metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1332-m1333

Bis[μ-3-(1H-pyrazol-1-yl)benzo­nitrile-κ2N:N′]bis­­[perchloratosilver(I)]

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 31 July 2008; accepted 23 September 2008; online 27 September 2008)

In the title centrosymmetric complex, [Ag2(ClO4)2(C10H7N3)2], the unique AgI ion is coordinated by an N atom from a carbonitrile group, an N atom from a symmetry-related pyrazole group and an O atom of a perchlorate ligand to form a distorted T-shaped environment. Two 3-(1H-pyrazol-1-yl)benzonitrile ligands each bridge two AgI ions to form a dinuclear complex. In the crystal structure, there are weak Ag⋯O inter­actions within the range 2.70–3.01 Å linking dimeric units into layers approximately parallel to (100). The O atoms of the perchlorate ligand are disordered over two sites with occupancies of 0.570 (11) and 0.430 (11), respectively.

Related literature

For background information, see: Antonioli et al. (2006[Antonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Kataeva, O., Lindoy, L. F., McMurtrie, J. C., Steel, P. J., Sumby, C. J. & Wenzel, M. (2006). Dalton Trans. pp. 4783-4794.]); Bourlier et al. (2007[Bourlier, J., Hosseini, M. W., Planeix, J.-M. & Kyritsakas, N. (2007). New J. Chem. 31, 25-32.]); Niu et al. (2007[Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710-5713.]); Sumby & Hardie (2005[Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(ClO4)2(C10H7N3)2]

  • Mr = 753.02

  • Monoclinic, P 21 /n

  • a = 7.8522 (13) Å

  • b = 10.6086 (17) Å

  • c = 15.322 (2) Å

  • β = 101.100 (2)°

  • V = 1252.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 173 (2) K

  • 0.51 × 0.47 × 0.36 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.455, Tmax = 0.558 (expected range = 0.421–0.517)

  • 7721 measured reflections

  • 2833 independent reflections

  • 2180 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 0.96

  • 2833 reflections

  • 209 parameters

  • 74 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N3i 2.154 (6)
Ag1—N1 2.198 (4)
Ag1—O4 2.495 (6)
Ag1—O4′ii 2.609 (6)
N3i—Ag1—N1 147.16 (17)
N3i—Ag1—O4 105.89 (19)
N1—Ag1—O4 89.96 (19)
N1—Ag1—O4′ii 98.4 (19)
N3i—Ag1—O4′ii 110.8 (19)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Silver coordination polymers have been widely studied not only for their utility in special functional materials, but also for their fascinating structures derived from variable coordination numbers from 2 to 6 of silver atoms and different conformations around silver metal centres (Sumby & Hardie, 2005; Niu et al., 2007). Nitrogen heterocycle organic compounds with multiple pyridyl, or pyrazole, or carbonitrile nitrogen atoms are good bridging organic ligands in coordination interactions with silver atoms (Antonioli et al., 2006; Bourlier et al., 2007). Herein we communicate the crystal structure of one silver coordination dimer with one asymmetric organic bridging ligand, 3-(1H-pyrazol-1-yl)benzonitrile, with carbonitrile and pyrazole coordinating groups.

In the title compound, (I), the central silver ion is coordinated by two nitrogen atoms [N1, N3i; Symmetry codes: (i) -x + 1, -y + 1, -z + 2] of carbonitrile and pyrazole groups from two different 3-(1H-pyrazol-1-yl)benzonitrile molecule and one oxygen atom [O4] from one perchlorate anion, forming the primary distorted T-shape coordination environment around the silver atom (Fig .1). The O atoms of the perchlorate ligand are disodered over two sites with maximum and minimum occupancies of 0.57 and 0.43. While an O atom of the major component coordinates to the unique AgI ion, an O atom of the minor component coordinates to a symmetry related AgI ion. The overall effect of the disorder is that two different slightly distorted T-shaped coordination enviroments are formed with the two Ag—O disorder components being approximately orthogonal to each other (Fig. 3).

In (I), the 3-(1H-pyrazol-1-yl)benzonitrile molecule ligand acts as a µ2-bridging ligand. Two ligands each bridge two metal centres through one carbonitrile nitrogen atom and one pyrazole nitrogen atom to form a small centrosymmetric 2+2 Ag2L2 (L = ligand) ring as a constructing unit (Fig. 1). The Ag···Ag separation in one ring is about 6.852 (5) Å. There are weak Ag···O interactions between Ag1 and O1 and Ag1 and O3 with the separations of about 2.89 and 3.01 Å, respectively [Ag1···O1' = 2.70 Å]. Supramolecular two-dimensional layers are constructed through the strong Ag—O bonds and weak Ag···O interactions between perchlorate anions and silver atoms of dinuclear rings (Fig. 2). The layers lie approximately parallel to the bc plane.

Related literature top

For background information, see: Antonioli et al. (2006); Bourlier et al. (2007); Niu et al. (2007); Sumby & Hardie (2005).

Experimental top

A solution of AgClO4.H2O (0.023 g, 0.1 mmol) in methanol (10 ml) was carefully layered on a methanol/chloroform solution (5 ml/10 ml) of 3-(1H-pyrazol-1-yl)benzonitrile (0.017 g, 0.1 mmol) in a straight glass tube. About one week later, colourless single crystals of (I) suitable for X-ray analysis were obtained (yield 39%).

Refinement top

Carbon-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The oxygen atoms of the perchlorate anion are disordered over two positions. All Cl—O bond lengths were restrained to 1.44 (1) Å. The final difference Fourier map had a highest peak at 0.84 Å from atom O4 and a deepest hole at 0.73 Å from atom Ag1, but were otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the AgI coordination environment in the dimeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x + 1, -y + 1, -z + 2] The minor component of disorder is shown with open bonds.
[Figure 2] Fig. 2. Part of the crystal structure of (I). Dashed lines show weak Ag···O interactions. The minor component of disorder is not shown.
[Figure 3] Fig. 3. Part of the crystal structure showing the major and minor (dashed bonds) components of disorder.
Bis[µ-3-(1H-pyrazol-1-yl)benzonitrile- κ2N:N']bis[perchloratosilver(I)] top
Crystal data top
[Ag2(ClO4)2(C10H7N3)2]F(000) = 736
Mr = 753.02Dx = 1.997 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3269 reflections
a = 7.8522 (13) Åθ = 2.7–27.5°
b = 10.6086 (17) ŵ = 1.84 mm1
c = 15.322 (2) ÅT = 173 K
β = 101.100 (2)°Prism, colourless
V = 1252.5 (3) Å30.51 × 0.47 × 0.36 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
2833 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.455, Tmax = 0.558k = 139
7721 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0532P)2 + 1.7339P]
where P = (Fo2 + 2Fc2)/3
2833 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.75 e Å3
74 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ag2(ClO4)2(C10H7N3)2]V = 1252.5 (3) Å3
Mr = 753.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8522 (13) ŵ = 1.84 mm1
b = 10.6086 (17) ÅT = 173 K
c = 15.322 (2) Å0.51 × 0.47 × 0.36 mm
β = 101.100 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2833 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2180 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.558Rint = 0.021
7721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04274 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.96Δρmax = 0.75 e Å3
2833 reflectionsΔρmin = 0.59 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.76740 (6)0.39146 (4)0.86430 (3)0.07794 (19)
N11.0182 (5)0.3203 (4)0.9364 (2)0.0701 (10)
N21.0408 (5)0.2463 (4)1.0104 (2)0.0651 (9)
N30.4622 (7)0.5000 (5)1.1304 (3)0.0911 (14)
Cl10.84901 (17)0.60883 (10)0.70970 (7)0.0661 (3)
O10.7551 (17)0.6867 (11)0.7615 (9)0.135 (6)0.570 (11)
O20.7442 (18)0.5787 (12)0.6285 (7)0.202 (8)0.570 (11)
O30.9945 (14)0.6862 (10)0.6941 (9)0.176 (6)0.570 (11)
O40.9186 (10)0.5048 (6)0.7585 (5)0.086 (3)0.570 (11)
O1'0.720 (2)0.5094 (13)0.7054 (9)0.183 (8)0.430 (11)
O2'0.8668 (17)0.6337 (11)0.6228 (5)0.107 (5)0.430 (11)
O3'1.0098 (17)0.5589 (15)0.7614 (8)0.179 (9)0.430 (11)
O4'0.7999 (18)0.7139 (10)0.7552 (7)0.085 (4)0.430 (11)
C11.1968 (7)0.1905 (5)1.0250 (3)0.0783 (13)
H11.24120.13501.07260.094*
C21.2802 (7)0.2279 (6)0.9589 (4)0.0815 (14)
H21.39280.20410.95100.098*
C31.1662 (7)0.3073 (5)0.9066 (3)0.0782 (14)
H31.18970.34840.85510.094*
C40.9047 (6)0.2323 (4)1.0594 (3)0.0628 (11)
C50.8791 (8)0.1159 (5)1.0957 (3)0.0760 (13)
H50.95200.04681.08850.091*
C60.7462 (8)0.1014 (5)1.1426 (4)0.0865 (17)
H60.72880.02191.16810.104*
C70.6402 (8)0.2000 (6)1.1527 (3)0.0802 (15)
H70.54880.18931.18460.096*
C80.6672 (7)0.3159 (5)1.1158 (3)0.0674 (11)
C90.8030 (6)0.3330 (4)1.0700 (3)0.0626 (10)
H90.82400.41331.04680.075*
C100.5544 (8)0.4191 (6)1.1244 (3)0.0762 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0955 (3)0.0756 (3)0.0665 (3)0.0075 (2)0.0251 (2)0.00463 (17)
N10.086 (3)0.074 (2)0.0521 (19)0.016 (2)0.0166 (18)0.0037 (17)
N20.083 (3)0.063 (2)0.0512 (19)0.0112 (19)0.0176 (18)0.0030 (16)
N30.103 (4)0.095 (3)0.084 (3)0.004 (3)0.039 (3)0.000 (3)
Cl10.0891 (8)0.0551 (6)0.0545 (6)0.0027 (5)0.0151 (5)0.0009 (4)
O10.158 (10)0.110 (9)0.157 (10)0.023 (7)0.079 (8)0.002 (7)
O20.254 (15)0.164 (11)0.138 (11)0.034 (10)0.087 (11)0.050 (9)
O30.217 (12)0.148 (9)0.187 (12)0.070 (8)0.100 (10)0.013 (8)
O40.096 (4)0.076 (4)0.096 (4)0.022 (3)0.042 (3)0.038 (3)
O1'0.246 (15)0.191 (13)0.128 (11)0.158 (12)0.079 (10)0.058 (9)
O2'0.145 (10)0.127 (9)0.063 (6)0.017 (7)0.052 (7)0.033 (6)
O3'0.164 (13)0.198 (15)0.135 (11)0.075 (11)0.069 (10)0.072 (10)
O4'0.125 (9)0.069 (6)0.058 (5)0.016 (6)0.007 (5)0.009 (4)
C10.091 (4)0.077 (3)0.067 (3)0.000 (3)0.016 (3)0.002 (2)
C20.082 (3)0.092 (4)0.075 (3)0.010 (3)0.026 (3)0.016 (3)
C30.094 (4)0.087 (3)0.059 (3)0.025 (3)0.028 (3)0.008 (2)
C40.080 (3)0.063 (3)0.045 (2)0.016 (2)0.0128 (19)0.0027 (18)
C50.101 (4)0.066 (3)0.061 (3)0.011 (3)0.016 (3)0.005 (2)
C60.115 (5)0.075 (4)0.071 (3)0.025 (3)0.021 (3)0.019 (3)
C70.093 (4)0.091 (4)0.058 (3)0.024 (3)0.021 (2)0.011 (2)
C80.078 (3)0.076 (3)0.048 (2)0.014 (2)0.014 (2)0.000 (2)
C90.084 (3)0.058 (2)0.047 (2)0.015 (2)0.016 (2)0.0004 (18)
C100.087 (3)0.088 (4)0.058 (3)0.016 (3)0.025 (2)0.001 (2)
Geometric parameters (Å, º) top
Ag1—N3i2.154 (6)Cl1—O31.463 (7)
Ag1—N12.198 (4)C1—C21.367 (7)
Ag1—O42.495 (6)C1—H10.9500
Ag1—O4'ii2.609 (6)C2—C31.370 (8)
N1—C31.335 (7)C2—H20.9500
N1—N21.362 (5)C3—H30.9500
N2—C11.340 (7)C4—C91.362 (7)
N2—C41.428 (6)C4—C51.384 (6)
N3—C101.137 (7)C5—C61.385 (8)
N3—Ag1i2.154 (6)C5—H50.9500
Cl1—O41.385 (5)C6—C71.364 (8)
Cl1—O21.390 (6)C6—H60.9500
Cl1—O2'1.391 (6)C7—C81.387 (7)
Cl1—O4'1.407 (7)C7—H70.9500
Cl1—O11.442 (7)C8—C91.396 (6)
Cl1—O1'1.453 (7)C8—C101.430 (8)
Cl1—O3'1.455 (7)C9—H90.9500
N3i—Ag1—N1147.16 (17)O4'—Cl1—O386.2 (8)
N3i—Ag1—O4105.89 (19)O1—Cl1—O3105.4 (6)
N1—Ag1—O489.96 (19)O1'—Cl1—O3163.3 (7)
N1—Ag1—O4'ii98.4 (19)O3'—Cl1—O370.7 (9)
N3i—Ag1—O4'ii110.8 (19)Cl1—O4—Ag1123.1 (4)
C3—N1—N2104.1 (4)N2—C1—C2107.5 (5)
C3—N1—Ag1128.2 (3)N2—C1—H1126.2
N2—N1—Ag1125.2 (3)C2—C1—H1126.2
C1—N2—N1111.2 (4)C1—C2—C3105.1 (5)
C1—N2—C4128.2 (4)C1—C2—H2127.5
N1—N2—C4120.5 (4)C3—C2—H2127.5
C10—N3—Ag1i163.0 (5)N1—C3—C2112.1 (5)
O4—Cl1—O2113.8 (6)N1—C3—H3123.9
O4—Cl1—O2'124.4 (6)C2—C3—H3123.9
O2—Cl1—O2'48.6 (6)C9—C4—C5121.2 (4)
O4—Cl1—O4'118.8 (6)C9—C4—N2119.8 (4)
O2—Cl1—O4'117.0 (8)C5—C4—N2119.0 (5)
O2'—Cl1—O4'114.3 (6)C4—C5—C6119.3 (5)
O4—Cl1—O1110.5 (6)C4—C5—H5120.3
O2—Cl1—O1110.3 (7)C6—C5—H5120.3
O2'—Cl1—O1125.1 (8)C7—C6—C5120.7 (5)
O4—Cl1—O1'69.2 (7)C7—C6—H6119.6
O2—Cl1—O1'60.4 (7)C5—C6—H6119.6
O2'—Cl1—O1'106.9 (6)C6—C7—C8119.3 (5)
O4'—Cl1—O1'110.1 (7)C6—C7—H7120.4
O1—Cl1—O1'90.9 (9)C8—C7—H7120.4
O2—Cl1—O3'134.9 (8)C7—C8—C9120.8 (5)
O2'—Cl1—O3'110.7 (7)C7—C8—C10119.7 (5)
O4'—Cl1—O3'108.1 (6)C9—C8—C10119.5 (4)
O1—Cl1—O3'113.0 (8)C4—C9—C8118.7 (4)
O1'—Cl1—O3'106.5 (7)C4—C9—H9120.7
O4—Cl1—O3107.2 (6)C8—C9—H9120.7
O2—Cl1—O3109.2 (7)N3—C10—C8178.7 (6)
O2'—Cl1—O360.8 (6)
N3i—Ag1—N1—C3142.6 (4)N2—C1—C2—C30.2 (6)
O4—Ag1—N1—C322.4 (5)N2—N1—C3—C20.2 (6)
N3i—Ag1—N1—N258.4 (5)Ag1—N1—C3—C2162.3 (4)
O4—Ag1—N1—N2178.6 (4)C1—C2—C3—N10.2 (6)
C3—N1—N2—C10.0 (5)C1—N2—C4—C9144.8 (5)
Ag1—N1—N2—C1163.1 (3)N1—N2—C4—C938.0 (6)
C3—N1—N2—C4177.7 (4)C1—N2—C4—C534.9 (7)
Ag1—N1—N2—C414.5 (5)N1—N2—C4—C5142.3 (4)
O2—Cl1—O4—Ag188.2 (10)C9—C4—C5—C60.9 (7)
O2'—Cl1—O4—Ag1143.1 (8)N2—C4—C5—C6179.4 (5)
O4'—Cl1—O4—Ag155.7 (10)C4—C5—C6—C70.5 (8)
O1—Cl1—O4—Ag136.5 (9)C5—C6—C7—C80.4 (8)
O1'—Cl1—O4—Ag146.4 (7)C6—C7—C8—C91.1 (8)
O3'—Cl1—O4—Ag1138.0 (15)C6—C7—C8—C10178.7 (5)
O3—Cl1—O4—Ag1150.9 (7)C5—C4—C9—C82.3 (7)
N3i—Ag1—O4—Cl15.6 (7)N2—C4—C9—C8177.9 (4)
N1—Ag1—O4—Cl1156.5 (6)C7—C8—C9—C42.4 (7)
N1—N2—C1—C20.2 (6)C10—C8—C9—C4177.4 (4)
C4—N2—C1—C2177.3 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag2(ClO4)2(C10H7N3)2]
Mr753.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.8522 (13), 10.6086 (17), 15.322 (2)
β (°) 101.100 (2)
V3)1252.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.51 × 0.47 × 0.36
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.455, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
7721, 2833, 2180
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 0.96
No. of reflections2833
No. of parameters209
No. of restraints74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.59

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N3i2.154 (6)Ag1—O42.495 (6)
Ag1—N12.198 (4)Ag1—O4'ii2.609 (6)
N3i—Ag1—N1147.16 (17)N1—Ag1—O4'ii98.4 (19)
N3i—Ag1—O4105.89 (19)N3i—Ag1—O4'ii110.8 (19)
N1—Ag1—O489.96 (19)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis. We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (grant No. 2008B150008) and the Science and Technology Key Task of Henan Province (grant No. 0624040011).

References

First citationAntonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Kataeva, O., Lindoy, L. F., McMurtrie, J. C., Steel, P. J., Sumby, C. J. & Wenzel, M. (2006). Dalton Trans. pp. 4783–4794.  Web of Science CSD CrossRef Google Scholar
First citationBourlier, J., Hosseini, M. W., Planeix, J.-M. & Kyritsakas, N. (2007). New J. Chem. 31, 25–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710–5713.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1332-m1333
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds