6 | 1.244 (4) | C3—H3 | 0.9300 |
O2—C6 | 1.244 (4) | C4—C5 | 1.495 (5) |
O3—C12 | 1.249 (4) | C5—H5A' | 0.9600 |
O4—C12 | 1.243 (4) | C5—H5B' | 0.9600 |
O5—H5A | 0.8500 | C5—H5C' | 0.9600 |
O5—H5B | 0.8500 | C7—C10 | 1.396 (5) |
O6—H6A | 0.8500 | C7—H7 | 0.9300 |
O6—H6B | 0.8500 | C8—C9 | 1.378 (5) |
O7—H7A | 0.8501 | C8—C12 | 1.521 (5) |
O7—H7B | 0.8501 | C9—H9 | 0.9300 |
O8—H8A | 0.8499 | C10—C11 | 1.491 (5) |
O8—H8B | 0.8499 | C11—H11A | 0.9600 |
N1—C4 | 1.336 (4) | C11—H11B | 0.9600 |
N1—C1 | 1.342 (4) | C11—H11C | 0.9600 |
N2—C3 | 1.326 (4) | ||
N1—Ag1—N3 | 149.97 (10) | N2—C2—C6 | 118.5 (3) |
N1—Ag1—O6 | 110.25 (10) | C1—C2—C6 | 121.6 (3) |
N3—Ag1—O6 | 92.51 (10) | N2—C3—C4 | 123.0 (3) |
N1—Ag1—O5 | 111.71 (9) | N2—C3—H3 | 118.5 |
N3—Ag1—O5 | 83.98 (9) | C4—C3—H3 | 118.5 |
O6—Ag1—O5 | 95.92 (9) | N1—C4—C3 | 119.7 (3) |
N1—Ag1—O4 | 84.35 (9) | N1—C4—C5 | 119.3 (3) |
N3—Ag1—O4 | 67.85 (9) | C3—C4—C5 | 120.9 (3) |
O6—Ag1—O4 | 154.82 (9) | C4—C5—H5A' | 109.5 |
O5—Ag1—O4 | 97.40 (9) | C4—C5—H5B' | 109.5 |
N4i—Ag2—N2 | 146.43 (10) | H5A'—C5—H5B' | 109.5 |
N4i—Ag2—O2 | 138.04 (9) | C4—C5—H5C' | 109.5 |
N2—Ag2—O2 | 69.03 (9) | H5A'—C5—H5C' | 109.5 |
C6—O2—Ag2 | 114.8 (2) | H5B'—C5—H5C' | 109.5 |
C12—O4—Ag1 | 114.3 (2) | O2—C6—O1 | 127.0 (3) |
Ag1—O5—H5A | 119.7 | O2—C6—C2 | 116.9 (3) |
Ag1—O5—H5B | 108.3 | O1—C6—C2 | 116.1 (3) |
H5A—O5—H5B | 116.9 | N3—C7—C10 | 122.5 (3) |
Ag1—O6—H6A | 115.2 | N3—C7—H7 | 118.8 |
Ag1—O6—H6B | 128.7 | C10—C7—H7 | 118.8 |
H6A—O6—H6B | 116.2 | N3—C8—C9 | 119.8 (3) |
H7A—O7—H7B | 115.7 | N3—C8—C12 | 118.5 (3) |
H8A—O8—H8B | 117.8 | C9—C8—C12 | 121.7 (3) |
C4—N1—C1 | 117.3 (3) | N4—C9—C8 | 122.8 (3) |
C4—N1—Ag1 | 122.3 (2) | N4—C9—H9 | 118.6 |
C1—N1—Ag1 | 120.1 (2) | C8—C9—H9 | 118.6 |
C3—N2—C2 | 117.1 (3) | N4—C10—C7 | 119.7 (3) |
C3—N2—Ag2 | 122.3 (2) | N4—C10—C11 | 118.8 (3) |
C2—N2—Ag2 | 120.5 (2) | C7—C10—C11 | 121.4 (3) |
C7—N3—C8 | 117.7 (3) | C10—C11—H11A | 109.5 |
C7—N3—Ag1 | 121.3 (2) | C10—C11—H11B | 109.5 |
C8—N3—Ag1 | 120.7 (2) | H11A—C11—H11B | 109.5 |
C10—N4—C9 | 117.4 (3) | C10—C11—H11C | 109.5 |
C10—N4—Ag2iii | 121.7 (2) | H11A—C11—H11C | 109.5 |
C9—N4—Ag2iii | 120.3 (2) | H11B—C11—H11C | 109.5 |
N1—C1—C2 | 122.9 (3) | O4—C12—O3 | 125.0 (3) |
N1—C1—H1 | 118.6 | O4—C12—C8 | 118.0 (3) |
C2—C1—H1 | 118.6 | O3—C12—C8 | 116.9 (3) |
N2—C2—C1 | 119.9 (3) | ||
N4i—Ag2—O2—C6 | −159.0 (2) | Ag2—N2—C3—C4 | 177.9 (2) |
N2—Ag2—O2—C6 | −3.8 (2) | C1—N1—C4—C3 | −0.9 (5) |
N1—Ag1—O4—C12 | −162.1 (3) | Ag1—N1—C4—C3 | 172.7 (2) |
N3—Ag1—O4—C12 | 6.3 (2) | C1—N1—C4—C5 | −179.3 (3) |
O6—Ag1—O4—C12 | −34.7 (4) | Ag1—N1—C4—C5 | −5.7 (4) |
O5—Ag1—O4—C12 | 86.7 (2) | N2—C3—C4—N1 | 0.8 (5) |
N3—Ag1—N1—C4 | 178.7 (2) | N2—C3—C4—C5 | 179.2 (3) |
O6—Ag1—N1—C4 | 41.6 (3) | Ag2—O2—C6—O1 | −175.6 (3) |
O5—Ag1—N1—C4 | −63.7 (3) | Ag2—O2—C6—C2 | 5.9 (3) |
O4—Ag1—N1—C4 | −159.5 (3) | N2—C2—C6—O2 | −5.7 (4) |
N3—Ag1—N1—C1 | −7.9 (4) | C1—C2—C6—O2 | 175.1 (3) |
O6—Ag1—N1—C1 | −144.9 (2) | N2—C2—C6—O1 | 175.7 (3) |
O5—Ag1—N1—C1 | 109.7 (2) | C1—C2—C6—O1 | −3.6 (4) |
O4—Ag1—N1—C1 | 14.0 (2) | C8—N3—C7—C10 | 1.0 (5) |
N4i—Ag2—N2—C3 | −27.5 (3) | Ag1—N3—C7—C10 | −173.2 (2) |
O2—Ag2—N2—C3 | −177.1 (3) | C7—N3—C8—C9 | 1.7 (5) |
N4i—Ag2—N2—C2 | 150.2 (2) | Ag1—N3—C8—C9 | 175.9 (2) |
O2—Ag2—N2—C2 | 0.6 (2) | C7—N3—C8—C12 | −176.5 (3) |
N1—Ag1—N3—C7 | −164.1 (2) | Ag1—N3—C8—C12 | −2.3 (4) |
O6—Ag1—N3—C7 | −23.9 (3) | C10—N4—C9—C8 | 3.1 (5) |
O5—Ag1—N3—C7 | 71.8 (3) | Ag2iii—N4—C9—C8 | −167.9 (2) |
O4—Ag1—N3—C7 | 172.4 (3) | N3—C8—C9—N4 | −3.9 (5) |
N1—Ag1—N3—C8 | 21.9 (3) | C12—C8—C9—N4 | 174.3 (3) |
O6—Ag1—N3—C8 | 162.1 (2) | C9—N4—C10—C7 | −0.4 (5) |
O5—Ag1—N3—C8 | −102.2 (2) | Ag2iii—N4—C10—C7 | 170.5 (2) |
O4—Ag1—N3—C8 | −1.7 (2) | C9—N4—C10—C11 | −177.6 (3) |
C4—N1—C1—C2 | 0.1 (5) | Ag2iii—N4—C10—C11 | −6.7 (4) |
Ag1—N1—C1—C2 | −173.6 (2) | N3—C7—C10—N4 | −1.6 (5) |
C3—N2—C2—C1 | −0.8 (4) | N3—C7—C10—C11 | 175.4 (3) |
Ag2—N2—C2—C1 | −178.7 (2) | Ag1—O4—C12—O3 | 172.6 (3) |
C3—N2—C2—C6 | 179.9 (3) | Ag1—O4—C12—C8 | −9.6 (4) |
Ag2—N2—C2—C6 | 2.1 (4) | N3—C8—C12—O4 | 8.6 (5) |
N1—C1—C2—N2 | 0.7 (5) | C9—C8—C12—O4 | −169.5 (3) |
N1—C1—C2—C6 | 180.0 (3) | N3—C8—C12—O3 | −173.4 (3) |
C2—N2—C3—C4 | 0.1 (5) | C9—C8—C12—O3 | 8.4 (5) |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y+1, −z+2; (iii) x−1, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O4 | 0.93 | 2.38 | 3.061 (4) | 130 |
O5—H5B···O2ii | 0.85 | 1.94 | 2.675 (4) | 144 |
O5—H5A···O7iv | 0.85 | 1.91 | 2.756 (4) | 175 |
O6—H6A···O7v | 0.85 | 2.00 | 2.828 (4) | 166 |
O6—H6B···O1vi | 0.85 | 1.96 | 2.794 (4) | 168 |
O7—H7A···O8vii | 0.85 | 1.86 | 2.698 (4) | 168 |
O7—H7B···O3viii | 0.85 | 1.87 | 2.712 (4) | 171 |
O8—H8A···O1 | 0.85 | 2.02 | 2.867 (4) | 176 |
O8—H8B···O3 | 0.85 | 2.13 | 2.965 (4) | 166 |
O8—H8B···O4 | 0.85 | 2.44 | 3.116 (4) | 137 |
Symmetry codes: (ii) −x+1, −y+1, −z+2; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vi) x, y+1, z; (vii) −x+1, −y, −z+1; (viii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Ag2(C6H5N2O2)2(H2O)2]·2H2O |
Mr | 562.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.9481 (5), 10.1827 (8), 13.483 (1) |
α, β, γ (°) | 107.503 (1), 100.185 (1), 103.164 (1) |
V (Å3) | 854.4 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.34 |
Crystal size (mm) | 0.24 × 0.20 × 0.16 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.581, 0.698 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4422, 2982, 2518 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.071, 1.07 |
No. of reflections | 2982 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.51 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).
Ag1—N1 | 2.260 (3) | Ag2—N4i | 2.233 (3) |
Ag1—N3 | 2.311 (3) | Ag2—N2 | 2.250 (3) |
Ag1—O6 | 2.478 (3) | Ag2—O2 | 2.558 (3) |
Ag1—O5 | 2.517 (3) | Ag2—O5ii | 2.688 (3) |
Ag1—O4 | 2.598 (3) | Ag2—O4ii | 2.809 (3) |
N1—Ag1—N3 | 149.97 (10) | N3—Ag1—O4 | 67.85 (9) |
N1—Ag1—O6 | 110.25 (10) | O6—Ag1—O4 | 154.82 (9) |
N3—Ag1—O6 | 92.51 (10) | O5—Ag1—O4 | 97.40 (9) |
N1—Ag1—O5 | 111.71 (9) | N4i—Ag2—N2 | 146.43 (10) |
N3—Ag1—O5 | 83.98 (9) | N4i—Ag2—O2 | 138.04 (9) |
O6—Ag1—O5 | 95.92 (9) | N2—Ag2—O2 | 69.03 (9) |
N1—Ag1—O4 | 84.35 (9) |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O4 | 0.93 | 2.38 | 3.061 (4) | 130 |
O5—H5B···O2ii | 0.85 | 1.94 | 2.675 (4) | 144 |
O5—H5A···O7iii | 0.85 | 1.91 | 2.756 (4) | 175 |
O6—H6A···O7iv | 0.85 | 2.00 | 2.828 (4) | 166 |
O6—H6B···O1v | 0.85 | 1.96 | 2.794 (4) | 168 |
O7—H7A···O8vi | 0.85 | 1.86 | 2.698 (4) | 168 |
O7—H7B···O3vii | 0.85 | 1.87 | 2.712 (4) | 171 |
O8—H8A···O1 | 0.85 | 2.02 | 2.867 (4) | 176 |
O8—H8B···O3 | 0.85 | 2.13 | 2.965 (4) | 166 |
O8—H8B···O4 | 0.85 | 2.44 | 3.116 (4) | 137 |
Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z; (vi) −x+1, −y, −z+1; (vii) x+1, y, z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant No. 20775047).
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2001). Inorg. Chim. Acta, 324, 46–49. Web of Science CSD CrossRef CAS Google Scholar
Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2003). Polyhedron, 22, 3043–3049. Web of Science CSD CrossRef CAS Google Scholar
Dong, Y. B., Smith, M. D. & zur Loye, H.-C. (2000). Inorg. Chem. 39, 1943–1949. Web of Science CSD CrossRef PubMed CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Garribba, E., Micera, G., Lodyga-Chruscinska, E. & Sanna, D. (2006). Eur. J. Inorg. Chem. 13, 2690–2696. Web of Science CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation,Tokyo, Japan. Google Scholar
Liu, F.-Y., Shang, R.-L., Du, L., Zhao, Q.-H. & Fang, R.-B. (2007). Acta Cryst. E63, m120–m122. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (2000). J. Coord. Chem. 49, 301–307. Web of Science CrossRef CAS Google Scholar
Shang, R.-L., Liu, F.-Y., Du, L., Li, X.-B. & Sun, B.-W. (2007). Acta Cryst. E63, m190–m192. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanase, S., Van Son, M., Van Albada, G. A., De Gelder, R., Bouwman, E. & Reedijk, J. (2006). Polyhedron, 25, 2967–2975. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the past two decades poly-carboxylic acid ligands have aroused great interest for chemists because many coordination polymers with this series of ligands have shown intriguing structures and potential applications in the optical, electric and magnetic areas. 5-methylpyrazine-2-carboxylic acid contains N and O donor atoms, which makes it a good building block for constructing functional materials. For example, Dong et al. (2000) use Cu(L)2(H2O) as a building block for constructing novel one-dimensional hetero-bimetallic Cu(II)–Ag(I) frameworks. Tanase et al. (2006) investigate the magnetic properties of Co(II), Ni(II) and Fe(II) compounds with HL, in structures where L is also involved in intricate supramolecular interactions. In this work we describe how using HL and corresponding silver(I) salts under hydrothermal conditions, a novel one-dimensional double silver(I) framework with Ag2(µ2-H2O)(H2O) cores can be isolated.
As is shown in Fig. 1, the title compound comprises two crystallographically independent silver(I) atoms, two deprotonated ligands L, one bridged coordinated water molecule, one terminal coordinated water molecule and two lattice water molecules. Ag1 is five-coordinated in the square-pyramidal geometry by two coordinated water molecules, one L nitrogen atom, one nitrogen atom and one carboxylate oxygen atom from a neighboring L. The coordinated water molecule O5 occupies the apical site and the other four atoms occupy the plane with the mean deviation of 0.0463 (1) Å. Ag1 lies above the plane at a distance of 0.3523 (2) Å. Ag2 is also five-coordinated in the square-pyramidal geometry by two L nitrogen atoms, two L carboxylate oxygen atoms and one bridged water molecule.
There exist two kinds of crystallographically different L ligands which make a dihedral angle of 13.786 (2)°. These ligands, in anti-parallel pairs, alternatively link Ag2(µ2-H2O)(H2O) cores, forming a novel one-dimensional double chain structure along the crystallographic [101] direction. The distances of Ag2—O5 and Ag2—O4 are longer than other Ag—O distances (Table 1). However all the Ag—N and Ag—O bond distances fall in the normal range.
The formation of this novel framework also reveals great potential in constructing silver(I) frameworks with HL. Solvent water molecules are key because they greatly affect the coordination geometries. Interestingly, although several Ni(II), Co(II) and Cd(II) compounds with HL have been prepared from solutions in water (Garribba et al., 2006; Shang et al.,2007; Liu et al., 2007; Ciurtin et al., 2003; Ciurtin et al., 2001; Ptasiewicz-Bak & Leciejewicz, 2000), such arrangement of different metal(II) coordination geometries induced by coordinated water molecules are not observed. This may be ascribed to the flexible and varied coordination geometries of silver atoms, i.e., a metal-directing effect.
The one-dimensional double chains of the title compound are extended into a three-dimensional supramolecular architecture by nine O—H···O hydrogen bonds (Table 2). The detailed environments of the O—H···O interactions are represented in Fig. 2. Lattice water molecule O7 acts as hydrogen bond donors to lattice water molecule O8 forming binuclear water clusters. As shown in Fig. 3, O—H···O hydrogen bonds from carboxylate oxygen atoms and lattice water molecules link the chains into a two-dimensional supramolecular sheet: O8 acts as hydrogen donor to two carboxylate oxygen atoms (O3 and O4) forming a C22(4) ring (Etter, 1990) and one carboxylate oxygen O1 of neighboring L ligands. O7 also acts as hydrogen bond acceptor to O5, O6 and acts as hydrogen bond donor to atom O3. Additionally O5 is also hydrogen bonded to O2 forming a strong O—H···O hydrogen bond, further consolidating the supramolecular sheet. Neighboring sheets are assembled into a three-dimensional supramolecular architecture by O6—H6B···O1 and O7—H7A···O8 hydrogen bonds (Fig. 3).
Besides classical O—H···O hydrogen bonds, also weaker non-classical C—H···O hydrogen bonds are observed (geometric details in Table 2), further extending the title compound into a three-dimensional supramolecular architecture. Additionally π–π stacking interactions are also be observed between two pyrazine groups with a distance of 3.643 (5) Å, which also help to stabilize the supramolecular architecture. The detailed environment of C—H···O interactions are also represented in Fig. 3.