metal-organic compounds
[1,3-Bis(diphenylphosphino)propane-κ2P,P′]diiodido(perfluoropropyl)rhodium(III) dichloromethane solvate
aChemistry Department, Baylor University, One Bear Place 97348, Waco, TX 76798, USA
*Correspondence e-mail: stephen_gipson@baylor.edu
The structure of the title compound, [RhI2(C3F7)(C27H26P2)]·CH2Cl2, at 110 (2) K is an unusual example of a structurally characterized square-based pyramidal alkyl complex of rhodium(III). The Rh—C bond is relatively short at 1.996 (6) Å. This short metal–carbon bond length is typical of perfluoro complexes of transition metals and illustrates the enhanced bond strength in these compounds.
Related literature
The most closely related structure is that of trans-Rh(CF2H)(PPh3)2Cl2 (Burrell et al., 1990). For similar square-based pyramidal RhIII structures, see: Søtofte & Hjortkjær (1994); McGuiggan et al. (1980); Egglestone et al. (1977); Shie et al. (1989); Moloy & Petersen (1995). For perfluoroalkyl RhIII complexes having pseudo-octahedral piano-stool geometries, see: Churchill (1965); Hughes, Kovacik et al. (2001); Hughes et al. (1997); Bowden et al. (2002); Hughes, Lindner et al. (2001). For more information on bonding in perfluoroalkyl transition metal complexes, see: Gunawardhana et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2003); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808029978/kj2099sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029978/kj2099Isup2.hkl
Chlorodicarbonylrhodium(I) dimer, [Rh(CO)2Cl]2, (Strem Chemicals, 0.259 g, 1.34 mmol) was taken in a 100 ml round bottom flask into a nitrogen-atmosphere
and 12.5 ml of acetone was added. Then a solution of 0.216 g (1.44 mmol) of NaI in 7.5 ml of acetone was added and the mixture was stirred for about one hour. After that a solution of 1,3-bis(diphenylphosphino)propane (Strem Chemicals, 0.590 g, 1.43 mmol) in 7.5 ml of acetone was added. After about 3 h the round bottom flask was taken out of the and the solution was concentrated under reduced pressure, forming a yellow precipitate of Rh(CO)(dppp)I. This product was collected by filtration, washed with methanol and dried overnight in a vacuum oven at room temperature. A portion of this Rh(CO)(dppp)I (0.236 g, 0.35 mmol), NaI (0.358 g, 2.39 mmol) and heptafluorobutyryl chloride, C3F7COCl, (Acros Organics, 0.137 g, 0.56 mmol) were added to 10 ml of methylene chloride in a 100 ml Schlenk flask and their reaction was monitored by IR. Initially peaks were observed at 2056, 1996, 1789 and 1695 cm-1. The solution was stirred until only an IR absorption at 2075 cm-1 remained. The solution was then filtered, the filtrate was concentrated under reduced pressure and a precipitate was obtained by the addition of hexane. NMR spectroscopy showed the precipitate to be impure and attempts at purification by failed. Finally, a small amount of the impure product was dissolved in methylene chloride, layered with hexanes and stored in a freezer for about four months. Single crystals of the title compound resulted from this treatment.All of the hydrogen atoms were set riding on their parent carbon atoms in calculated positions and were assigned fixed isotropic thermal parameters calculated as Uiso(H) = 1.2Uiso(C). Phenyl-H atoms were set riding with C—H = 0.95 Å and dppp bridge H atoms with C—H = 0.99 Å. The residual density extrema result from a very slight disorder in the C3F7 ligand and are located in its vicinity.
Data collection: APEX2 (Bruker, 2003); cell
APEX2 (Bruker, 2003); data reduction: APEX2 (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[RhI2(C3F7)(C27H26P2)]·CH2Cl2 | F(000) = 1968 |
Mr = 1023.08 | Dx = 1.919 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7865 reflections |
a = 14.0419 (6) Å | θ = 2.4–23.9° |
b = 15.1273 (6) Å | µ = 2.53 mm−1 |
c = 17.7722 (7) Å | T = 110 K |
β = 110.299 (2)° | Needle, orange |
V = 3540.6 (2) Å3 | 0.19 × 0.09 × 0.08 mm |
Z = 4 |
Bruker Nonius X8 APEX CCD area-detector diffractometer | 6467 independent reflections |
Radiation source: fine-focus sealed tube | 5127 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
ϕ and ω scans | θmax = 25.4°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −16→16 |
Tmin = 0.644, Tmax = 0.833 | k = −18→18 |
56038 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0249P)2 + 19.6317P] where P = (Fo2 + 2Fc2)/3 |
6467 reflections | (Δ/σ)max = 0.001 |
406 parameters | Δρmax = 1.72 e Å−3 |
0 restraints | Δρmin = −0.89 e Å−3 |
[RhI2(C3F7)(C27H26P2)]·CH2Cl2 | V = 3540.6 (2) Å3 |
Mr = 1023.08 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.0419 (6) Å | µ = 2.53 mm−1 |
b = 15.1273 (6) Å | T = 110 K |
c = 17.7722 (7) Å | 0.19 × 0.09 × 0.08 mm |
β = 110.299 (2)° |
Bruker Nonius X8 APEX CCD area-detector diffractometer | 6467 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 5127 reflections with I > 2σ(I) |
Tmin = 0.644, Tmax = 0.833 | Rint = 0.077 |
56038 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0249P)2 + 19.6317P] where P = (Fo2 + 2Fc2)/3 |
6467 reflections | Δρmax = 1.72 e Å−3 |
406 parameters | Δρmin = −0.89 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.40578 (3) | 0.70275 (3) | 0.16010 (2) | 0.02613 (11) | |
I2 | 0.17802 (3) | 0.84549 (3) | 0.06878 (2) | 0.02804 (11) | |
Rh1 | 0.26222 (3) | 0.76934 (3) | 0.21248 (3) | 0.01917 (11) | |
Cl1 | −0.21560 (15) | 0.72551 (15) | −0.03714 (13) | 0.0578 (5) | |
Cl2 | −0.09542 (19) | 0.81404 (16) | −0.12019 (13) | 0.0693 (6) | |
P1 | 0.36657 (11) | 0.73432 (10) | 0.34229 (9) | 0.0210 (3) | |
P2 | 0.15974 (11) | 0.85820 (10) | 0.25875 (9) | 0.0222 (3) | |
F1 | 0.1605 (3) | 0.6371 (3) | 0.2698 (2) | 0.0382 (9) | |
F2 | 0.0631 (3) | 0.6945 (3) | 0.1569 (3) | 0.0465 (10) | |
F3 | 0.2602 (3) | 0.5426 (3) | 0.1897 (3) | 0.0515 (11) | |
F4 | 0.1739 (3) | 0.6128 (3) | 0.0763 (2) | 0.0405 (10) | |
F5 | 0.0728 (3) | 0.4927 (3) | 0.1982 (3) | 0.0567 (12) | |
F6 | 0.1130 (3) | 0.4474 (3) | 0.0965 (3) | 0.0611 (12) | |
F7 | −0.0005 (3) | 0.5454 (3) | 0.0795 (3) | 0.0596 (12) | |
C1 | 0.3056 (5) | 0.7314 (4) | 0.4179 (3) | 0.0273 (14) | |
H1A | 0.2595 | 0.6797 | 0.4069 | 0.033* | |
H1B | 0.3587 | 0.7220 | 0.4710 | 0.033* | |
C2 | 0.2453 (5) | 0.8132 (4) | 0.4224 (3) | 0.0310 (15) | |
H2A | 0.2308 | 0.8116 | 0.4731 | 0.037* | |
H2B | 0.2874 | 0.8662 | 0.4239 | 0.037* | |
C3 | 0.1458 (5) | 0.8222 (4) | 0.3528 (3) | 0.0303 (15) | |
H3A | 0.1022 | 0.8652 | 0.3677 | 0.036* | |
H3B | 0.1105 | 0.7644 | 0.3438 | 0.036* | |
C4 | 0.1655 (5) | 0.6691 (4) | 0.2002 (4) | 0.0308 (15) | |
C5 | 0.1734 (5) | 0.5873 (5) | 0.1490 (4) | 0.0410 (17) | |
C6 | 0.0904 (6) | 0.5178 (5) | 0.1333 (5) | 0.0447 (19) | |
C11 | 0.4393 (4) | 0.6312 (4) | 0.3639 (3) | 0.0240 (13) | |
C12 | 0.5436 (4) | 0.6318 (4) | 0.3805 (3) | 0.0256 (13) | |
H12 | 0.5774 | 0.6856 | 0.3784 | 0.031* | |
C13 | 0.5984 (5) | 0.5530 (4) | 0.4002 (4) | 0.0303 (15) | |
H13 | 0.6700 | 0.5537 | 0.4133 | 0.036* | |
C14 | 0.5499 (5) | 0.4747 (4) | 0.4007 (4) | 0.0332 (15) | |
H14 | 0.5877 | 0.4213 | 0.4130 | 0.040* | |
C15 | 0.4454 (5) | 0.4732 (4) | 0.3834 (4) | 0.0378 (16) | |
H15 | 0.4117 | 0.4189 | 0.3841 | 0.045* | |
C16 | 0.3908 (5) | 0.5514 (4) | 0.3652 (4) | 0.0313 (15) | |
H16 | 0.3195 | 0.5505 | 0.3534 | 0.038* | |
C21 | 0.4605 (4) | 0.8225 (4) | 0.3763 (3) | 0.0226 (13) | |
C22 | 0.4951 (5) | 0.8681 (4) | 0.3224 (4) | 0.0295 (14) | |
H22 | 0.4700 | 0.8521 | 0.2673 | 0.035* | |
C23 | 0.5641 (5) | 0.9351 (4) | 0.3471 (4) | 0.0370 (16) | |
H23 | 0.5869 | 0.9648 | 0.3094 | 0.044* | |
C24 | 0.6008 (5) | 0.9598 (4) | 0.4270 (4) | 0.0371 (16) | |
H24 | 0.6484 | 1.0067 | 0.4441 | 0.044* | |
C25 | 0.5686 (5) | 0.9164 (5) | 0.4810 (4) | 0.0389 (17) | |
H25 | 0.5942 | 0.9329 | 0.5360 | 0.047* | |
C26 | 0.4990 (5) | 0.8486 (4) | 0.4562 (3) | 0.0324 (15) | |
H26 | 0.4769 | 0.8192 | 0.4945 | 0.039* | |
C31 | 0.2158 (4) | 0.9679 (4) | 0.2814 (3) | 0.0240 (13) | |
C32 | 0.2921 (5) | 0.9957 (4) | 0.2548 (4) | 0.0289 (14) | |
H32 | 0.3173 | 0.9563 | 0.2246 | 0.035* | |
C33 | 0.3326 (5) | 1.0796 (5) | 0.2713 (4) | 0.0364 (16) | |
H33 | 0.3856 | 1.0973 | 0.2528 | 0.044* | |
C34 | 0.2961 (5) | 1.1377 (4) | 0.3145 (4) | 0.0345 (15) | |
H34 | 0.3243 | 1.1953 | 0.3265 | 0.041* | |
C35 | 0.2180 (5) | 1.1117 (5) | 0.3404 (4) | 0.0396 (17) | |
H35 | 0.1912 | 1.1520 | 0.3688 | 0.048* | |
C36 | 0.1792 (5) | 1.0274 (4) | 0.3249 (4) | 0.0335 (15) | |
H36 | 0.1269 | 1.0095 | 0.3440 | 0.040* | |
C41 | 0.0291 (4) | 0.8820 (4) | 0.1963 (3) | 0.0226 (13) | |
C42 | −0.0519 (5) | 0.8303 (4) | 0.1997 (4) | 0.0287 (14) | |
H42 | −0.0388 | 0.7795 | 0.2333 | 0.034* | |
C43 | −0.1512 (5) | 0.8523 (5) | 0.1544 (4) | 0.0389 (17) | |
H43 | −0.2057 | 0.8170 | 0.1574 | 0.047* | |
C44 | −0.1708 (5) | 0.9251 (5) | 0.1052 (4) | 0.0395 (17) | |
H44 | −0.2387 | 0.9398 | 0.0736 | 0.047* | |
C45 | −0.0917 (5) | 0.9766 (5) | 0.1018 (4) | 0.0372 (16) | |
H45 | −0.1057 | 1.0271 | 0.0680 | 0.045* | |
C46 | 0.0080 (5) | 0.9563 (4) | 0.1470 (4) | 0.0282 (14) | |
H46 | 0.0617 | 0.9928 | 0.1443 | 0.034* | |
C51 | −0.0967 (5) | 0.7705 (5) | −0.0287 (4) | 0.0471 (19) | |
H51A | −0.0442 | 0.7239 | −0.0102 | 0.057* | |
H51B | −0.0793 | 0.8179 | 0.0122 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0243 (2) | 0.0355 (2) | 0.0208 (2) | 0.00564 (17) | 0.01062 (16) | −0.00196 (16) |
I2 | 0.0282 (2) | 0.0369 (2) | 0.0225 (2) | 0.00667 (18) | 0.01317 (17) | 0.01052 (17) |
Rh1 | 0.0193 (2) | 0.0227 (2) | 0.0189 (2) | 0.00168 (19) | 0.01094 (19) | 0.00419 (18) |
Cl1 | 0.0378 (11) | 0.0687 (14) | 0.0676 (14) | −0.0103 (10) | 0.0192 (10) | −0.0100 (11) |
Cl2 | 0.0813 (16) | 0.0722 (15) | 0.0477 (12) | −0.0137 (13) | 0.0138 (12) | 0.0155 (11) |
P1 | 0.0232 (8) | 0.0236 (8) | 0.0193 (8) | 0.0041 (6) | 0.0113 (6) | 0.0057 (6) |
P2 | 0.0225 (8) | 0.0263 (8) | 0.0219 (8) | 0.0065 (6) | 0.0130 (7) | 0.0068 (6) |
F1 | 0.036 (2) | 0.049 (2) | 0.033 (2) | −0.0120 (18) | 0.0163 (17) | 0.0093 (17) |
F2 | 0.037 (2) | 0.043 (2) | 0.066 (3) | 0.0145 (19) | 0.027 (2) | 0.009 (2) |
F3 | 0.044 (3) | 0.052 (3) | 0.057 (3) | 0.025 (2) | 0.015 (2) | 0.002 (2) |
F4 | 0.047 (2) | 0.047 (2) | 0.029 (2) | −0.0219 (19) | 0.0155 (18) | 0.0021 (17) |
F5 | 0.073 (3) | 0.051 (3) | 0.055 (3) | −0.029 (2) | 0.033 (2) | 0.005 (2) |
F6 | 0.067 (3) | 0.044 (3) | 0.079 (3) | −0.004 (2) | 0.034 (3) | −0.018 (2) |
F7 | 0.039 (3) | 0.066 (3) | 0.075 (3) | −0.003 (2) | 0.020 (2) | 0.002 (2) |
C1 | 0.029 (3) | 0.039 (4) | 0.018 (3) | 0.011 (3) | 0.014 (3) | 0.008 (3) |
C2 | 0.039 (4) | 0.039 (4) | 0.024 (3) | 0.017 (3) | 0.021 (3) | 0.016 (3) |
C3 | 0.034 (4) | 0.040 (4) | 0.025 (3) | 0.017 (3) | 0.021 (3) | 0.011 (3) |
C4 | 0.027 (3) | 0.030 (4) | 0.043 (4) | 0.007 (3) | 0.022 (3) | 0.015 (3) |
C5 | 0.045 (4) | 0.045 (4) | 0.037 (4) | −0.007 (4) | 0.019 (3) | 0.003 (3) |
C6 | 0.052 (5) | 0.037 (4) | 0.060 (5) | −0.005 (4) | 0.038 (4) | 0.010 (4) |
C11 | 0.026 (3) | 0.027 (3) | 0.022 (3) | 0.006 (3) | 0.012 (3) | 0.003 (2) |
C12 | 0.026 (3) | 0.031 (3) | 0.022 (3) | 0.005 (3) | 0.012 (3) | 0.003 (3) |
C13 | 0.029 (4) | 0.037 (4) | 0.025 (3) | 0.009 (3) | 0.011 (3) | 0.008 (3) |
C14 | 0.045 (4) | 0.031 (4) | 0.029 (4) | 0.012 (3) | 0.020 (3) | 0.006 (3) |
C15 | 0.048 (4) | 0.025 (4) | 0.043 (4) | 0.004 (3) | 0.019 (3) | 0.010 (3) |
C16 | 0.030 (4) | 0.035 (4) | 0.034 (4) | 0.003 (3) | 0.016 (3) | 0.008 (3) |
C21 | 0.025 (3) | 0.022 (3) | 0.021 (3) | 0.009 (2) | 0.009 (3) | 0.002 (2) |
C22 | 0.029 (3) | 0.037 (4) | 0.019 (3) | −0.006 (3) | 0.004 (3) | −0.004 (3) |
C23 | 0.040 (4) | 0.036 (4) | 0.036 (4) | −0.009 (3) | 0.015 (3) | 0.002 (3) |
C24 | 0.030 (4) | 0.030 (4) | 0.044 (4) | −0.003 (3) | 0.004 (3) | −0.009 (3) |
C25 | 0.043 (4) | 0.038 (4) | 0.025 (4) | 0.008 (3) | −0.002 (3) | −0.007 (3) |
C26 | 0.043 (4) | 0.035 (4) | 0.018 (3) | 0.006 (3) | 0.009 (3) | 0.003 (3) |
C31 | 0.026 (3) | 0.028 (3) | 0.020 (3) | 0.005 (3) | 0.011 (3) | 0.005 (2) |
C32 | 0.034 (4) | 0.028 (3) | 0.027 (3) | −0.001 (3) | 0.014 (3) | −0.002 (3) |
C33 | 0.041 (4) | 0.041 (4) | 0.033 (4) | −0.005 (3) | 0.018 (3) | −0.001 (3) |
C34 | 0.032 (4) | 0.034 (4) | 0.034 (4) | −0.001 (3) | 0.008 (3) | −0.005 (3) |
C35 | 0.040 (4) | 0.042 (4) | 0.042 (4) | 0.002 (3) | 0.022 (3) | −0.009 (3) |
C36 | 0.031 (4) | 0.039 (4) | 0.038 (4) | −0.002 (3) | 0.021 (3) | −0.004 (3) |
C41 | 0.020 (3) | 0.025 (3) | 0.023 (3) | 0.003 (2) | 0.008 (3) | −0.002 (2) |
C42 | 0.033 (4) | 0.021 (3) | 0.037 (4) | −0.001 (3) | 0.018 (3) | −0.003 (3) |
C43 | 0.033 (4) | 0.039 (4) | 0.047 (4) | −0.004 (3) | 0.017 (3) | −0.007 (3) |
C44 | 0.025 (4) | 0.047 (5) | 0.041 (4) | 0.006 (3) | 0.006 (3) | −0.006 (3) |
C45 | 0.038 (4) | 0.039 (4) | 0.032 (4) | 0.011 (3) | 0.009 (3) | 0.008 (3) |
C46 | 0.025 (3) | 0.031 (4) | 0.030 (3) | 0.004 (3) | 0.011 (3) | 0.011 (3) |
C51 | 0.032 (4) | 0.064 (5) | 0.041 (4) | −0.009 (4) | 0.007 (3) | −0.001 (4) |
I1—Rh1 | 2.6920 (6) | C15—C16 | 1.386 (9) |
I2—Rh1 | 2.6743 (6) | C15—H15 | 0.9500 |
Rh1—C4 | 1.996 (6) | C16—H16 | 0.9500 |
Rh1—P2 | 2.3185 (15) | C21—C26 | 1.391 (8) |
Rh1—P1 | 2.3248 (15) | C21—C22 | 1.396 (8) |
Cl1—C51 | 1.760 (7) | C22—C23 | 1.365 (9) |
Cl2—C51 | 1.761 (7) | C22—H22 | 0.9500 |
P1—C21 | 1.826 (6) | C23—C24 | 1.383 (9) |
P1—C1 | 1.827 (5) | C23—H23 | 0.9500 |
P1—C11 | 1.830 (6) | C24—C25 | 1.364 (9) |
P2—C41 | 1.821 (6) | C24—H24 | 0.9500 |
P2—C31 | 1.821 (6) | C25—C26 | 1.378 (9) |
P2—C3 | 1.832 (6) | C25—H25 | 0.9500 |
F1—C4 | 1.353 (7) | C26—H26 | 0.9500 |
F2—C4 | 1.428 (7) | C31—C32 | 1.378 (8) |
F3—C5 | 1.362 (8) | C31—C36 | 1.394 (8) |
F4—C5 | 1.351 (7) | C32—C33 | 1.380 (9) |
F5—C6 | 1.317 (8) | C32—H32 | 0.9500 |
F6—C6 | 1.345 (8) | C33—C34 | 1.379 (9) |
F7—C6 | 1.367 (9) | C33—H33 | 0.9500 |
C1—C2 | 1.518 (8) | C34—C35 | 1.384 (9) |
C1—H1A | 0.9900 | C34—H34 | 0.9500 |
C1—H1B | 0.9900 | C35—C36 | 1.376 (9) |
C2—C3 | 1.517 (8) | C35—H35 | 0.9500 |
C2—H2A | 0.9900 | C36—H36 | 0.9500 |
C2—H2B | 0.9900 | C41—C46 | 1.392 (8) |
C3—H3A | 0.9900 | C41—C42 | 1.399 (8) |
C3—H3B | 0.9900 | C42—C43 | 1.387 (9) |
C4—C5 | 1.562 (9) | C42—H42 | 0.9500 |
C5—C6 | 1.522 (10) | C43—C44 | 1.373 (10) |
C11—C12 | 1.390 (8) | C43—H43 | 0.9500 |
C11—C16 | 1.390 (8) | C44—C45 | 1.375 (9) |
C12—C13 | 1.397 (8) | C44—H44 | 0.9500 |
C12—H12 | 0.9500 | C45—C46 | 1.385 (8) |
C13—C14 | 1.368 (9) | C45—H45 | 0.9500 |
C13—H13 | 0.9500 | C46—H46 | 0.9500 |
C14—C15 | 1.391 (9) | C51—H51A | 0.9900 |
C14—H14 | 0.9500 | C51—H51B | 0.9900 |
C4—Rh1—P2 | 89.82 (18) | C13—C14—H14 | 119.9 |
C4—Rh1—P1 | 96.10 (19) | C15—C14—H14 | 119.9 |
P2—Rh1—P1 | 92.02 (5) | C16—C15—C14 | 119.5 (6) |
C4—Rh1—I2 | 99.44 (18) | C16—C15—H15 | 120.2 |
P2—Rh1—I2 | 88.04 (4) | C14—C15—H15 | 120.2 |
P1—Rh1—I2 | 164.46 (4) | C15—C16—C11 | 120.8 (6) |
C4—Rh1—I1 | 103.92 (17) | C15—C16—H16 | 119.6 |
P2—Rh1—I1 | 166.17 (4) | C11—C16—H16 | 119.6 |
P1—Rh1—I1 | 88.17 (4) | C26—C21—C22 | 117.1 (6) |
I2—Rh1—I1 | 88.105 (17) | C26—C21—P1 | 121.7 (5) |
C21—P1—C1 | 104.1 (3) | C22—C21—P1 | 121.1 (4) |
C21—P1—C11 | 105.5 (3) | C23—C22—C21 | 121.5 (6) |
C1—P1—C11 | 101.2 (3) | C23—C22—H22 | 119.2 |
C21—P1—Rh1 | 107.23 (19) | C21—C22—H22 | 119.2 |
C1—P1—Rh1 | 116.1 (2) | C22—C23—C24 | 120.0 (6) |
C11—P1—Rh1 | 121.06 (19) | C22—C23—H23 | 120.0 |
C41—P2—C31 | 102.8 (3) | C24—C23—H23 | 120.0 |
C41—P2—C3 | 102.2 (3) | C25—C24—C23 | 119.7 (6) |
C31—P2—C3 | 104.1 (3) | C25—C24—H24 | 120.1 |
C41—P2—Rh1 | 121.14 (19) | C23—C24—H24 | 120.1 |
C31—P2—Rh1 | 109.46 (19) | C24—C25—C26 | 120.3 (6) |
C3—P2—Rh1 | 115.3 (2) | C24—C25—H25 | 119.8 |
C2—C1—P1 | 115.6 (4) | C26—C25—H25 | 119.8 |
C2—C1—H1A | 108.4 | C25—C26—C21 | 121.2 (6) |
P1—C1—H1A | 108.4 | C25—C26—H26 | 119.4 |
C2—C1—H1B | 108.4 | C21—C26—H26 | 119.4 |
P1—C1—H1B | 108.4 | C32—C31—C36 | 118.2 (6) |
H1A—C1—H1B | 107.5 | C32—C31—P2 | 122.0 (5) |
C3—C2—C1 | 113.8 (5) | C36—C31—P2 | 119.8 (5) |
C3—C2—H2A | 108.8 | C31—C32—C33 | 121.3 (6) |
C1—C2—H2A | 108.8 | C31—C32—H32 | 119.3 |
C3—C2—H2B | 108.8 | C33—C32—H32 | 119.3 |
C1—C2—H2B | 108.8 | C34—C33—C32 | 119.9 (6) |
H2A—C2—H2B | 107.7 | C34—C33—H33 | 120.0 |
C2—C3—P2 | 114.3 (4) | C32—C33—H33 | 120.0 |
C2—C3—H3A | 108.7 | C33—C34—C35 | 119.6 (6) |
P2—C3—H3A | 108.7 | C33—C34—H34 | 120.2 |
C2—C3—H3B | 108.7 | C35—C34—H34 | 120.2 |
P2—C3—H3B | 108.7 | C36—C35—C34 | 120.1 (6) |
H3A—C3—H3B | 107.6 | C36—C35—H35 | 120.0 |
F1—C4—F2 | 103.1 (4) | C34—C35—H35 | 120.0 |
F1—C4—C5 | 106.6 (5) | C35—C36—C31 | 120.8 (6) |
F2—C4—C5 | 99.3 (5) | C35—C36—H36 | 119.6 |
F1—C4—Rh1 | 114.9 (4) | C31—C36—H36 | 119.6 |
F2—C4—Rh1 | 112.0 (4) | C46—C41—C42 | 118.7 (6) |
C5—C4—Rh1 | 118.8 (4) | C46—C41—P2 | 119.5 (4) |
F4—C5—F3 | 110.5 (5) | C42—C41—P2 | 121.7 (5) |
F4—C5—C6 | 106.2 (6) | C43—C42—C41 | 120.6 (6) |
F3—C5—C6 | 103.9 (6) | C43—C42—H42 | 119.7 |
F4—C5—C4 | 110.9 (5) | C41—C42—H42 | 119.7 |
F3—C5—C4 | 108.4 (5) | C44—C43—C42 | 120.1 (6) |
C6—C5—C4 | 116.7 (6) | C44—C43—H43 | 120.0 |
F5—C6—F6 | 110.1 (6) | C42—C43—H43 | 120.0 |
F5—C6—F7 | 106.6 (6) | C43—C44—C45 | 119.7 (6) |
F6—C6—F7 | 102.9 (6) | C43—C44—H44 | 120.1 |
F5—C6—C5 | 113.8 (6) | C45—C44—H44 | 120.1 |
F6—C6—C5 | 110.0 (6) | C44—C45—C46 | 121.2 (6) |
F7—C6—C5 | 112.8 (6) | C44—C45—H45 | 119.4 |
C12—C11—C16 | 119.2 (6) | C46—C45—H45 | 119.4 |
C12—C11—P1 | 120.6 (5) | C45—C46—C41 | 119.7 (6) |
C16—C11—P1 | 120.2 (5) | C45—C46—H46 | 120.2 |
C11—C12—C13 | 119.8 (6) | C41—C46—H46 | 120.2 |
C11—C12—H12 | 120.1 | Cl1—C51—Cl2 | 112.3 (4) |
C13—C12—H12 | 120.1 | Cl1—C51—H51A | 109.2 |
C14—C13—C12 | 120.5 (6) | Cl2—C51—H51A | 109.2 |
C14—C13—H13 | 119.7 | Cl1—C51—H51B | 109.2 |
C12—C13—H13 | 119.7 | Cl2—C51—H51B | 109.2 |
C13—C14—C15 | 120.2 (6) | H51A—C51—H51B | 107.9 |
Experimental details
Crystal data | |
Chemical formula | [RhI2(C3F7)(C27H26P2)]·CH2Cl2 |
Mr | 1023.08 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 110 |
a, b, c (Å) | 14.0419 (6), 15.1273 (6), 17.7722 (7) |
β (°) | 110.299 (2) |
V (Å3) | 3540.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.53 |
Crystal size (mm) | 0.19 × 0.09 × 0.08 |
Data collection | |
Diffractometer | Bruker Nonius X8 APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.644, 0.833 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 56038, 6467, 5127 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.089, 1.04 |
No. of reflections | 6467 |
No. of parameters | 406 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0249P)2 + 19.6317P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.72, −0.89 |
Computer programs: APEX2 (Bruker, 2003), SHELXTL (Sheldrick, 2008).
I1—Rh1 | 2.6920 (6) | Rh1—P2 | 2.3185 (15) |
I2—Rh1 | 2.6743 (6) | Rh1—P1 | 2.3248 (15) |
Rh1—C4 | 1.996 (6) | ||
C4—Rh1—P2 | 89.82 (18) | P1—Rh1—I2 | 164.46 (4) |
C4—Rh1—P1 | 96.10 (19) | C4—Rh1—I1 | 103.92 (17) |
P2—Rh1—P1 | 92.02 (5) | P2—Rh1—I1 | 166.17 (4) |
C4—Rh1—I2 | 99.44 (18) | P1—Rh1—I1 | 88.17 (4) |
P2—Rh1—I2 | 88.04 (4) | I2—Rh1—I1 | 88.105 (17) |
Acknowledgements
We thank the Robert A. Welch Foundation (grant No. AA-1083) and Baylor University, in part, for support of this research.
References
Bowden, A. A., Hughes, R. P., Lindner, D. C., Incarvito, C. D., Liable-Sands, L. M. & Rheingold, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 3245–3252. Web of Science CSD CrossRef Google Scholar
Bruker (2003). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burrell, A. K., Clark, G. R., Jeffrey, J. G., Rickard, C. E. F. & Roper, W. R. (1990). J. Organomet. Chem. 388, 391–408. CSD CrossRef CAS Web of Science Google Scholar
Churchill, M. R. (1965). Inorg. Chem. 12, 1734–1739. CSD CrossRef Web of Science Google Scholar
Egglestone, D. L., Baird, M. C., Lock, C. J. L. & Turner, G. (1977). J. Chem. Soc. Dalton Trans. pp. 1576–1582. CSD CrossRef Web of Science Google Scholar
Gunawardhana, N., Gipson, S. L. & Franken, A. (2008). Inorg. Chim. Acta. In the press. Google Scholar
Hughes, R. P., Kovacik, I., Lindner, D. C., Smith, J. M., Willemsen, S., Zhang, D., Guzei, I. A. & Rheingold, A. L. (2001). Organometallics, 20, 3190–3197. Web of Science CSD CrossRef CAS Google Scholar
Hughes, R. P., Lindner, D. C., Rheingold, A. L. & Liable-Sands, L. M. (1997). J. Am. Chem. Soc. 119, 11544–11545. CSD CrossRef CAS Web of Science Google Scholar
Hughes, R. P., Lindner, D. C., Smith, J. M., Zhang, D., Incarvito, C. D., Lam, K.-C., Liable-Sands, L. M., Sommer, R. D. & Rheingold, A. L. (2001). J. Chem. Soc. Dalton Trans. pp. 2270–2278. Web of Science CSD CrossRef Google Scholar
McGuiggan, M. F., Doughty, D. H. & Pignolet, L. H. (1980). J. Organomet. Chem. 185, 241–249. CSD CrossRef CAS Web of Science Google Scholar
Moloy, K. G. & Petersen, J. L. (1995). Organometallics, 14, 2931–2936. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shie, J.-Y., Lin, Y.-C. & Wang, Y. (1989). J. Organomet. Chem. 371, 383–392. CSD CrossRef CAS Web of Science Google Scholar
Søtofte, I. & Hjortkjær, J. (1994). Acta Chem. Scand. 48, 872–877. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The stucture of the title compound is shown in Fig. 1. The geometry about the rhodium atom is square-based pyramidal (sbp) with the perfluoropropyl group occupying the axial position. This geometry is similar to that of trans-Rh(CF2H)(PPh3)2Cl2 (Burrell et al., 1990), cis-Rh(COMe)(dppp)I2, where dppp = 1,3-bis(diphenylphosphino)propane (Søtofte & Hjortkjaer, 1994), cis-Rh(COPh)(dppp)Cl2 (McGuiggan et al., 1980), trans-Rh(COCH2CH2Ph)(PPh3)2Cl2 (Egglestone et al., 1977), and cis-Rh(COCH2CH3)(PPh3)2Cl2 (Shie et al., 1989), without the significant distortion toward trigonal bipyramidal geometry reported for cis-Rh(COCH3)(dppp)I2 by Moloy & Petersen (1995). The structure of the title compound includes one CH2Cl2 solvent molecule, not shown in Fig. 1. We wish to report here the structure of this unique species, though complete characterization is not possible at this time due to our inability to find suitable methods for its reliable isolation and purification.
So far as we can determine, the title compound is only the second structure of a sbp alkyl–Rh(III) complex of the class Rh(R)(phosphine)2X2 (X = halide). Numerous structures have been reported for sbp acyl complexes of this type, and there are quite a few published examples of alkyl–Rh(III) complexes with pseudo-octahedral piano stool geometries, including several perfluoroalkyl complexes of the type CpRh(Rf)(L)X (Cp = cyclopentadienyl, pentamethylcyclopentadienyl, tris(pyrazolyl)borate; Rf = perfluoroethyl, perfluoropropyl; L = CO, PMe3; X = Cl, H, H2O) (Churchill, 1965; Hughes, Kovacik et al., 2001; Hughes et al., 1997; Bowden et al., 2002; Hughes, Lindner et al., 2001). The importance of the title compound is that it sheds additional light on the bonding in perfluoroalkyl transition metal complexes. The Rh—C bond length of the title compound (1.996 (6) Å) compares favorably with that of the difluoromethyl complex (1.98 Å) and the sbp Rh(III)–acyl complexes (1.95–2.0 Å), but is somewhat shorter than those in the perfluoropropyl piano stool complexes (2.05–2.09 Å). While there has been some discussion as to whether the bond shortening observed for perfluoroalkyl and acyl ligands can be attributed to metal to ligand back-bonding (Moloy & Petersen, 1995), this is clearly not the case in comparing perfluoropropyl–Rh(III) complexes with sbp and piano stool geometries. Unfortunately, there are no reported structures for hydrocarbon Rh(III)–alkyl complexes with which to compare the title compound. The shortening of the metal–carbon bonds in perfluoroalkyl transition metal complexes, and the concomitant strengthening of this bond, has previously been explained in terms of electrostatic effects caused by the relatively large positive charge on the α-carbon of the perfluoroalkyl group (Gunawardhana et al., 2008).