metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(ethano­lato-κO)(5,10,15,20-tetra­phenyl­calix[4]pyrrole)manganese(III) hexa­fluoro­phosphate

aCollege of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
*Correspondence e-mail: zhfli_sdut@yahoo.com.cn

(Received 22 June 2008; accepted 14 July 2008; online 6 September 2008)

The title compound, [Mn(C2H5O)2(C44H28N4)]PF6, was synthesized from manganese(III) 2,4-penta­nedionate and 5,10,15,20-tetra­phenyl­calix[4]pyrrole by a hydro­thermal reaction. The MnIII atom is located on an inversion centre and the asymmetric unit comprises one half-formula unit. The MnIII ion is hexa­coordinated by four N atoms from one 5,10,15,20-tetra­phenyl­calix[4]pyrrole ligand and two O atoms from two deprotonated ethanol mol­ecules. The equatorially located atoms (the Mn and four N atoms) are planar. The dihedral angles between the planes of the phenyl rings and the equatorial plane are 53.3 (2) and 81.8 (2)°. One hexa­fluoro­phosphate anion balances the charge.

Related literature

For related literature, see: Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]); Chung et al. (1971[Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469-475.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Serre et al. (2005[Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654-658.]); Pocker & Fong (1980[Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045-2049.]); Scapin et al. (1997[Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081-15088.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2H5O)2(C44H28N4)]PF6

  • Mr = 902.73

  • Monoclinic, P 21 /n

  • a = 10.7487 (8) Å

  • b = 16.8682 (14) Å

  • c = 11.9913 (19) Å

  • β = 109.412 (9)°

  • V = 2050.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 0.910

  • 4407 measured reflections

  • 3535 independent reflections

  • 2142 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.214

  • S = 1.00

  • 3535 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.004 (3)
Mn1—N2 2.018 (3)
Mn1—O1 2.260 (3)
N1—Mn1—N2 90.13 (13)
N1—Mn1—O1i 90.70 (13)
N2—Mn1—O1i 90.25 (13)
N2—Mn1—O1 89.75 (13)
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, nitrogen-containing organics have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound, {[5,10,15,20-tetraphenyl-calix[4]pyrrole]manganese(III) bis-ethanol} hexafluorophosphate.

The MnIII ion is hexa-coordinated with four N atoms from one 5,10,15,20-tetraphenyl-calix[4]pyrrole ligand and two O atoms from two ethanol molecules (Fig. 1). One hexafluorophosphate anion acts as charge balance. MnIII is located at the inversion centre and the asymmetric unit comprises one-half molecule. The MnIII ion is hexa-coordinated with four N atoms from one 5,10,15,20-tetraphenyl-calix[4]pyrrole ligand and two O atoms from two ethanol molecules. The equatorially located atoms Mn(1), N(1), N(2), N(1 A), and N(2 A) are planar. The dihedral angles between the planes of Ph rings [C(11), C(12), C(13), C(14), C(15), C(16)] and [C(17), C(18), C(19), C(20), C(21), C(22)] and quatorial plane are 53.3 (2) and 81.8 (2) Å, respectively. The Mn—N and Mn—O bond lengths are in the range of 2.004 (3)–2.018 (3) and 2.260 (3) Å, respectively (Table 1).

Related literature top

For related literature, see: Church & Halvorson (1959); Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997).

Experimental top

A mixture of manganese(III) 2,4-pentanedionate (0.5 mmol), 5,10,15,20-tetraphenyl-calix[4]pyrrole (0.5 mmol), H2O (8 ml) and ethanol (8 mL) in a 25 mL Teflon-lined stainless steel autoclave was kept at 433 K for three days. Red crystals were obtained after cooling to room temperature with a yield of 18%. Anal. Calc. for C48H38MnN4O2F6P: C 66.61, H 3.82, N 6.48%; Found: C 66.65, H 3.78, N 6.52%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) drawn with the 30% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry codes used: - x + 2,-y,-z + 2; - x +1,-y,-z).
Bis(ethanolato-κO)(5,10,15,20-tetraphenylcalix[4]pyrrole)manganese(III) hexafluorophosphate top
Crystal data top
[Mn(C2H5O)2(C44H28N4)]PF6F(000) = 928
Mr = 902.73Dx = 1.462 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3535 reflections
a = 10.7487 (8) Åθ = 2.2–25.0°
b = 16.8682 (14) ŵ = 0.44 mm1
c = 11.9913 (19) ÅT = 293 K
β = 109.412 (9)°Block, yellow
V = 2050.6 (4) Å30.43 × 0.28 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3535 independent reflections
Radiation source: fine-focus sealed tube2142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 112
Tmin = 0.835, Tmax = 0.910k = 120
4407 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.135P)2]
where P = (Fo2 + 2Fc2)/3
3535 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mn(C2H5O)2(C44H28N4)]PF6V = 2050.6 (4) Å3
Mr = 902.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.7487 (8) ŵ = 0.44 mm1
b = 16.8682 (14) ÅT = 293 K
c = 11.9913 (19) Å0.43 × 0.28 × 0.22 mm
β = 109.412 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3535 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2142 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.910Rint = 0.040
4407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
3535 reflectionsΔρmin = 0.42 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.00001.00000.0507 (3)
C10.8291 (4)0.0451 (2)0.7085 (3)0.0579 (10)
C20.8243 (4)0.0985 (2)0.7966 (4)0.0572 (10)
C30.7590 (4)0.1738 (3)0.7732 (4)0.0670 (12)
H3A0.71830.19610.69910.080*
C40.7671 (5)0.2059 (3)0.8768 (4)0.0680 (12)
H4A0.73110.25410.88810.082*
C50.8417 (4)0.1524 (2)0.9685 (4)0.0572 (10)
C60.8735 (4)0.1665 (2)1.0892 (4)0.0570 (10)
C70.9596 (4)0.1198 (2)1.1763 (4)0.0551 (9)
C81.0066 (4)0.1385 (3)1.2992 (4)0.0617 (10)
H8A0.98200.18211.33450.074*
C91.0931 (4)0.0817 (3)1.3555 (4)0.0598 (10)
H9A1.14100.07981.43580.072*
C101.0973 (4)0.0248 (2)1.2677 (3)0.0542 (9)
C110.7496 (4)0.0648 (2)0.5827 (4)0.0594 (10)
C120.8044 (5)0.0722 (3)0.4937 (4)0.0697 (12)
H12A0.89480.06540.51150.084*
C130.7273 (6)0.0893 (3)0.3793 (5)0.0814 (14)
H13A0.76550.09200.32020.098*
C140.5958 (6)0.1024 (3)0.3521 (5)0.0864 (16)
H14A0.54480.11560.27520.104*
C150.5383 (5)0.0959 (3)0.4383 (5)0.0862 (15)
H15A0.44810.10410.41930.103*
C160.6152 (5)0.0771 (3)0.5547 (4)0.0701 (12)
H16A0.57610.07280.61290.084*
C170.8100 (4)0.2373 (2)1.1233 (4)0.0560 (10)
C180.6787 (5)0.2366 (3)1.1115 (4)0.0735 (12)
H18A0.62850.19151.08300.088*
C190.6202 (5)0.3030 (3)1.1418 (5)0.0822 (14)
H19A0.53140.30191.13460.099*
C200.6936 (6)0.3702 (3)1.1824 (4)0.0824 (15)
H20A0.65430.41451.20270.099*
C210.8222 (6)0.3720 (3)1.1929 (5)0.0829 (14)
H21A0.87120.41781.21970.099*
C220.8817 (5)0.3065 (3)1.1642 (5)0.0742 (13)
H22A0.97070.30841.17230.089*
C231.2032 (10)0.1503 (5)1.0298 (13)0.204 (6)
H23A1.11970.17431.02560.245*
H23B1.25370.14611.11330.245*
C241.2665 (15)0.2060 (6)0.9868 (11)0.227 (6)
H24A1.28410.25171.03740.341*
H24B1.21190.22100.90860.341*
H24C1.34810.18460.98390.341*
P10.50000.00000.00000.1018 (9)
N10.8781 (3)0.0872 (2)0.9162 (3)0.0541 (8)
N21.0169 (3)0.05011 (19)1.1572 (3)0.0552 (8)
F10.6259 (11)0.0076 (5)0.0792 (8)0.217 (3)
F20.4786 (14)0.0803 (9)0.0209 (16)0.350 (8)
F30.460 (2)0.0081 (15)0.0848 (14)0.387 (10)
O11.1729 (3)0.07288 (19)0.9912 (3)0.0787 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0513 (5)0.0471 (5)0.0521 (5)0.0032 (3)0.0152 (4)0.0035 (3)
C10.062 (2)0.057 (2)0.052 (2)0.0003 (19)0.0165 (19)0.0015 (18)
C20.056 (2)0.058 (2)0.055 (2)0.0046 (19)0.0136 (18)0.0003 (18)
C30.077 (3)0.055 (2)0.059 (2)0.014 (2)0.010 (2)0.0028 (19)
C40.076 (3)0.056 (2)0.069 (3)0.017 (2)0.021 (2)0.000 (2)
C50.057 (2)0.054 (2)0.060 (2)0.0050 (18)0.0173 (19)0.0075 (18)
C60.058 (2)0.049 (2)0.064 (2)0.0013 (18)0.0195 (19)0.0075 (18)
C70.057 (2)0.052 (2)0.059 (2)0.0011 (18)0.0225 (19)0.0026 (18)
C80.073 (3)0.054 (2)0.060 (2)0.003 (2)0.024 (2)0.0111 (19)
C90.066 (3)0.057 (2)0.053 (2)0.004 (2)0.0163 (19)0.0026 (19)
C100.058 (2)0.051 (2)0.053 (2)0.0007 (19)0.0185 (19)0.0005 (17)
C110.068 (3)0.050 (2)0.057 (2)0.0011 (19)0.016 (2)0.0018 (18)
C120.071 (3)0.071 (3)0.065 (3)0.001 (2)0.019 (2)0.005 (2)
C130.098 (4)0.078 (3)0.066 (3)0.001 (3)0.026 (3)0.010 (2)
C140.095 (4)0.089 (4)0.060 (3)0.005 (3)0.005 (3)0.008 (3)
C150.071 (3)0.086 (4)0.083 (3)0.008 (3)0.002 (3)0.004 (3)
C160.062 (3)0.078 (3)0.065 (3)0.003 (2)0.014 (2)0.002 (2)
C170.056 (2)0.054 (2)0.057 (2)0.0087 (19)0.0183 (18)0.0007 (18)
C180.067 (3)0.061 (3)0.092 (3)0.004 (2)0.026 (2)0.009 (2)
C190.073 (3)0.083 (3)0.098 (4)0.019 (3)0.038 (3)0.000 (3)
C200.115 (5)0.065 (3)0.070 (3)0.031 (3)0.035 (3)0.004 (2)
C210.095 (4)0.062 (3)0.093 (4)0.006 (3)0.031 (3)0.015 (3)
C220.074 (3)0.057 (3)0.093 (3)0.004 (2)0.030 (3)0.015 (2)
C230.187 (9)0.105 (6)0.404 (18)0.072 (6)0.210 (11)0.095 (9)
C240.39 (2)0.111 (7)0.234 (13)0.052 (10)0.170 (13)0.041 (7)
P10.0807 (16)0.1047 (19)0.1054 (19)0.0316 (13)0.0113 (14)0.0304 (15)
N10.0532 (18)0.0542 (18)0.0538 (18)0.0027 (15)0.0164 (15)0.0062 (14)
N20.0538 (19)0.0549 (19)0.0559 (18)0.0009 (15)0.0171 (15)0.0046 (15)
F10.216 (9)0.238 (8)0.206 (8)0.015 (6)0.080 (7)0.014 (5)
F20.338 (16)0.247 (13)0.40 (2)0.005 (12)0.030 (15)0.013 (13)
F30.346 (19)0.47 (2)0.288 (18)0.205 (16)0.030 (14)0.022 (15)
O10.0648 (19)0.0609 (19)0.116 (3)0.0143 (15)0.0377 (19)0.0146 (18)
Geometric parameters (Å, º) top
Mn1—N12.004 (3)C13—C141.358 (8)
Mn1—N1i2.004 (3)C13—H13A0.9300
Mn1—N22.018 (3)C14—C151.373 (8)
Mn1—N2i2.018 (3)C14—H14A0.9300
Mn1—O1i2.260 (3)C15—C161.402 (7)
Mn1—O12.260 (3)C15—H15A0.9300
C1—C10i1.395 (6)C16—H16A0.9300
C1—C21.403 (6)C17—C181.371 (6)
C1—C111.504 (6)C17—C221.394 (6)
C2—N11.369 (5)C18—C191.390 (7)
C2—C31.432 (6)C18—H18A0.9300
C3—C41.331 (6)C19—C201.375 (8)
C3—H3A0.9300C19—H19A0.9300
C4—C51.442 (6)C20—C211.346 (8)
C4—H4A0.9300C20—H20A0.9300
C5—N11.386 (5)C21—C221.377 (7)
C5—C61.393 (6)C21—H21A0.9300
C6—C71.388 (6)C22—H22A0.9300
C6—C171.497 (5)C23—C241.358 (11)
C7—N21.381 (5)C23—O11.388 (8)
C7—C81.425 (6)C23—H23A0.9700
C8—C91.348 (6)C23—H23B0.9700
C8—H8A0.9300C24—H24A0.9600
C9—C101.436 (6)C24—H24B0.9600
C9—H9A0.9300C24—H24C0.9600
C10—N21.387 (5)P1—F31.23 (2)
C10—C1i1.395 (6)P1—F3ii1.23 (2)
C11—C121.385 (6)P1—F1ii1.376 (11)
C11—C161.385 (6)P1—F11.376 (11)
C12—C131.378 (7)P1—F21.382 (15)
C12—H12A0.9300P1—F2ii1.382 (15)
N1—Mn1—N1i180.000 (1)C14—C15—H15A119.9
N1—Mn1—N290.13 (13)C16—C15—H15A119.9
N1i—Mn1—N289.87 (13)C11—C16—C15119.8 (5)
N1—Mn1—N2i89.87 (13)C11—C16—H16A120.1
N1i—Mn1—N2i90.13 (13)C15—C16—H16A120.1
N2—Mn1—N2i180.000 (1)C18—C17—C22118.2 (4)
N1—Mn1—O1i90.70 (13)C18—C17—C6120.8 (4)
N1i—Mn1—O1i89.30 (13)C22—C17—C6121.0 (4)
N2—Mn1—O1i90.25 (13)C17—C18—C19120.4 (5)
N2i—Mn1—O1i89.75 (13)C17—C18—H18A119.8
N1—Mn1—O189.30 (13)C19—C18—H18A119.8
N1i—Mn1—O190.70 (13)C20—C19—C18120.0 (5)
N2—Mn1—O189.75 (13)C20—C19—H19A120.0
N2i—Mn1—O190.25 (13)C18—C19—H19A120.0
O1i—Mn1—O1180.0C21—C20—C19120.2 (5)
C10i—C1—C2123.3 (4)C21—C20—H20A119.9
C10i—C1—C11119.2 (4)C19—C20—H20A119.9
C2—C1—C11117.5 (4)C20—C21—C22120.4 (5)
N1—C2—C1126.2 (4)C20—C21—H21A119.8
N1—C2—C3109.7 (4)C22—C21—H21A119.8
C1—C2—C3124.1 (4)C21—C22—C17120.8 (5)
C4—C3—C2107.6 (4)C21—C22—H22A119.6
C4—C3—H3A126.2C17—C22—H22A119.6
C2—C3—H3A126.2C24—C23—O1128.0 (9)
C3—C4—C5107.7 (4)C24—C23—H23A105.3
C3—C4—H4A126.1O1—C23—H23A105.3
C5—C4—H4A126.1C24—C23—H23B105.3
N1—C5—C6126.7 (4)O1—C23—H23B105.3
N1—C5—C4108.7 (3)H23A—C23—H23B106.0
C6—C5—C4124.6 (4)C23—C24—H24A109.5
C7—C6—C5123.8 (4)C23—C24—H24B109.5
C7—C6—C17119.9 (4)H24A—C24—H24B109.5
C5—C6—C17116.3 (4)C23—C24—H24C109.5
N2—C7—C6125.6 (4)H24A—C24—H24C109.5
N2—C7—C8109.6 (3)H24B—C24—H24C109.5
C6—C7—C8124.8 (4)F3—P1—F3ii180 (2)
C9—C8—C7108.0 (4)F3—P1—F1ii92.8 (9)
C9—C8—H8A126.0F3ii—P1—F1ii87.2 (9)
C7—C8—H8A126.0F3—P1—F187.2 (9)
C8—C9—C10107.0 (4)F3ii—P1—F192.8 (9)
C8—C9—H9A126.5F1ii—P1—F1180.0 (13)
C10—C9—H9A126.5F3—P1—F287.6 (9)
N2—C10—C1i125.9 (4)F3ii—P1—F292.4 (9)
N2—C10—C9109.4 (4)F1ii—P1—F284.2 (6)
C1i—C10—C9124.7 (4)F1—P1—F295.8 (6)
C12—C11—C16118.4 (4)F3—P1—F2ii92.4 (9)
C12—C11—C1123.1 (4)F3ii—P1—F2ii87.6 (9)
C16—C11—C1118.4 (4)F1ii—P1—F2ii95.8 (6)
C13—C12—C11121.1 (5)F1—P1—F2ii84.2 (6)
C13—C12—H12A119.4F2—P1—F2ii180.0 (3)
C11—C12—H12A119.4C2—N1—C5106.2 (3)
C14—C13—C12120.4 (5)C2—N1—Mn1127.3 (3)
C14—C13—H13A119.8C5—N1—Mn1126.3 (3)
C12—C13—H13A119.8C7—N2—C10105.9 (3)
C13—C14—C15120.0 (5)C7—N2—Mn1127.2 (3)
C13—C14—H14A120.0C10—N2—Mn1126.7 (3)
C15—C14—H14A120.0C23—O1—Mn1127.0 (4)
C14—C15—C16120.2 (5)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C2H5O)2(C44H28N4)]PF6
Mr902.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.7487 (8), 16.8682 (14), 11.9913 (19)
β (°) 109.412 (9)
V3)2050.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.835, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
4407, 3535, 2142
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.214, 1.00
No. of reflections3535
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—N12.004 (3)Mn1—O12.260 (3)
Mn1—N22.018 (3)
N1—Mn1—N290.13 (13)N2—Mn1—O1i90.25 (13)
N1—Mn1—O1i90.70 (13)N2—Mn1—O189.75 (13)
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

The authors thank the NSFC (grant No. 20776081).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469–475.  CrossRef CAS Web of Science PubMed Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045–2049.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds