metal-organic compounds
Diaquabis(4-bromo-2-formylphenolato-κ2O,O′)cobalt(II)
aThe Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment (Department of Resources and Environmental Engineering, Guilin University of Technology), Guilin 541004, People's Republic of China
*Correspondence e-mail: xiaoyuzsh@yahoo.com.cn
In the title complex, [Co(C7H4BrO2)2(H2O)2], the CoII ion, which lies on a crystallographic inversion center, is coordinated by four O atoms from two bidentate 4-bromo-2-formylphenolate ligands and two O atoms from two water ligands in a slightly distorted octahedral environment. In the one-dimensional chains are formed through intermolecular O—H⋯O hydrogen bonds, which are further linked into a two-dimensional network through Br⋯Br interactions [Br⋯Br = 3.772 (4) Å].
Related literature
For related literature, see: Cohen et al. (1964); Desiraju (1989); Mathews & Manohar (1991); Willey et al. (1994); Zaman et al. (2004); Zhang et al. (2007); Zordan et al. (2005); Chen et al. (2008).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536808026068/lh2677sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026068/lh2677Isup2.hkl
Distilled water (30 ml) containing 5-bromo-2-hydroxy-benzaldehyde (0.201 g, 1 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid (0.111 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of cobalt chloride (0.237 g, 1 mmol) was added to the resulting solution and stirred for 2 h and filtrate. the filtration was left to stand at room temperature. After 12 days, red crystals were produced from the filtrate (yield: 76.4 %, based on Co).
H atoms were positioned geometrically and were treated as riding atoms, with C–H distances of 0.93 Å and Uiso(H) = 1.2 Ueq(C), and with and O–H distance of 0.85 Å and Uiso(H) = 1.5 Ueq(O) .
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of (I), showing 30% probability displacement ellipsoids [symmetry code: (A) -x, -y, -z+1] | |
Fig. 2. 1-D chain of (I). Dashed lines indicate hydrogen bonds. | |
Fig. 3. 2-D structure of (I). Blue dashed lines indicate Br..Br interactions and yellow dashed lnies show hydrogen bonds. |
[Co(C7H4BrO2)2(H2O)2] | F(000) = 964 |
Mr = 494.99 | Dx = 2.074 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3884 reflections |
a = 29.527 (5) Å | θ = 2.8–26.0° |
b = 4.7406 (8) Å | µ = 6.15 mm−1 |
c = 11.6314 (18) Å | T = 293 K |
β = 103.162 (3)° | Prism, red |
V = 1585.3 (4) Å3 | 0.21 × 0.19 × 0.19 mm |
Z = 4 |
Bruker SMART-CCD diffractometer | 1290 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 26.0°, θmin = 2.8° |
ϕ and ω scans | h = −27→36 |
3884 measured reflections | k = −5→5 |
1553 independent reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0409P)2 + 2.4257P] where P = (Fo2 + 2Fc2)/3 |
1553 reflections | (Δ/σ)max < 0.001 |
106 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Co(C7H4BrO2)2(H2O)2] | V = 1585.3 (4) Å3 |
Mr = 494.99 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 29.527 (5) Å | µ = 6.15 mm−1 |
b = 4.7406 (8) Å | T = 293 K |
c = 11.6314 (18) Å | 0.21 × 0.19 × 0.19 mm |
β = 103.162 (3)° |
Bruker SMART-CCD diffractometer | 1290 reflections with I > 2σ(I) |
3884 measured reflections | Rint = 0.033 |
1553 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.55 e Å−3 |
1553 reflections | Δρmin = −0.32 e Å−3 |
106 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.0000 | 0.0000 | 0.5000 | 0.0288 (2) | |
Br1 | 0.222905 (17) | 0.41219 (14) | 0.34123 (5) | 0.0652 (2) | |
O1 | 0.03315 (9) | −0.2051 (5) | 0.3818 (2) | 0.0354 (6) | |
O2 | 0.05893 (9) | 0.2221 (5) | 0.5574 (2) | 0.0333 (6) | |
O3 | 0.02353 (10) | −0.3049 (5) | 0.6373 (2) | 0.0377 (6) | |
H3B | 0.0416 | −0.4195 | 0.6135 | 0.057* | |
H3 | 0.0003 | −0.3971 | 0.6490 | 0.057* | |
C1 | 0.09460 (13) | 0.2474 (8) | 0.5103 (3) | 0.0309 (8) | |
C2 | 0.13013 (14) | 0.4390 (9) | 0.5592 (4) | 0.0405 (10) | |
H2 | 0.1280 | 0.5390 | 0.6266 | 0.049* | |
C3 | 0.16768 (15) | 0.4831 (10) | 0.5110 (4) | 0.0447 (11) | |
H3A | 0.1908 | 0.6094 | 0.5463 | 0.054* | |
C4 | 0.17148 (14) | 0.3393 (10) | 0.4089 (4) | 0.0421 (10) | |
C5 | 0.13865 (13) | 0.1447 (9) | 0.3593 (3) | 0.0377 (9) | |
H5 | 0.1419 | 0.0447 | 0.2928 | 0.045* | |
C6 | 0.09989 (13) | 0.0949 (8) | 0.4087 (3) | 0.0304 (8) | |
C7 | 0.06866 (15) | −0.1242 (8) | 0.3544 (3) | 0.0367 (9) | |
H7 | 0.0763 | −0.2157 | 0.2907 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0330 (4) | 0.0264 (4) | 0.0284 (4) | −0.0043 (3) | 0.0104 (3) | −0.0022 (3) |
Br1 | 0.0404 (3) | 0.1038 (5) | 0.0569 (3) | −0.0135 (3) | 0.0226 (2) | 0.0066 (3) |
O1 | 0.0411 (16) | 0.0322 (14) | 0.0362 (15) | −0.0047 (12) | 0.0157 (12) | −0.0056 (11) |
O2 | 0.0323 (15) | 0.0353 (15) | 0.0340 (14) | −0.0067 (12) | 0.0114 (12) | −0.0080 (11) |
O3 | 0.0474 (17) | 0.0312 (14) | 0.0364 (15) | −0.0001 (12) | 0.0138 (13) | −0.0008 (11) |
C1 | 0.031 (2) | 0.032 (2) | 0.030 (2) | 0.0007 (16) | 0.0078 (16) | 0.0034 (15) |
C2 | 0.037 (2) | 0.049 (3) | 0.036 (2) | −0.0060 (19) | 0.0098 (19) | −0.0067 (18) |
C3 | 0.035 (2) | 0.054 (3) | 0.043 (3) | −0.012 (2) | 0.006 (2) | 0.001 (2) |
C4 | 0.031 (2) | 0.056 (3) | 0.041 (2) | −0.003 (2) | 0.0123 (18) | 0.009 (2) |
C5 | 0.037 (2) | 0.048 (3) | 0.031 (2) | 0.0001 (19) | 0.0122 (17) | 0.0015 (18) |
C6 | 0.034 (2) | 0.0287 (19) | 0.0287 (19) | 0.0008 (16) | 0.0062 (16) | 0.0003 (15) |
C7 | 0.045 (3) | 0.038 (2) | 0.032 (2) | 0.0022 (19) | 0.0177 (18) | −0.0033 (17) |
Co1—O2i | 2.013 (2) | C1—C2 | 1.406 (6) |
Co1—O2 | 2.013 (2) | C1—C6 | 1.424 (5) |
Co1—O1 | 2.099 (2) | C2—C3 | 1.368 (6) |
Co1—O1i | 2.099 (2) | C2—H2 | 0.9300 |
Co1—O3i | 2.149 (3) | C3—C4 | 1.395 (6) |
Co1—O3 | 2.149 (3) | C3—H3A | 0.9300 |
Br1—C4 | 1.894 (4) | C4—C5 | 1.367 (6) |
O1—C7 | 1.225 (5) | C5—C6 | 1.412 (5) |
O2—C1 | 1.299 (4) | C5—H5 | 0.9300 |
O3—H3B | 0.8500 | C6—C7 | 1.436 (6) |
O3—H3 | 0.8500 | C7—H7 | 0.9300 |
O2i—Co1—O2 | 180 | O2—C1—C6 | 123.8 (3) |
O2i—Co1—O1 | 92.14 (10) | C2—C1—C6 | 116.8 (3) |
O2—Co1—O1 | 87.86 (10) | C3—C2—C1 | 122.1 (4) |
O2i—Co1—O1i | 87.86 (10) | C3—C2—H2 | 118.9 |
O2—Co1—O1i | 92.14 (10) | C1—C2—H2 | 118.9 |
O1—Co1—O1i | 180 | C2—C3—C4 | 120.3 (4) |
O2i—Co1—O3i | 89.80 (10) | C2—C3—H3A | 119.9 |
O2—Co1—O3i | 90.20 (10) | C4—C3—H3A | 119.9 |
O1—Co1—O3i | 86.83 (10) | C5—C4—C3 | 120.1 (4) |
O1i—Co1—O3i | 93.17 (10) | C5—C4—Br1 | 120.4 (3) |
O2i—Co1—O3 | 90.20 (10) | C3—C4—Br1 | 119.5 (3) |
O2—Co1—O3 | 89.80 (10) | C4—C5—C6 | 120.3 (4) |
O1—Co1—O3 | 93.17 (10) | C4—C5—H5 | 119.9 |
O1i—Co1—O3 | 86.83 (10) | C6—C5—H5 | 119.9 |
O3i—Co1—O3 | 180 | C5—C6—C1 | 120.3 (3) |
C7—O1—Co1 | 125.4 (2) | C5—C6—C7 | 116.2 (3) |
C1—O2—Co1 | 129.1 (2) | C1—C6—C7 | 123.5 (3) |
Co1—O3—H3B | 107.9 | O1—C7—C6 | 127.9 (4) |
Co1—O3—H3 | 109.2 | O1—C7—H7 | 116.1 |
H3B—O3—H3 | 108.2 | C6—C7—H7 | 116.1 |
O2—C1—C2 | 119.4 (3) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1ii | 0.85 | 2.12 | 2.842 (4) | 142 |
O3—H3B···O2iii | 0.85 | 1.93 | 2.725 (4) | 155 |
Symmetry codes: (ii) −x, −y−1, −z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C7H4BrO2)2(H2O)2] |
Mr | 494.99 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 29.527 (5), 4.7406 (8), 11.6314 (18) |
β (°) | 103.162 (3) |
V (Å3) | 1585.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.15 |
Crystal size (mm) | 0.21 × 0.19 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART-CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3884, 1553, 1290 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.095, 1.04 |
No. of reflections | 1553 |
No. of parameters | 106 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.32 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).
Co1—O2 | 2.013 (2) | Co1—O3 | 2.149 (3) |
Co1—O1 | 2.099 (2) | ||
O2i—Co1—O2 | 180 | O1—Co1—O3i | 86.83 (10) |
O2—Co1—O1 | 87.86 (10) | O2—Co1—O3 | 89.80 (10) |
O2—Co1—O1i | 92.14 (10) | O1—Co1—O3 | 93.17 (10) |
O1—Co1—O1i | 180 | O3i—Co1—O3 | 180 |
O2—Co1—O3i | 90.20 (10) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1ii | 0.85 | 2.12 | 2.842 (4) | 142.4 |
O3—H3B···O2iii | 0.85 | 1.93 | 2.725 (4) | 155.1 |
Symmetry codes: (ii) −x, −y−1, −z+1; (iii) x, y−1, z. |
Acknowledgements
We acknowledge financial support by the Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guangxi, People's Republic of China.
References
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chen, F.-Y., Zhang, S.-H. & Ge, C.-M. (2008). Acta Cryst. E64, m1068. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013. CrossRef Web of Science Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621–1624. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willey, G. R., Palin, J., Lakin, M. T. & Alcock, N. W. (1994). Transition Met. Chem. 19, 187–190. CSD CrossRef CAS Web of Science Google Scholar
Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589. Web of Science CSD CrossRef CAS Google Scholar
Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of bromo substituents on aromatic groups have aroused increasing interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964, Zordan et al., 2005; Desiraju, et al. 1989, Zaman et al., 2004; Zhang, et al., 2007, Chen, et al., 2008). The title compound, (I), contains the bromo ligand 5-bromo-2-hydroxy-benzaldehyde, with one Br atom accessible at the periphery of each ligand.
In the molecular structure of (I), the CoII ion is coordinated by four O atoms from two bidentate 5-bromo-2-hydroxy-benzaldehyde ligands and two O atoms from two H2O ligands forming a slightly distorted octahedral geometry (Fig. 1). In the crystal structure, 1-D chains are formed through O–H···O hydrogen bonds (O3···O1i, 2.842 (4)Å; O3···O2ii, 2.725 (4); symmetry codes: (i)-x, -y-1, -z+1; (ii) x, y-1, z). Each molecule of (I) forms eight hydrogen bonds, four of which are donor hydrogen bonds and four are acceptor hydrogen bonds. The 1-D chains are further linked into a 2-D network via Br1···Br1 interactions. The shortest Br1···Br1 distance is 3.772 Å, (Mathews & Manohar, 1991; Willey et al., 1994) observed between Br1 and Br1iii, Br1 and Br1iv [symmetry codes: (iii) 1/2-x,-1/2+y,1/2-z; (iv) 1/2-x,1/2+y,1/2-z] .