metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,3-Bis(di­phenyl­phosphino)propane-κ2P,P′]di­iodido(perfluoro­propyl)rhodium(III) di­chloro­methane solvate

aChemistry Department, Baylor University, One Bear Place 97348, Waco, TX 76798, USA
*Correspondence e-mail: stephen_gipson@baylor.edu

(Received 25 August 2008; accepted 17 September 2008; online 27 September 2008)

The structure of the title compound, [RhI2(C3F7)(C27H26P2)]·CH2Cl2, at 110 (2) K is an unusual example of a structurally characterized square-based pyramidal alkyl complex of rhodium(III). The Rh—C bond is relatively short at 1.996 (6) Å. This short metal–carbon bond length is typical of perfluoro complexes of transition metals and illustrates the enhanced bond strength in these compounds.

Related literature

The most closely related structure is that of trans-Rh(CF2H)(PPh3)2Cl2 (Burrell et al., 1990[Burrell, A. K., Clark, G. R., Jeffrey, J. G., Rickard, C. E. F. & Roper, W. R. (1990). J. Organomet. Chem. 388, 391-408.]). For similar square-based pyramidal RhIII structures, see: Søtofte & Hjortkjær (1994[Søtofte, I. & Hjortkjær, J. (1994). Acta Chem. Scand. 48, 872-877.]); McGuiggan et al. (1980[McGuiggan, M. F., Doughty, D. H. & Pignolet, L. H. (1980). J. Organomet. Chem. 185, 241-249.]); Egglestone et al. (1977[Egglestone, D. L., Baird, M. C., Lock, C. J. L. & Turner, G. (1977). J. Chem. Soc. Dalton Trans. pp. 1576-1582.]); Shie et al. (1989[Shie, J.-Y., Lin, Y.-C. & Wang, Y. (1989). J. Organomet. Chem. 371, 383-392.]); Moloy & Petersen (1995[Moloy, K. G. & Petersen, J. L. (1995). Organometallics, 14, 2931-2936.]). For perfluoro­alkyl RhIII complexes having pseudo-octa­hedral piano-stool geometries, see: Churchill (1965[Churchill, M. R. (1965). Inorg. Chem. 12, 1734-1739.]); Hughes, Kovacik et al. (2001[Hughes, R. P., Kovacik, I., Lindner, D. C., Smith, J. M., Willemsen, S., Zhang, D., Guzei, I. A. & Rheingold, A. L. (2001). Organometallics, 20, 3190-3197.]); Hughes et al. (1997[Hughes, R. P., Lindner, D. C., Rheingold, A. L. & Liable-Sands, L. M. (1997). J. Am. Chem. Soc. 119, 11544-11545.]); Bowden et al. (2002[Bowden, A. A., Hughes, R. P., Lindner, D. C., Incarvito, C. D., Liable-Sands, L. M. & Rheingold, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 3245-3252.]); Hughes, Lindner et al. (2001[Hughes, R. P., Lindner, D. C., Smith, J. M., Zhang, D., Incarvito, C. D., Lam, K.-C., Liable-Sands, L. M., Sommer, R. D. & Rheingold, A. L. (2001). J. Chem. Soc. Dalton Trans. pp. 2270-2278.]). For more information on bonding in perfluoro­alkyl transition metal complexes, see: Gunawardhana et al. (2008[Gunawardhana, N., Gipson, S. L. & Franken, A. (2008). Inorg. Chim. Acta. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • [RhI2(C3F7)(C27H26P2)]·CH2Cl2

  • Mr = 1023.08

  • Monoclinic, P 21 /c

  • a = 14.0419 (6) Å

  • b = 15.1273 (6) Å

  • c = 17.7722 (7) Å

  • β = 110.299 (2)°

  • V = 3540.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 110 (2) K

  • 0.19 × 0.09 × 0.08 mm

Data collection
  • Bruker Nonius X8 APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.644, Tmax = 0.833

  • 56038 measured reflections

  • 6467 independent reflections

  • 5127 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.089

  • S = 1.04

  • 6467 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 1.72 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—Rh1 2.6920 (6)
I2—Rh1 2.6743 (6)
Rh1—C4 1.996 (6)
Rh1—P2 2.3185 (15)
Rh1—P1 2.3248 (15)
C4—Rh1—P2 89.82 (18)
C4—Rh1—P1 96.10 (19)
P2—Rh1—P1 92.02 (5)
C4—Rh1—I2 99.44 (18)
P2—Rh1—I2 88.04 (4)
P1—Rh1—I2 164.46 (4)
C4—Rh1—I1 103.92 (17)
P2—Rh1—I1 166.17 (4)
P1—Rh1—I1 88.17 (4)
I2—Rh1—I1 88.105 (17)

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The stucture of the title compound is shown in Fig. 1. The geometry about the rhodium atom is square-based pyramidal (sbp) with the perfluoropropyl group occupying the axial position. This geometry is similar to that of trans-Rh(CF2H)(PPh3)2Cl2 (Burrell et al., 1990), cis-Rh(COMe)(dppp)I2, where dppp = 1,3-bis(diphenylphosphino)propane (Søtofte & Hjortkjaer, 1994), cis-Rh(COPh)(dppp)Cl2 (McGuiggan et al., 1980), trans-Rh(COCH2CH2Ph)(PPh3)2Cl2 (Egglestone et al., 1977), and cis-Rh(COCH2CH3)(PPh3)2Cl2 (Shie et al., 1989), without the significant distortion toward trigonal bipyramidal geometry reported for cis-Rh(COCH3)(dppp)I2 by Moloy & Petersen (1995). The structure of the title compound includes one CH2Cl2 solvent molecule, not shown in Fig. 1. We wish to report here the structure of this unique species, though complete characterization is not possible at this time due to our inability to find suitable methods for its reliable isolation and purification.

So far as we can determine, the title compound is only the second structure of a sbp alkyl–Rh(III) complex of the class Rh(R)(phosphine)2X2 (X = halide). Numerous structures have been reported for sbp acyl complexes of this type, and there are quite a few published examples of alkyl–Rh(III) complexes with pseudo-octahedral piano stool geometries, including several perfluoroalkyl complexes of the type CpRh(Rf)(L)X (Cp = cyclopentadienyl, pentamethylcyclopentadienyl, tris(pyrazolyl)borate; Rf = perfluoroethyl, perfluoropropyl; L = CO, PMe3; X = Cl, H, H2O) (Churchill, 1965; Hughes, Kovacik et al., 2001; Hughes et al., 1997; Bowden et al., 2002; Hughes, Lindner et al., 2001). The importance of the title compound is that it sheds additional light on the bonding in perfluoroalkyl transition metal complexes. The Rh—C bond length of the title compound (1.996 (6) Å) compares favorably with that of the difluoromethyl complex (1.98 Å) and the sbp Rh(III)–acyl complexes (1.95–2.0 Å), but is somewhat shorter than those in the perfluoropropyl piano stool complexes (2.05–2.09 Å). While there has been some discussion as to whether the bond shortening observed for perfluoroalkyl and acyl ligands can be attributed to metal to ligand back-bonding (Moloy & Petersen, 1995), this is clearly not the case in comparing perfluoropropyl–Rh(III) complexes with sbp and piano stool geometries. Unfortunately, there are no reported structures for hydrocarbon Rh(III)–alkyl complexes with which to compare the title compound. The shortening of the metal–carbon bonds in perfluoroalkyl transition metal complexes, and the concomitant strengthening of this bond, has previously been explained in terms of electrostatic effects caused by the relatively large positive charge on the α-carbon of the perfluoroalkyl group (Gunawardhana et al., 2008).

Related literature top

The most closely related structure is that of trans-Rh(CF2H)(PPh3)2Cl2 (Burrell et al., 1990). For similar square-based pyramidal RhIII structures, see: Søtofte & Hjortkjaer (1994); McGuiggan et al. (1980); Egglestone et al. (1977); Shie et al. (1989); Moloy & Petersen (1995). For perfluoroalkyl RhIII complexes having pseudo-octahedral piano-stool geometries, see: Churchill (1965); Hughes, Kovacik et al. (2001); Hughes et al. (1997); Bowden et al. (2002); Hughes, Lindner et al. (2001). For more information on bonding in perfluoroalkyl transition metal complexes, see: Gunawardhana et al. (2008).

Experimental top

Chlorodicarbonylrhodium(I) dimer, [Rh(CO)2Cl]2, (Strem Chemicals, 0.259 g, 1.34 mmol) was taken in a 100 ml round bottom flask into a nitrogen-atmosphere glove box and 12.5 ml of acetone was added. Then a solution of 0.216 g (1.44 mmol) of NaI in 7.5 ml of acetone was added and the mixture was stirred for about one hour. After that a solution of 1,3-bis(diphenylphosphino)propane (Strem Chemicals, 0.590 g, 1.43 mmol) in 7.5 ml of acetone was added. After about 3 h the round bottom flask was taken out of the glove box and the solution was concentrated under reduced pressure, forming a yellow precipitate of Rh(CO)(dppp)I. This product was collected by filtration, washed with methanol and dried overnight in a vacuum oven at room temperature. A portion of this Rh(CO)(dppp)I (0.236 g, 0.35 mmol), NaI (0.358 g, 2.39 mmol) and heptafluorobutyryl chloride, C3F7COCl, (Acros Organics, 0.137 g, 0.56 mmol) were added to 10 ml of methylene chloride in a 100 ml Schlenk flask and their reaction was monitored by IR. Initially peaks were observed at 2056, 1996, 1789 and 1695 cm-1. The solution was stirred until only an IR absorption at 2075 cm-1 remained. The solution was then filtered, the filtrate was concentrated under reduced pressure and a precipitate was obtained by the addition of hexane. NMR spectroscopy showed the precipitate to be impure and attempts at purification by chromatography failed. Finally, a small amount of the impure product was dissolved in methylene chloride, layered with hexanes and stored in a freezer for about four months. Single crystals of the title compound resulted from this treatment.

Refinement top

All of the hydrogen atoms were set riding on their parent carbon atoms in calculated positions and were assigned fixed isotropic thermal parameters calculated as Uiso(H) = 1.2Uiso(C). Phenyl-H atoms were set riding with C—H = 0.95 Å and dppp bridge H atoms with C—H = 0.99 Å. The residual density extrema result from a very slight disorder in the C3F7 ligand and are located in its vicinity.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2 (Bruker, 2003); data reduction: APEX2 (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The phenyl rings and the solvent CH2Cl2 have been omitted for clarity.
[1,3-Bis(diphenylphosphino)propane- κ2P,P']diiodido(perfluoropropyl)rhodium(III) dichloromethane solvate top
Crystal data top
[RhI2(C3F7)(C27H26P2)]·CH2Cl2F(000) = 1968
Mr = 1023.08Dx = 1.919 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7865 reflections
a = 14.0419 (6) Åθ = 2.4–23.9°
b = 15.1273 (6) ŵ = 2.53 mm1
c = 17.7722 (7) ÅT = 110 K
β = 110.299 (2)°Needle, orange
V = 3540.6 (2) Å30.19 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
6467 independent reflections
Radiation source: fine-focus sealed tube5127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.644, Tmax = 0.833k = 1818
56038 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0249P)2 + 19.6317P]
where P = (Fo2 + 2Fc2)/3
6467 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 1.72 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[RhI2(C3F7)(C27H26P2)]·CH2Cl2V = 3540.6 (2) Å3
Mr = 1023.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0419 (6) ŵ = 2.53 mm1
b = 15.1273 (6) ÅT = 110 K
c = 17.7722 (7) Å0.19 × 0.09 × 0.08 mm
β = 110.299 (2)°
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
6467 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5127 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.833Rint = 0.077
56038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0249P)2 + 19.6317P]
where P = (Fo2 + 2Fc2)/3
6467 reflectionsΔρmax = 1.72 e Å3
406 parametersΔρmin = 0.89 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.40578 (3)0.70275 (3)0.16010 (2)0.02613 (11)
I20.17802 (3)0.84549 (3)0.06878 (2)0.02804 (11)
Rh10.26222 (3)0.76934 (3)0.21248 (3)0.01917 (11)
Cl10.21560 (15)0.72551 (15)0.03714 (13)0.0578 (5)
Cl20.09542 (19)0.81404 (16)0.12019 (13)0.0693 (6)
P10.36657 (11)0.73432 (10)0.34229 (9)0.0210 (3)
P20.15974 (11)0.85820 (10)0.25875 (9)0.0222 (3)
F10.1605 (3)0.6371 (3)0.2698 (2)0.0382 (9)
F20.0631 (3)0.6945 (3)0.1569 (3)0.0465 (10)
F30.2602 (3)0.5426 (3)0.1897 (3)0.0515 (11)
F40.1739 (3)0.6128 (3)0.0763 (2)0.0405 (10)
F50.0728 (3)0.4927 (3)0.1982 (3)0.0567 (12)
F60.1130 (3)0.4474 (3)0.0965 (3)0.0611 (12)
F70.0005 (3)0.5454 (3)0.0795 (3)0.0596 (12)
C10.3056 (5)0.7314 (4)0.4179 (3)0.0273 (14)
H1A0.25950.67970.40690.033*
H1B0.35870.72200.47100.033*
C20.2453 (5)0.8132 (4)0.4224 (3)0.0310 (15)
H2A0.23080.81160.47310.037*
H2B0.28740.86620.42390.037*
C30.1458 (5)0.8222 (4)0.3528 (3)0.0303 (15)
H3A0.10220.86520.36770.036*
H3B0.11050.76440.34380.036*
C40.1655 (5)0.6691 (4)0.2002 (4)0.0308 (15)
C50.1734 (5)0.5873 (5)0.1490 (4)0.0410 (17)
C60.0904 (6)0.5178 (5)0.1333 (5)0.0447 (19)
C110.4393 (4)0.6312 (4)0.3639 (3)0.0240 (13)
C120.5436 (4)0.6318 (4)0.3805 (3)0.0256 (13)
H120.57740.68560.37840.031*
C130.5984 (5)0.5530 (4)0.4002 (4)0.0303 (15)
H130.67000.55370.41330.036*
C140.5499 (5)0.4747 (4)0.4007 (4)0.0332 (15)
H140.58770.42130.41300.040*
C150.4454 (5)0.4732 (4)0.3834 (4)0.0378 (16)
H150.41170.41890.38410.045*
C160.3908 (5)0.5514 (4)0.3652 (4)0.0313 (15)
H160.31950.55050.35340.038*
C210.4605 (4)0.8225 (4)0.3763 (3)0.0226 (13)
C220.4951 (5)0.8681 (4)0.3224 (4)0.0295 (14)
H220.47000.85210.26730.035*
C230.5641 (5)0.9351 (4)0.3471 (4)0.0370 (16)
H230.58690.96480.30940.044*
C240.6008 (5)0.9598 (4)0.4270 (4)0.0371 (16)
H240.64841.00670.44410.044*
C250.5686 (5)0.9164 (5)0.4810 (4)0.0389 (17)
H250.59420.93290.53600.047*
C260.4990 (5)0.8486 (4)0.4562 (3)0.0324 (15)
H260.47690.81920.49450.039*
C310.2158 (4)0.9679 (4)0.2814 (3)0.0240 (13)
C320.2921 (5)0.9957 (4)0.2548 (4)0.0289 (14)
H320.31730.95630.22460.035*
C330.3326 (5)1.0796 (5)0.2713 (4)0.0364 (16)
H330.38561.09730.25280.044*
C340.2961 (5)1.1377 (4)0.3145 (4)0.0345 (15)
H340.32431.19530.32650.041*
C350.2180 (5)1.1117 (5)0.3404 (4)0.0396 (17)
H350.19121.15200.36880.048*
C360.1792 (5)1.0274 (4)0.3249 (4)0.0335 (15)
H360.12691.00950.34400.040*
C410.0291 (4)0.8820 (4)0.1963 (3)0.0226 (13)
C420.0519 (5)0.8303 (4)0.1997 (4)0.0287 (14)
H420.03880.77950.23330.034*
C430.1512 (5)0.8523 (5)0.1544 (4)0.0389 (17)
H430.20570.81700.15740.047*
C440.1708 (5)0.9251 (5)0.1052 (4)0.0395 (17)
H440.23870.93980.07360.047*
C450.0917 (5)0.9766 (5)0.1018 (4)0.0372 (16)
H450.10571.02710.06800.045*
C460.0080 (5)0.9563 (4)0.1470 (4)0.0282 (14)
H460.06170.99280.14430.034*
C510.0967 (5)0.7705 (5)0.0287 (4)0.0471 (19)
H51A0.04420.72390.01020.057*
H51B0.07930.81790.01220.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0243 (2)0.0355 (2)0.0208 (2)0.00564 (17)0.01062 (16)0.00196 (16)
I20.0282 (2)0.0369 (2)0.0225 (2)0.00667 (18)0.01317 (17)0.01052 (17)
Rh10.0193 (2)0.0227 (2)0.0189 (2)0.00168 (19)0.01094 (19)0.00419 (18)
Cl10.0378 (11)0.0687 (14)0.0676 (14)0.0103 (10)0.0192 (10)0.0100 (11)
Cl20.0813 (16)0.0722 (15)0.0477 (12)0.0137 (13)0.0138 (12)0.0155 (11)
P10.0232 (8)0.0236 (8)0.0193 (8)0.0041 (6)0.0113 (6)0.0057 (6)
P20.0225 (8)0.0263 (8)0.0219 (8)0.0065 (6)0.0130 (7)0.0068 (6)
F10.036 (2)0.049 (2)0.033 (2)0.0120 (18)0.0163 (17)0.0093 (17)
F20.037 (2)0.043 (2)0.066 (3)0.0145 (19)0.027 (2)0.009 (2)
F30.044 (3)0.052 (3)0.057 (3)0.025 (2)0.015 (2)0.002 (2)
F40.047 (2)0.047 (2)0.029 (2)0.0219 (19)0.0155 (18)0.0021 (17)
F50.073 (3)0.051 (3)0.055 (3)0.029 (2)0.033 (2)0.005 (2)
F60.067 (3)0.044 (3)0.079 (3)0.004 (2)0.034 (3)0.018 (2)
F70.039 (3)0.066 (3)0.075 (3)0.003 (2)0.020 (2)0.002 (2)
C10.029 (3)0.039 (4)0.018 (3)0.011 (3)0.014 (3)0.008 (3)
C20.039 (4)0.039 (4)0.024 (3)0.017 (3)0.021 (3)0.016 (3)
C30.034 (4)0.040 (4)0.025 (3)0.017 (3)0.021 (3)0.011 (3)
C40.027 (3)0.030 (4)0.043 (4)0.007 (3)0.022 (3)0.015 (3)
C50.045 (4)0.045 (4)0.037 (4)0.007 (4)0.019 (3)0.003 (3)
C60.052 (5)0.037 (4)0.060 (5)0.005 (4)0.038 (4)0.010 (4)
C110.026 (3)0.027 (3)0.022 (3)0.006 (3)0.012 (3)0.003 (2)
C120.026 (3)0.031 (3)0.022 (3)0.005 (3)0.012 (3)0.003 (3)
C130.029 (4)0.037 (4)0.025 (3)0.009 (3)0.011 (3)0.008 (3)
C140.045 (4)0.031 (4)0.029 (4)0.012 (3)0.020 (3)0.006 (3)
C150.048 (4)0.025 (4)0.043 (4)0.004 (3)0.019 (3)0.010 (3)
C160.030 (4)0.035 (4)0.034 (4)0.003 (3)0.016 (3)0.008 (3)
C210.025 (3)0.022 (3)0.021 (3)0.009 (2)0.009 (3)0.002 (2)
C220.029 (3)0.037 (4)0.019 (3)0.006 (3)0.004 (3)0.004 (3)
C230.040 (4)0.036 (4)0.036 (4)0.009 (3)0.015 (3)0.002 (3)
C240.030 (4)0.030 (4)0.044 (4)0.003 (3)0.004 (3)0.009 (3)
C250.043 (4)0.038 (4)0.025 (4)0.008 (3)0.002 (3)0.007 (3)
C260.043 (4)0.035 (4)0.018 (3)0.006 (3)0.009 (3)0.003 (3)
C310.026 (3)0.028 (3)0.020 (3)0.005 (3)0.011 (3)0.005 (2)
C320.034 (4)0.028 (3)0.027 (3)0.001 (3)0.014 (3)0.002 (3)
C330.041 (4)0.041 (4)0.033 (4)0.005 (3)0.018 (3)0.001 (3)
C340.032 (4)0.034 (4)0.034 (4)0.001 (3)0.008 (3)0.005 (3)
C350.040 (4)0.042 (4)0.042 (4)0.002 (3)0.022 (3)0.009 (3)
C360.031 (4)0.039 (4)0.038 (4)0.002 (3)0.021 (3)0.004 (3)
C410.020 (3)0.025 (3)0.023 (3)0.003 (2)0.008 (3)0.002 (2)
C420.033 (4)0.021 (3)0.037 (4)0.001 (3)0.018 (3)0.003 (3)
C430.033 (4)0.039 (4)0.047 (4)0.004 (3)0.017 (3)0.007 (3)
C440.025 (4)0.047 (5)0.041 (4)0.006 (3)0.006 (3)0.006 (3)
C450.038 (4)0.039 (4)0.032 (4)0.011 (3)0.009 (3)0.008 (3)
C460.025 (3)0.031 (4)0.030 (3)0.004 (3)0.011 (3)0.011 (3)
C510.032 (4)0.064 (5)0.041 (4)0.009 (4)0.007 (3)0.001 (4)
Geometric parameters (Å, º) top
I1—Rh12.6920 (6)C15—C161.386 (9)
I2—Rh12.6743 (6)C15—H150.9500
Rh1—C41.996 (6)C16—H160.9500
Rh1—P22.3185 (15)C21—C261.391 (8)
Rh1—P12.3248 (15)C21—C221.396 (8)
Cl1—C511.760 (7)C22—C231.365 (9)
Cl2—C511.761 (7)C22—H220.9500
P1—C211.826 (6)C23—C241.383 (9)
P1—C11.827 (5)C23—H230.9500
P1—C111.830 (6)C24—C251.364 (9)
P2—C411.821 (6)C24—H240.9500
P2—C311.821 (6)C25—C261.378 (9)
P2—C31.832 (6)C25—H250.9500
F1—C41.353 (7)C26—H260.9500
F2—C41.428 (7)C31—C321.378 (8)
F3—C51.362 (8)C31—C361.394 (8)
F4—C51.351 (7)C32—C331.380 (9)
F5—C61.317 (8)C32—H320.9500
F6—C61.345 (8)C33—C341.379 (9)
F7—C61.367 (9)C33—H330.9500
C1—C21.518 (8)C34—C351.384 (9)
C1—H1A0.9900C34—H340.9500
C1—H1B0.9900C35—C361.376 (9)
C2—C31.517 (8)C35—H350.9500
C2—H2A0.9900C36—H360.9500
C2—H2B0.9900C41—C461.392 (8)
C3—H3A0.9900C41—C421.399 (8)
C3—H3B0.9900C42—C431.387 (9)
C4—C51.562 (9)C42—H420.9500
C5—C61.522 (10)C43—C441.373 (10)
C11—C121.390 (8)C43—H430.9500
C11—C161.390 (8)C44—C451.375 (9)
C12—C131.397 (8)C44—H440.9500
C12—H120.9500C45—C461.385 (8)
C13—C141.368 (9)C45—H450.9500
C13—H130.9500C46—H460.9500
C14—C151.391 (9)C51—H51A0.9900
C14—H140.9500C51—H51B0.9900
C4—Rh1—P289.82 (18)C13—C14—H14119.9
C4—Rh1—P196.10 (19)C15—C14—H14119.9
P2—Rh1—P192.02 (5)C16—C15—C14119.5 (6)
C4—Rh1—I299.44 (18)C16—C15—H15120.2
P2—Rh1—I288.04 (4)C14—C15—H15120.2
P1—Rh1—I2164.46 (4)C15—C16—C11120.8 (6)
C4—Rh1—I1103.92 (17)C15—C16—H16119.6
P2—Rh1—I1166.17 (4)C11—C16—H16119.6
P1—Rh1—I188.17 (4)C26—C21—C22117.1 (6)
I2—Rh1—I188.105 (17)C26—C21—P1121.7 (5)
C21—P1—C1104.1 (3)C22—C21—P1121.1 (4)
C21—P1—C11105.5 (3)C23—C22—C21121.5 (6)
C1—P1—C11101.2 (3)C23—C22—H22119.2
C21—P1—Rh1107.23 (19)C21—C22—H22119.2
C1—P1—Rh1116.1 (2)C22—C23—C24120.0 (6)
C11—P1—Rh1121.06 (19)C22—C23—H23120.0
C41—P2—C31102.8 (3)C24—C23—H23120.0
C41—P2—C3102.2 (3)C25—C24—C23119.7 (6)
C31—P2—C3104.1 (3)C25—C24—H24120.1
C41—P2—Rh1121.14 (19)C23—C24—H24120.1
C31—P2—Rh1109.46 (19)C24—C25—C26120.3 (6)
C3—P2—Rh1115.3 (2)C24—C25—H25119.8
C2—C1—P1115.6 (4)C26—C25—H25119.8
C2—C1—H1A108.4C25—C26—C21121.2 (6)
P1—C1—H1A108.4C25—C26—H26119.4
C2—C1—H1B108.4C21—C26—H26119.4
P1—C1—H1B108.4C32—C31—C36118.2 (6)
H1A—C1—H1B107.5C32—C31—P2122.0 (5)
C3—C2—C1113.8 (5)C36—C31—P2119.8 (5)
C3—C2—H2A108.8C31—C32—C33121.3 (6)
C1—C2—H2A108.8C31—C32—H32119.3
C3—C2—H2B108.8C33—C32—H32119.3
C1—C2—H2B108.8C34—C33—C32119.9 (6)
H2A—C2—H2B107.7C34—C33—H33120.0
C2—C3—P2114.3 (4)C32—C33—H33120.0
C2—C3—H3A108.7C33—C34—C35119.6 (6)
P2—C3—H3A108.7C33—C34—H34120.2
C2—C3—H3B108.7C35—C34—H34120.2
P2—C3—H3B108.7C36—C35—C34120.1 (6)
H3A—C3—H3B107.6C36—C35—H35120.0
F1—C4—F2103.1 (4)C34—C35—H35120.0
F1—C4—C5106.6 (5)C35—C36—C31120.8 (6)
F2—C4—C599.3 (5)C35—C36—H36119.6
F1—C4—Rh1114.9 (4)C31—C36—H36119.6
F2—C4—Rh1112.0 (4)C46—C41—C42118.7 (6)
C5—C4—Rh1118.8 (4)C46—C41—P2119.5 (4)
F4—C5—F3110.5 (5)C42—C41—P2121.7 (5)
F4—C5—C6106.2 (6)C43—C42—C41120.6 (6)
F3—C5—C6103.9 (6)C43—C42—H42119.7
F4—C5—C4110.9 (5)C41—C42—H42119.7
F3—C5—C4108.4 (5)C44—C43—C42120.1 (6)
C6—C5—C4116.7 (6)C44—C43—H43120.0
F5—C6—F6110.1 (6)C42—C43—H43120.0
F5—C6—F7106.6 (6)C43—C44—C45119.7 (6)
F6—C6—F7102.9 (6)C43—C44—H44120.1
F5—C6—C5113.8 (6)C45—C44—H44120.1
F6—C6—C5110.0 (6)C44—C45—C46121.2 (6)
F7—C6—C5112.8 (6)C44—C45—H45119.4
C12—C11—C16119.2 (6)C46—C45—H45119.4
C12—C11—P1120.6 (5)C45—C46—C41119.7 (6)
C16—C11—P1120.2 (5)C45—C46—H46120.2
C11—C12—C13119.8 (6)C41—C46—H46120.2
C11—C12—H12120.1Cl1—C51—Cl2112.3 (4)
C13—C12—H12120.1Cl1—C51—H51A109.2
C14—C13—C12120.5 (6)Cl2—C51—H51A109.2
C14—C13—H13119.7Cl1—C51—H51B109.2
C12—C13—H13119.7Cl2—C51—H51B109.2
C13—C14—C15120.2 (6)H51A—C51—H51B107.9

Experimental details

Crystal data
Chemical formula[RhI2(C3F7)(C27H26P2)]·CH2Cl2
Mr1023.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)14.0419 (6), 15.1273 (6), 17.7722 (7)
β (°) 110.299 (2)
V3)3540.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.19 × 0.09 × 0.08
Data collection
DiffractometerBruker Nonius X8 APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.644, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
56038, 6467, 5127
Rint0.077
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 1.04
No. of reflections6467
No. of parameters406
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0249P)2 + 19.6317P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.72, 0.89

Computer programs: APEX2 (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
I1—Rh12.6920 (6)Rh1—P22.3185 (15)
I2—Rh12.6743 (6)Rh1—P12.3248 (15)
Rh1—C41.996 (6)
C4—Rh1—P289.82 (18)P1—Rh1—I2164.46 (4)
C4—Rh1—P196.10 (19)C4—Rh1—I1103.92 (17)
P2—Rh1—P192.02 (5)P2—Rh1—I1166.17 (4)
C4—Rh1—I299.44 (18)P1—Rh1—I188.17 (4)
P2—Rh1—I288.04 (4)I2—Rh1—I188.105 (17)
 

Acknowledgements

We thank the Robert A. Welch Foundation (grant No. AA-1083) and Baylor University, in part, for support of this research.

References

First citationBowden, A. A., Hughes, R. P., Lindner, D. C., Incarvito, C. D., Liable-Sands, L. M. & Rheingold, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 3245–3252.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2003). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrell, A. K., Clark, G. R., Jeffrey, J. G., Rickard, C. E. F. & Roper, W. R. (1990). J. Organomet. Chem. 388, 391–408.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. (1965). Inorg. Chem. 12, 1734–1739.  CSD CrossRef Web of Science Google Scholar
First citationEgglestone, D. L., Baird, M. C., Lock, C. J. L. & Turner, G. (1977). J. Chem. Soc. Dalton Trans. pp. 1576–1582.  CSD CrossRef Web of Science Google Scholar
First citationGunawardhana, N., Gipson, S. L. & Franken, A. (2008). Inorg. Chim. Acta. In the press.  Google Scholar
First citationHughes, R. P., Kovacik, I., Lindner, D. C., Smith, J. M., Willemsen, S., Zhang, D., Guzei, I. A. & Rheingold, A. L. (2001). Organometallics, 20, 3190–3197.  Web of Science CSD CrossRef CAS Google Scholar
First citationHughes, R. P., Lindner, D. C., Rheingold, A. L. & Liable-Sands, L. M. (1997). J. Am. Chem. Soc. 119, 11544–11545.  CSD CrossRef CAS Web of Science Google Scholar
First citationHughes, R. P., Lindner, D. C., Smith, J. M., Zhang, D., Incarvito, C. D., Lam, K.-C., Liable-Sands, L. M., Sommer, R. D. & Rheingold, A. L. (2001). J. Chem. Soc. Dalton Trans. pp. 2270–2278.  Web of Science CSD CrossRef Google Scholar
First citationMcGuiggan, M. F., Doughty, D. H. & Pignolet, L. H. (1980). J. Organomet. Chem. 185, 241–249.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoloy, K. G. & Petersen, J. L. (1995). Organometallics, 14, 2931–2936.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShie, J.-Y., Lin, Y.-C. & Wang, Y. (1989). J. Organomet. Chem. 371, 383–392.  CSD CrossRef CAS Web of Science Google Scholar
First citationSøtofte, I. & Hjortkjær, J. (1994). Acta Chem. Scand. 48, 872–877.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds