metal-organic compounds
Bis[μ-3-(1H-pyrazol-1-yl)benzonitrile-κ2N:N′]bis[perchloratosilver(I)]
aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn
In the title centrosymmetric complex, [Ag2(ClO4)2(C10H7N3)2], the unique AgI ion is coordinated by an N atom from a carbonitrile group, an N atom from a symmetry-related pyrazole group and an O atom of a perchlorate ligand to form a distorted T-shaped environment. Two 3-(1H-pyrazol-1-yl)benzonitrile ligands each bridge two AgI ions to form a dinuclear complex. In the there are weak Ag⋯O interactions within the range 2.70–3.01 Å linking dimeric units into layers approximately parallel to (100). The O atoms of the perchlorate ligand are disordered over two sites with occupancies of 0.570 (11) and 0.430 (11), respectively.
Related literature
For background information, see: Antonioli et al. (2006); Bourlier et al. (2007); Niu et al. (2007); Sumby & Hardie (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808030602/lh2676sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808030602/lh2676Isup2.hkl
A solution of AgClO4.H2O (0.023 g, 0.1 mmol) in methanol (10 ml) was carefully layered on a methanol/chloroform solution (5 ml/10 ml) of 3-(1H-pyrazol-1-yl)benzonitrile (0.017 g, 0.1 mmol) in a straight glass tube. About one week later, colourless single crystals of (I) suitable for X-ray analysis were obtained (yield 39%).
Carbon-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The oxygen atoms of the perchlorate anion are disordered over two positions. All Cl—O bond lengths were restrained to 1.44 (1) Å. The final difference Fourier map had a highest peak at 0.84 Å from atom O4 and a deepest hole at 0.73 Å from atom Ag1, but were otherwise featureless.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag2(ClO4)2(C10H7N3)2] | F(000) = 736 |
Mr = 753.02 | Dx = 1.997 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3269 reflections |
a = 7.8522 (13) Å | θ = 2.7–27.5° |
b = 10.6086 (17) Å | µ = 1.84 mm−1 |
c = 15.322 (2) Å | T = 173 K |
β = 101.100 (2)° | Prism, colourless |
V = 1252.5 (3) Å3 | 0.51 × 0.47 × 0.36 mm |
Z = 2 |
Siemens SMART CCD diffractometer | 2833 independent reflections |
Radiation source: fine-focus sealed tube | 2180 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.455, Tmax = 0.558 | k = −13→9 |
7721 measured reflections | l = −17→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0532P)2 + 1.7339P] where P = (Fo2 + 2Fc2)/3 |
2833 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.75 e Å−3 |
74 restraints | Δρmin = −0.59 e Å−3 |
[Ag2(ClO4)2(C10H7N3)2] | V = 1252.5 (3) Å3 |
Mr = 753.02 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.8522 (13) Å | µ = 1.84 mm−1 |
b = 10.6086 (17) Å | T = 173 K |
c = 15.322 (2) Å | 0.51 × 0.47 × 0.36 mm |
β = 101.100 (2)° |
Siemens SMART CCD diffractometer | 2833 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2180 reflections with I > 2σ(I) |
Tmin = 0.455, Tmax = 0.558 | Rint = 0.021 |
7721 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 74 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.75 e Å−3 |
2833 reflections | Δρmin = −0.59 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.76740 (6) | 0.39146 (4) | 0.86430 (3) | 0.07794 (19) | |
N1 | 1.0182 (5) | 0.3203 (4) | 0.9364 (2) | 0.0701 (10) | |
N2 | 1.0408 (5) | 0.2463 (4) | 1.0104 (2) | 0.0651 (9) | |
N3 | 0.4622 (7) | 0.5000 (5) | 1.1304 (3) | 0.0911 (14) | |
Cl1 | 0.84901 (17) | 0.60883 (10) | 0.70970 (7) | 0.0661 (3) | |
O1 | 0.7551 (17) | 0.6867 (11) | 0.7615 (9) | 0.135 (6) | 0.570 (11) |
O2 | 0.7442 (18) | 0.5787 (12) | 0.6285 (7) | 0.202 (8) | 0.570 (11) |
O3 | 0.9945 (14) | 0.6862 (10) | 0.6941 (9) | 0.176 (6) | 0.570 (11) |
O4 | 0.9186 (10) | 0.5048 (6) | 0.7585 (5) | 0.086 (3) | 0.570 (11) |
O1' | 0.720 (2) | 0.5094 (13) | 0.7054 (9) | 0.183 (8) | 0.430 (11) |
O2' | 0.8668 (17) | 0.6337 (11) | 0.6228 (5) | 0.107 (5) | 0.430 (11) |
O3' | 1.0098 (17) | 0.5589 (15) | 0.7614 (8) | 0.179 (9) | 0.430 (11) |
O4' | 0.7999 (18) | 0.7139 (10) | 0.7552 (7) | 0.085 (4) | 0.430 (11) |
C1 | 1.1968 (7) | 0.1905 (5) | 1.0250 (3) | 0.0783 (13) | |
H1 | 1.2412 | 0.1350 | 1.0726 | 0.094* | |
C2 | 1.2802 (7) | 0.2279 (6) | 0.9589 (4) | 0.0815 (14) | |
H2 | 1.3928 | 0.2041 | 0.9510 | 0.098* | |
C3 | 1.1662 (7) | 0.3073 (5) | 0.9066 (3) | 0.0782 (14) | |
H3 | 1.1897 | 0.3484 | 0.8551 | 0.094* | |
C4 | 0.9047 (6) | 0.2323 (4) | 1.0594 (3) | 0.0628 (11) | |
C5 | 0.8791 (8) | 0.1159 (5) | 1.0957 (3) | 0.0760 (13) | |
H5 | 0.9520 | 0.0468 | 1.0885 | 0.091* | |
C6 | 0.7462 (8) | 0.1014 (5) | 1.1426 (4) | 0.0865 (17) | |
H6 | 0.7288 | 0.0219 | 1.1681 | 0.104* | |
C7 | 0.6402 (8) | 0.2000 (6) | 1.1527 (3) | 0.0802 (15) | |
H7 | 0.5488 | 0.1893 | 1.1846 | 0.096* | |
C8 | 0.6672 (7) | 0.3159 (5) | 1.1158 (3) | 0.0674 (11) | |
C9 | 0.8030 (6) | 0.3330 (4) | 1.0700 (3) | 0.0626 (10) | |
H9 | 0.8240 | 0.4133 | 1.0468 | 0.075* | |
C10 | 0.5544 (8) | 0.4191 (6) | 1.1244 (3) | 0.0762 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0955 (3) | 0.0756 (3) | 0.0665 (3) | −0.0075 (2) | 0.0251 (2) | 0.00463 (17) |
N1 | 0.086 (3) | 0.074 (2) | 0.0521 (19) | −0.016 (2) | 0.0166 (18) | 0.0037 (17) |
N2 | 0.083 (3) | 0.063 (2) | 0.0512 (19) | −0.0112 (19) | 0.0176 (18) | −0.0030 (16) |
N3 | 0.103 (4) | 0.095 (3) | 0.084 (3) | −0.004 (3) | 0.039 (3) | 0.000 (3) |
Cl1 | 0.0891 (8) | 0.0551 (6) | 0.0545 (6) | −0.0027 (5) | 0.0151 (5) | 0.0009 (4) |
O1 | 0.158 (10) | 0.110 (9) | 0.157 (10) | 0.023 (7) | 0.079 (8) | 0.002 (7) |
O2 | 0.254 (15) | 0.164 (11) | 0.138 (11) | 0.034 (10) | −0.087 (11) | −0.050 (9) |
O3 | 0.217 (12) | 0.148 (9) | 0.187 (12) | −0.070 (8) | 0.100 (10) | 0.013 (8) |
O4 | 0.096 (4) | 0.076 (4) | 0.096 (4) | 0.022 (3) | 0.042 (3) | 0.038 (3) |
O1' | 0.246 (15) | 0.191 (13) | 0.128 (11) | −0.158 (12) | 0.079 (10) | −0.058 (9) |
O2' | 0.145 (10) | 0.127 (9) | 0.063 (6) | 0.017 (7) | 0.052 (7) | 0.033 (6) |
O3' | 0.164 (13) | 0.198 (15) | 0.135 (11) | 0.075 (11) | −0.069 (10) | −0.072 (10) |
O4' | 0.125 (9) | 0.069 (6) | 0.058 (5) | 0.016 (6) | 0.007 (5) | −0.009 (4) |
C1 | 0.091 (4) | 0.077 (3) | 0.067 (3) | 0.000 (3) | 0.016 (3) | 0.002 (2) |
C2 | 0.082 (3) | 0.092 (4) | 0.075 (3) | −0.010 (3) | 0.026 (3) | −0.016 (3) |
C3 | 0.094 (4) | 0.087 (3) | 0.059 (3) | −0.025 (3) | 0.028 (3) | −0.008 (2) |
C4 | 0.080 (3) | 0.063 (3) | 0.045 (2) | −0.016 (2) | 0.0128 (19) | −0.0027 (18) |
C5 | 0.101 (4) | 0.066 (3) | 0.061 (3) | −0.011 (3) | 0.016 (3) | 0.005 (2) |
C6 | 0.115 (5) | 0.075 (4) | 0.071 (3) | −0.025 (3) | 0.021 (3) | 0.019 (3) |
C7 | 0.093 (4) | 0.091 (4) | 0.058 (3) | −0.024 (3) | 0.021 (2) | 0.011 (2) |
C8 | 0.078 (3) | 0.076 (3) | 0.048 (2) | −0.014 (2) | 0.014 (2) | 0.000 (2) |
C9 | 0.084 (3) | 0.058 (2) | 0.047 (2) | −0.015 (2) | 0.016 (2) | 0.0004 (18) |
C10 | 0.087 (3) | 0.088 (4) | 0.058 (3) | −0.016 (3) | 0.025 (2) | 0.001 (2) |
Ag1—N3i | 2.154 (6) | Cl1—O3 | 1.463 (7) |
Ag1—N1 | 2.198 (4) | C1—C2 | 1.367 (7) |
Ag1—O4 | 2.495 (6) | C1—H1 | 0.9500 |
Ag1—O4'ii | 2.609 (6) | C2—C3 | 1.370 (8) |
N1—C3 | 1.335 (7) | C2—H2 | 0.9500 |
N1—N2 | 1.362 (5) | C3—H3 | 0.9500 |
N2—C1 | 1.340 (7) | C4—C9 | 1.362 (7) |
N2—C4 | 1.428 (6) | C4—C5 | 1.384 (6) |
N3—C10 | 1.137 (7) | C5—C6 | 1.385 (8) |
N3—Ag1i | 2.154 (6) | C5—H5 | 0.9500 |
Cl1—O4 | 1.385 (5) | C6—C7 | 1.364 (8) |
Cl1—O2 | 1.390 (6) | C6—H6 | 0.9500 |
Cl1—O2' | 1.391 (6) | C7—C8 | 1.387 (7) |
Cl1—O4' | 1.407 (7) | C7—H7 | 0.9500 |
Cl1—O1 | 1.442 (7) | C8—C9 | 1.396 (6) |
Cl1—O1' | 1.453 (7) | C8—C10 | 1.430 (8) |
Cl1—O3' | 1.455 (7) | C9—H9 | 0.9500 |
N3i—Ag1—N1 | 147.16 (17) | O4'—Cl1—O3 | 86.2 (8) |
N3i—Ag1—O4 | 105.89 (19) | O1—Cl1—O3 | 105.4 (6) |
N1—Ag1—O4 | 89.96 (19) | O1'—Cl1—O3 | 163.3 (7) |
N1—Ag1—O4'ii | 98.4 (19) | O3'—Cl1—O3 | 70.7 (9) |
N3i—Ag1—O4'ii | 110.8 (19) | Cl1—O4—Ag1 | 123.1 (4) |
C3—N1—N2 | 104.1 (4) | N2—C1—C2 | 107.5 (5) |
C3—N1—Ag1 | 128.2 (3) | N2—C1—H1 | 126.2 |
N2—N1—Ag1 | 125.2 (3) | C2—C1—H1 | 126.2 |
C1—N2—N1 | 111.2 (4) | C1—C2—C3 | 105.1 (5) |
C1—N2—C4 | 128.2 (4) | C1—C2—H2 | 127.5 |
N1—N2—C4 | 120.5 (4) | C3—C2—H2 | 127.5 |
C10—N3—Ag1i | 163.0 (5) | N1—C3—C2 | 112.1 (5) |
O4—Cl1—O2 | 113.8 (6) | N1—C3—H3 | 123.9 |
O4—Cl1—O2' | 124.4 (6) | C2—C3—H3 | 123.9 |
O2—Cl1—O2' | 48.6 (6) | C9—C4—C5 | 121.2 (4) |
O4—Cl1—O4' | 118.8 (6) | C9—C4—N2 | 119.8 (4) |
O2—Cl1—O4' | 117.0 (8) | C5—C4—N2 | 119.0 (5) |
O2'—Cl1—O4' | 114.3 (6) | C4—C5—C6 | 119.3 (5) |
O4—Cl1—O1 | 110.5 (6) | C4—C5—H5 | 120.3 |
O2—Cl1—O1 | 110.3 (7) | C6—C5—H5 | 120.3 |
O2'—Cl1—O1 | 125.1 (8) | C7—C6—C5 | 120.7 (5) |
O4—Cl1—O1' | 69.2 (7) | C7—C6—H6 | 119.6 |
O2—Cl1—O1' | 60.4 (7) | C5—C6—H6 | 119.6 |
O2'—Cl1—O1' | 106.9 (6) | C6—C7—C8 | 119.3 (5) |
O4'—Cl1—O1' | 110.1 (7) | C6—C7—H7 | 120.4 |
O1—Cl1—O1' | 90.9 (9) | C8—C7—H7 | 120.4 |
O2—Cl1—O3' | 134.9 (8) | C7—C8—C9 | 120.8 (5) |
O2'—Cl1—O3' | 110.7 (7) | C7—C8—C10 | 119.7 (5) |
O4'—Cl1—O3' | 108.1 (6) | C9—C8—C10 | 119.5 (4) |
O1—Cl1—O3' | 113.0 (8) | C4—C9—C8 | 118.7 (4) |
O1'—Cl1—O3' | 106.5 (7) | C4—C9—H9 | 120.7 |
O4—Cl1—O3 | 107.2 (6) | C8—C9—H9 | 120.7 |
O2—Cl1—O3 | 109.2 (7) | N3—C10—C8 | 178.7 (6) |
O2'—Cl1—O3 | 60.8 (6) | ||
N3i—Ag1—N1—C3 | −142.6 (4) | N2—C1—C2—C3 | 0.2 (6) |
O4—Ag1—N1—C3 | −22.4 (5) | N2—N1—C3—C2 | 0.2 (6) |
N3i—Ag1—N1—N2 | 58.4 (5) | Ag1—N1—C3—C2 | −162.3 (4) |
O4—Ag1—N1—N2 | 178.6 (4) | C1—C2—C3—N1 | −0.2 (6) |
C3—N1—N2—C1 | 0.0 (5) | C1—N2—C4—C9 | 144.8 (5) |
Ag1—N1—N2—C1 | 163.1 (3) | N1—N2—C4—C9 | −38.0 (6) |
C3—N1—N2—C4 | −177.7 (4) | C1—N2—C4—C5 | −34.9 (7) |
Ag1—N1—N2—C4 | −14.5 (5) | N1—N2—C4—C5 | 142.3 (4) |
O2—Cl1—O4—Ag1 | −88.2 (10) | C9—C4—C5—C6 | 0.9 (7) |
O2'—Cl1—O4—Ag1 | −143.1 (8) | N2—C4—C5—C6 | −179.4 (5) |
O4'—Cl1—O4—Ag1 | 55.7 (10) | C4—C5—C6—C7 | 0.5 (8) |
O1—Cl1—O4—Ag1 | 36.5 (9) | C5—C6—C7—C8 | −0.4 (8) |
O1'—Cl1—O4—Ag1 | −46.4 (7) | C6—C7—C8—C9 | −1.1 (8) |
O3'—Cl1—O4—Ag1 | 138.0 (15) | C6—C7—C8—C10 | 178.7 (5) |
O3—Cl1—O4—Ag1 | 150.9 (7) | C5—C4—C9—C8 | −2.3 (7) |
N3i—Ag1—O4—Cl1 | −5.6 (7) | N2—C4—C9—C8 | 177.9 (4) |
N1—Ag1—O4—Cl1 | −156.5 (6) | C7—C8—C9—C4 | 2.4 (7) |
N1—N2—C1—C2 | −0.2 (6) | C10—C8—C9—C4 | −177.4 (4) |
C4—N2—C1—C2 | 177.3 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Ag2(ClO4)2(C10H7N3)2] |
Mr | 753.02 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 7.8522 (13), 10.6086 (17), 15.322 (2) |
β (°) | 101.100 (2) |
V (Å3) | 1252.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.84 |
Crystal size (mm) | 0.51 × 0.47 × 0.36 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.455, 0.558 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7721, 2833, 2180 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.114, 0.96 |
No. of reflections | 2833 |
No. of parameters | 209 |
No. of restraints | 74 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.75, −0.59 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).
Ag1—N3i | 2.154 (6) | Ag1—O4 | 2.495 (6) |
Ag1—N1 | 2.198 (4) | Ag1—O4'ii | 2.609 (6) |
N3i—Ag1—N1 | 147.16 (17) | N1—Ag1—O4'ii | 98.4 (19) |
N3i—Ag1—O4 | 105.89 (19) | N3i—Ag1—O4'ii | 110.8 (19) |
N1—Ag1—O4 | 89.96 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis. We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (grant No. 2008B150008) and the Science and Technology Key Task of Henan Province (grant No. 0624040011).
References
Antonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Kataeva, O., Lindoy, L. F., McMurtrie, J. C., Steel, P. J., Sumby, C. J. & Wenzel, M. (2006). Dalton Trans. pp. 4783–4794. Web of Science CSD CrossRef Google Scholar
Bourlier, J., Hosseini, M. W., Planeix, J.-M. & Kyritsakas, N. (2007). New J. Chem. 31, 25–32. Web of Science CSD CrossRef CAS Google Scholar
Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710–5713. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Silver coordination polymers have been widely studied not only for their utility in special functional materials, but also for their fascinating structures derived from variable coordination numbers from 2 to 6 of silver atoms and different conformations around silver metal centres (Sumby & Hardie, 2005; Niu et al., 2007). Nitrogen heterocycle organic compounds with multiple pyridyl, or pyrazole, or carbonitrile nitrogen atoms are good bridging organic ligands in coordination interactions with silver atoms (Antonioli et al., 2006; Bourlier et al., 2007). Herein we communicate the crystal structure of one silver coordination dimer with one asymmetric organic bridging ligand, 3-(1H-pyrazol-1-yl)benzonitrile, with carbonitrile and pyrazole coordinating groups.
In the title compound, (I), the central silver ion is coordinated by two nitrogen atoms [N1, N3i; Symmetry codes: (i) -x + 1, -y + 1, -z + 2] of carbonitrile and pyrazole groups from two different 3-(1H-pyrazol-1-yl)benzonitrile molecule and one oxygen atom [O4] from one perchlorate anion, forming the primary distorted T-shape coordination environment around the silver atom (Fig .1). The O atoms of the perchlorate ligand are disodered over two sites with maximum and minimum occupancies of 0.57 and 0.43. While an O atom of the major component coordinates to the unique AgI ion, an O atom of the minor component coordinates to a symmetry related AgI ion. The overall effect of the disorder is that two different slightly distorted T-shaped coordination enviroments are formed with the two Ag—O disorder components being approximately orthogonal to each other (Fig. 3).
In (I), the 3-(1H-pyrazol-1-yl)benzonitrile molecule ligand acts as a µ2-bridging ligand. Two ligands each bridge two metal centres through one carbonitrile nitrogen atom and one pyrazole nitrogen atom to form a small centrosymmetric 2+2 Ag2L2 (L = ligand) ring as a constructing unit (Fig. 1). The Ag···Ag separation in one ring is about 6.852 (5) Å. There are weak Ag···O interactions between Ag1 and O1 and Ag1 and O3 with the separations of about 2.89 and 3.01 Å, respectively [Ag1···O1' = 2.70 Å]. Supramolecular two-dimensional layers are constructed through the strong Ag—O bonds and weak Ag···O interactions between perchlorate anions and silver atoms of dinuclear rings (Fig. 2). The layers lie approximately parallel to the bc plane.