organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Carb­­oxy-1,3-thia­zol-2-yl)pyridinium 3-carb­­oxy-4-hy­droxy­benzene­sulfonate dihydrate

aDepartment of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx6281@126.com

(Received 1 September 2008; accepted 25 September 2008; online 30 September 2008)

In the crystal structure of the title compound, C9H7N2O2S+·C7H5O6S·2H2O, an H atom from the 5-sulfosalicylic acid is transferred to the pyridyl N atom, forming a salt. The dihedral angle between the thiazole and pyridinium rings is 5.909 (5)°. The crystal packing is determined by O—H⋯O and N—H⋯O hydrogen bonds involving water mol­ecules.

Related literature

For related structures, see: Chen et al. (2007[Chen, X. D., Wu, H. F., Zhao, X. H., Zhao, X. J. & Du, M. (2007). Cryst. Growth Des. 7, 124-131.]); Ellsworth et al. (2006[Ellsworth, J. M., Su, C. Y., Khaliq, Z., Hipp, R. E., Goforth, A. M., Smith, M. D. & Loye, H. C. (2006). J. Mol. Struct. 796, 86-94.]); Su et al. (2004[Su, C. Y., Smith, M. D., Goforth, A. M. & Loye, H. C. (2004). Inorg. Chem. 43, 6881-6883.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N2O2S+·C7H5O6S·2H2O

  • Mr = 460.43

  • Triclinic, [P \overline 1]

  • a = 8.6234 (14) Å

  • b = 10.6065 (17) Å

  • c = 10.7979 (17) Å

  • α = 97.799 (2)°

  • β = 94.479 (2)°

  • γ = 99.885 (2)°

  • V = 958.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 291 (2) K

  • 0.44 × 0.29 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.924

  • 7016 measured reflections

  • 3494 independent reflections

  • 3095 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.03

  • 3494 reflections

  • 275 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.88 2.599 (2) 146
O3—H3⋯O9 0.82 1.71 2.5269 (17) 171
O8—H8⋯O4i 0.82 1.89 2.6979 (18) 171
O9—H1W⋯O6ii 0.84 1.93 2.753 (2) 165
O9—H2W⋯O5iii 0.83 1.89 2.713 (2) 172
O10—H3W⋯O2 0.81 2.32 2.9001 (19) 129
O10—H4W⋯O7iv 0.81 2.27 2.835 (2) 128
N2—H2D⋯O10v 0.86 1.86 2.689 (2) 162
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y+1, z; (iii) -x, -y+1, -z+1; (iv) x, y+1, z+1; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(4-Pyridyl)thiazole-4-carboxylic acid (HPTCA), which is an asymmetric, chelating ligand, has been studied in recent years. Five of its transition metal complexes (Chen et al., 2007; Ellsworth et al., 2006; Su et al., 2004) were reported. In this paper we describe its salt with 5-sulfosalicylic acid (H3SSA), (I).

The crystal structure of the title molecule comprises 2-(4-pyridylomium)thiazole-4-carboxylic acid, a 5-sulfosalicylic acid anion and two water molecules (Fig.1). The H atom of the 5-sulfosalicylic acid is transferred to the pyridyl N-atom of 2-(4-pyridyl)thiazole-4-carboxylic acid, thus forming a salt. The dihedral angle between the thiazole and pyridinium rings is 5.909 (5)°. The N—H and O—H groups are involved in intra- and intermolecular hydrogen bonds with water molecules generating the 3-dimensional hydrogen bond network (Table 1 and Fig. 2).

Related literature top

For related literature, see: Chen et al. (2007); Ellsworth et al. (2006); Su et al. (2004).

Experimental top

The ligand HPTCA (1 mmol, 0.21 g) and H3SSA.2H2O (1 mmol, 0.25 g) were dissolved in solvent mixture of water and methanol (20 mL, v/v 1:1). To this solution, Cu(CH3COO)2.4H2O (1 mmol, 0.26 g) was added and the resulting mixture was stirred and refluxed at 353 K for 3 h, then cooled to room temperature. After filtration and evaporation in air for five days, colourless claviform-shaped crystals were obtained in a yield of 43%. Analysis, found (%): C, 41.75; H, 3.51; N, 6.02; S,13.87. C16H16N2O10S2 requires (%): C,41.70; H,3.47; N,6.08; S,13.90. (The elemental analysis indicates that the copper(II) is not coordinated by the ligands) (CCDC number 685021)

Refinement top

H Atoms bonded to C or N atoms were positioned geometrically with C—H distance of 0.93Å and N—H distance of 0.86 Å, and treated as riding atoms, with Uiso(H)=1.2Ueq(C or N). H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen bonds as dashed lines. For the sake of clarity, H atoms on C atoms have been omitted.
4-(4-Carboxy-1,3-thiazol-2-yl)pyridinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate top
Crystal data top
C9H7N2O2S+·C7H5O6S·2H2OZ = 2
Mr = 460.43F(000) = 476
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6234 (14) ÅCell parameters from 4068 reflections
b = 10.6065 (17) Åθ = 2.4–28.1°
c = 10.7979 (17) ŵ = 0.34 mm1
α = 97.799 (2)°T = 291 K
β = 94.479 (2)°Claviform, colourless
γ = 99.885 (2)°0.44 × 0.29 × 0.24 mm
V = 958.7 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3494 independent reflections
Radiation source: fine-focus sealed tube3095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.867, Tmax = 0.924k = 1212
7016 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.314P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3494 reflectionsΔρmax = 0.31 e Å3
275 parametersΔρmin = 0.29 e Å3
6 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (2)
Crystal data top
C9H7N2O2S+·C7H5O6S·2H2Oγ = 99.885 (2)°
Mr = 460.43V = 958.7 (3) Å3
Triclinic, P1Z = 2
a = 8.6234 (14) ÅMo Kα radiation
b = 10.6065 (17) ŵ = 0.34 mm1
c = 10.7979 (17) ÅT = 291 K
α = 97.799 (2)°0.44 × 0.29 × 0.24 mm
β = 94.479 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3095 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.924Rint = 0.014
7016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3494 reflectionsΔρmin = 0.29 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25056 (5)0.11285 (4)0.35763 (4)0.03667 (14)
S21.01768 (5)0.41512 (5)0.19381 (4)0.04482 (15)
O10.52983 (18)0.53943 (14)0.76634 (12)0.0532 (4)
H10.49630.60580.75740.080*
O20.34176 (16)0.67695 (12)0.67191 (12)0.0472 (3)
O30.18259 (15)0.59188 (11)0.49653 (12)0.0432 (3)
H30.16830.66670.49980.065*
O40.30140 (18)0.15439 (12)0.24126 (12)0.0513 (4)
O50.07938 (16)0.09571 (14)0.35499 (15)0.0595 (4)
O60.31219 (19)0.00026 (13)0.38592 (14)0.0577 (4)
O70.61923 (18)0.12933 (14)0.10879 (16)0.0643 (4)
O80.81979 (18)0.03591 (13)0.04892 (13)0.0525 (4)
H80.77480.02410.10270.079*
O90.11825 (18)0.81397 (13)0.48548 (15)0.0566 (4)
H1W0.18510.87570.46880.085*
H2W0.06480.84310.53970.085*
O100.35251 (19)0.94663 (14)0.77184 (18)0.0746 (5)
H3W0.30660.89010.71600.112*
H4W0.44770.96180.77420.112*
N10.77420 (17)0.36608 (13)0.03035 (13)0.0356 (3)
N20.7588 (2)0.83610 (15)0.15551 (16)0.0488 (4)
H2D0.73490.91200.16600.059*
C10.33096 (19)0.24035 (15)0.48162 (15)0.0324 (4)
C20.4457 (2)0.22332 (18)0.57360 (17)0.0398 (4)
H20.47930.14440.57090.048*
C30.5089 (2)0.32448 (19)0.66860 (17)0.0428 (4)
H3A0.58490.31300.73000.051*
C40.4600 (2)0.44306 (17)0.67308 (15)0.0368 (4)
C50.34238 (19)0.46005 (15)0.58262 (14)0.0310 (3)
C60.27899 (19)0.35698 (15)0.48679 (15)0.0312 (3)
H60.20130.36720.42610.037*
C70.28871 (19)0.58539 (16)0.58768 (15)0.0336 (4)
C80.7104 (2)0.62363 (17)0.04650 (16)0.0396 (4)
H8A0.65380.56120.01730.048*
C90.6759 (2)0.74537 (19)0.06439 (18)0.0473 (5)
H90.59460.76550.01320.057*
C100.8772 (3)0.81171 (18)0.23019 (19)0.0517 (5)
H100.93340.87690.29170.062*
C110.9166 (2)0.69063 (18)0.21681 (18)0.0456 (4)
H110.99930.67380.26880.055*
C120.8314 (2)0.59344 (16)0.12459 (15)0.0342 (4)
C130.8626 (2)0.46044 (16)0.10910 (15)0.0336 (4)
C140.8288 (2)0.25269 (16)0.03559 (15)0.0354 (4)
C150.9591 (2)0.26100 (18)0.11859 (17)0.0420 (4)
H151.00880.19210.13200.050*
C160.7430 (2)0.13402 (17)0.04781 (17)0.0402 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0437 (3)0.0231 (2)0.0418 (3)0.00772 (17)0.00411 (18)0.00162 (17)
S20.0427 (3)0.0475 (3)0.0405 (3)0.0097 (2)0.01003 (19)0.0000 (2)
O10.0644 (9)0.0472 (8)0.0389 (7)0.0037 (7)0.0181 (6)0.0035 (6)
O20.0590 (8)0.0326 (7)0.0432 (7)0.0049 (6)0.0022 (6)0.0095 (6)
O30.0501 (7)0.0283 (6)0.0480 (7)0.0111 (5)0.0082 (6)0.0028 (5)
O40.0753 (10)0.0361 (7)0.0368 (7)0.0011 (6)0.0047 (6)0.0024 (5)
O50.0440 (8)0.0457 (8)0.0774 (10)0.0017 (6)0.0034 (7)0.0207 (7)
O60.0805 (10)0.0317 (7)0.0647 (9)0.0235 (7)0.0058 (8)0.0046 (6)
O70.0581 (9)0.0427 (8)0.0821 (11)0.0191 (7)0.0240 (8)0.0207 (7)
O80.0696 (9)0.0377 (7)0.0499 (8)0.0260 (7)0.0084 (7)0.0067 (6)
O90.0660 (9)0.0342 (7)0.0736 (10)0.0169 (6)0.0145 (7)0.0081 (7)
O100.0556 (9)0.0383 (8)0.1174 (14)0.0034 (7)0.0108 (9)0.0263 (8)
N10.0414 (8)0.0307 (7)0.0332 (7)0.0090 (6)0.0031 (6)0.0001 (6)
N20.0659 (11)0.0289 (8)0.0519 (10)0.0092 (7)0.0134 (8)0.0022 (7)
C10.0370 (9)0.0281 (8)0.0322 (8)0.0062 (7)0.0051 (7)0.0034 (7)
C20.0419 (10)0.0378 (9)0.0430 (10)0.0134 (8)0.0039 (8)0.0106 (8)
C30.0404 (10)0.0505 (11)0.0380 (9)0.0094 (8)0.0043 (7)0.0126 (8)
C40.0390 (9)0.0404 (9)0.0278 (8)0.0010 (7)0.0002 (7)0.0039 (7)
C50.0338 (8)0.0298 (8)0.0281 (8)0.0026 (7)0.0052 (6)0.0028 (6)
C60.0342 (8)0.0295 (8)0.0285 (8)0.0053 (6)0.0008 (6)0.0027 (6)
C70.0359 (8)0.0297 (8)0.0321 (8)0.0002 (7)0.0055 (7)0.0003 (7)
C80.0465 (10)0.0344 (9)0.0352 (9)0.0076 (8)0.0003 (7)0.0023 (7)
C90.0567 (12)0.0403 (10)0.0457 (11)0.0141 (9)0.0041 (9)0.0033 (8)
C100.0633 (13)0.0330 (10)0.0494 (11)0.0050 (9)0.0027 (10)0.0075 (8)
C110.0500 (11)0.0388 (10)0.0412 (10)0.0005 (8)0.0061 (8)0.0026 (8)
C120.0398 (9)0.0319 (9)0.0286 (8)0.0022 (7)0.0049 (7)0.0009 (7)
C130.0374 (9)0.0341 (9)0.0277 (8)0.0054 (7)0.0006 (7)0.0024 (7)
C140.0416 (9)0.0334 (9)0.0325 (8)0.0118 (7)0.0026 (7)0.0036 (7)
C150.0448 (10)0.0421 (10)0.0411 (10)0.0171 (8)0.0002 (8)0.0043 (8)
C160.0475 (10)0.0329 (9)0.0407 (10)0.0147 (8)0.0007 (8)0.0001 (7)
Geometric parameters (Å, º) top
S1—O61.4469 (14)C1—C61.382 (2)
S1—O51.4535 (14)C1—C21.398 (2)
S1—O41.4613 (14)C2—C31.383 (3)
S1—C11.7731 (17)C2—H20.9300
S2—C151.6968 (19)C3—C41.390 (3)
S2—C131.7334 (17)C3—H3A0.9300
O1—C41.355 (2)C4—C51.404 (2)
O1—H10.8200C5—C61.401 (2)
O2—C71.234 (2)C5—C71.476 (2)
O3—C71.308 (2)C6—H60.9300
O3—H30.8200C8—C91.366 (3)
O7—C161.199 (2)C8—C121.397 (2)
O8—C161.325 (2)C8—H8A0.9300
O8—H80.8200C9—H90.9300
O9—H1W0.8436C10—C111.376 (3)
O9—H2W0.8319C10—H100.9300
O10—H3W0.8145C11—C121.393 (2)
O10—H4W0.8065C11—H110.9300
N1—C131.308 (2)C12—C131.471 (2)
N1—C141.371 (2)C14—C151.365 (2)
N2—C101.333 (3)C14—C161.487 (2)
N2—C91.342 (3)C15—H150.9300
N2—H2D0.8600
O6—S1—O5113.03 (9)C1—C6—H6119.7
O6—S1—O4112.45 (9)C5—C6—H6119.7
O5—S1—O4110.37 (9)O2—C7—O3122.98 (16)
O6—S1—C1106.53 (8)O2—C7—C5121.86 (16)
O5—S1—C1106.90 (8)O3—C7—C5115.17 (14)
O4—S1—C1107.15 (8)C9—C8—C12119.66 (17)
C15—S2—C1389.46 (8)C9—C8—H8A120.2
C4—O1—H1109.5C12—C8—H8A120.2
C7—O3—H3109.5N2—C9—C8120.27 (18)
C16—O8—H8109.5N2—C9—H9119.9
H1W—O9—H2W108.7C8—C9—H9119.9
H3W—O10—H4W115.9N2—C10—C11120.40 (17)
C13—N1—C14110.35 (14)N2—C10—H10119.8
C10—N2—C9121.80 (17)C11—C10—H10119.8
C10—N2—H2D119.1C10—C11—C12119.39 (18)
C9—N2—H2D119.1C10—C11—H11120.3
C6—C1—C2120.15 (15)C12—C11—H11120.3
C6—C1—S1119.39 (12)C11—C12—C8118.45 (16)
C2—C1—S1120.46 (13)C11—C12—C13122.13 (16)
C3—C2—C1119.70 (16)C8—C12—C13119.41 (15)
C3—C2—H2120.2N1—C13—C12122.45 (15)
C1—C2—H2120.2N1—C13—S2114.42 (13)
C2—C3—C4120.60 (16)C12—C13—S2123.13 (12)
C2—C3—H3A119.7N1—C14—C15115.53 (16)
C4—C3—H3A119.7N1—C14—C16118.19 (14)
O1—C4—C3117.74 (15)C15—C14—C16126.27 (16)
O1—C4—C5122.23 (16)C14—C15—S2110.25 (13)
C3—C4—C5120.04 (16)C14—C15—H15124.9
C4—C5—C6118.92 (15)S2—C15—H15124.9
C4—C5—C7120.28 (15)O7—C16—O8124.15 (17)
C6—C5—C7120.79 (15)O7—C16—C14123.19 (16)
C1—C6—C5120.57 (15)O8—C16—C14112.65 (15)
O6—S1—C1—C6173.04 (13)C12—C8—C9—N20.8 (3)
O5—S1—C1—C651.93 (16)C9—N2—C10—C110.9 (3)
O4—S1—C1—C666.39 (15)N2—C10—C11—C120.1 (3)
O6—S1—C1—C26.85 (17)C10—C11—C12—C81.5 (3)
O5—S1—C1—C2127.96 (15)C10—C11—C12—C13177.15 (17)
O4—S1—C1—C2113.72 (15)C9—C8—C12—C111.8 (3)
C6—C1—C2—C31.1 (3)C9—C8—C12—C13176.87 (16)
S1—C1—C2—C3179.01 (13)C14—N1—C13—C12179.49 (15)
C1—C2—C3—C40.3 (3)C14—N1—C13—S20.04 (18)
C2—C3—C4—O1178.07 (16)C11—C12—C13—N1173.78 (16)
C2—C3—C4—C51.7 (3)C8—C12—C13—N14.8 (2)
O1—C4—C5—C6178.11 (15)C11—C12—C13—S25.7 (2)
C3—C4—C5—C61.6 (2)C8—C12—C13—S2175.67 (13)
O1—C4—C5—C70.9 (3)C15—S2—C13—N10.04 (14)
C3—C4—C5—C7179.36 (15)C15—S2—C13—C12179.49 (15)
C2—C1—C6—C51.1 (2)C13—N1—C14—C150.0 (2)
S1—C1—C6—C5178.97 (12)C13—N1—C14—C16179.94 (15)
C4—C5—C6—C10.2 (2)N1—C14—C15—S20.0 (2)
C7—C5—C6—C1179.24 (14)C16—C14—C15—S2179.90 (15)
C4—C5—C7—O21.7 (2)C13—S2—C15—C140.02 (14)
C6—C5—C7—O2179.26 (15)N1—C14—C16—O78.5 (3)
C4—C5—C7—O3177.84 (15)C15—C14—C16—O7171.6 (2)
C6—C5—C7—O31.2 (2)N1—C14—C16—O8170.21 (15)
C10—N2—C9—C80.6 (3)C15—C14—C16—O89.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.882.599 (2)146
O3—H3···O90.821.712.5269 (17)171
O8—H8···O4i0.821.892.6979 (18)171
O9—H1W···O6ii0.841.932.753 (2)165
O9—H2W···O5iii0.831.892.713 (2)172
O10—H3W···O20.812.322.9001 (19)129
O10—H4W···O7iv0.812.272.835 (2)128
N2—H2D···O10v0.861.862.689 (2)162
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC9H7N2O2S+·C7H5O6S·2H2O
Mr460.43
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.6234 (14), 10.6065 (17), 10.7979 (17)
α, β, γ (°)97.799 (2), 94.479 (2), 99.885 (2)
V3)958.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.44 × 0.29 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.867, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
7016, 3494, 3095
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.03
No. of reflections3494
No. of parameters275
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.882.599 (2)145.5
O3—H3···O90.821.712.5269 (17)170.9
O8—H8···O4i0.821.892.6979 (18)170.8
O9—H1W···O6ii0.841.932.753 (2)164.8
O9—H2W···O5iii0.831.892.713 (2)172.2
O10—H3W···O20.812.322.9001 (19)128.5
O10—H4W···O7iv0.812.272.835 (2)127.9
N2—H2D···O10v0.861.862.689 (2)161.5
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. D., Wu, H. F., Zhao, X. H., Zhao, X. J. & Du, M. (2007). Cryst. Growth Des. 7, 124–131.  Web of Science CSD CrossRef Google Scholar
First citationEllsworth, J. M., Su, C. Y., Khaliq, Z., Hipp, R. E., Goforth, A. M., Smith, M. D. & Loye, H. C. (2006). J. Mol. Struct. 796, 86–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Smith, M. D., Goforth, A. M. & Loye, H. C. (2004). Inorg. Chem. 43, 6881–6883.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds