metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(4-bromo-2-formyl­phenolato-κ2O,O′)cobalt(II)

aThe Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment (Department of Resources and Environmental Engineering, Guilin University of Technology), Guilin 541004, People's Republic of China
*Correspondence e-mail: xiaoyuzsh@yahoo.com.cn

(Received 4 August 2008; accepted 13 August 2008; online 6 September 2008)

In the title complex, [Co(C7H4BrO2)2(H2O)2], the CoII ion, which lies on a crystallographic inversion center, is coordin­ated by four O atoms from two bidentate 4-bromo-2-formyl­phenolate ligands and two O atoms from two water ligands in a slightly distorted octa­hedral environment. In the crystal structure, one-dimensional chains are formed through inter­molecular O—H⋯O hydrogen bonds, which are further linked into a two-dimensional network through Br⋯Br inter­actions [Br⋯Br = 3.772 (4) Å].

Related literature

For related literature, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Mathews & Manohar (1991[Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621-1624.]); Willey et al. (1994[Willey, G. R., Palin, J., Lakin, M. T. & Alcock, N. W. (1994). Transition Met. Chem. 19, 187-190.]); Zaman et al. (2004[Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]); Zhang et al. (2007[Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319-m1320.]); Zordan et al. (2005[Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979-5989.]); Chen et al. (2008[Chen, F.-Y., Zhang, S.-H. & Ge, C.-M. (2008). Acta Cryst. E64, m1068.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4BrO2)2(H2O)2]

  • Mr = 494.99

  • Monoclinic, C 2/c

  • a = 29.527 (5) Å

  • b = 4.7406 (8) Å

  • c = 11.6314 (18) Å

  • β = 103.162 (3)°

  • V = 1585.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.15 mm−1

  • T = 293 (2) K

  • 0.21 × 0.19 × 0.19 mm

Data collection
  • Bruker SMART-CCD diffractometer

  • Absorption correction: none

  • 3884 measured reflections

  • 1553 independent reflections

  • 1290 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 1.04

  • 1553 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O2 2.013 (2)
Co1—O1 2.099 (2)
Co1—O3 2.149 (3)
O2i—Co1—O2 180
O2—Co1—O1 87.86 (10)
O2—Co1—O1i 92.14 (10)
O1—Co1—O1i 180
O2—Co1—O3i 90.20 (10)
O1—Co1—O3i 86.83 (10)
O2—Co1—O3 89.80 (10)
O1—Co1—O3 93.17 (10)
O3i—Co1—O3 180
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1ii 0.85 2.12 2.842 (4) 142
O3—H3B⋯O2iii 0.85 1.93 2.725 (4) 155
Symmetry codes: (ii) -x, -y-1, -z+1; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of bromo substituents on aromatic groups have aroused increasing interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964, Zordan et al., 2005; Desiraju, et al. 1989, Zaman et al., 2004; Zhang, et al., 2007, Chen, et al., 2008). The title compound, (I), contains the bromo ligand 5-bromo-2-hydroxy-benzaldehyde, with one Br atom accessible at the periphery of each ligand.

In the molecular structure of (I), the CoII ion is coordinated by four O atoms from two bidentate 5-bromo-2-hydroxy-benzaldehyde ligands and two O atoms from two H2O ligands forming a slightly distorted octahedral geometry (Fig. 1). In the crystal structure, 1-D chains are formed through O–H···O hydrogen bonds (O3···O1i, 2.842 (4)Å; O3···O2ii, 2.725 (4); symmetry codes: (i)-x, -y-1, -z+1; (ii) x, y-1, z). Each molecule of (I) forms eight hydrogen bonds, four of which are donor hydrogen bonds and four are acceptor hydrogen bonds. The 1-D chains are further linked into a 2-D network via Br1···Br1 interactions. The shortest Br1···Br1 distance is 3.772 Å, (Mathews & Manohar, 1991; Willey et al., 1994) observed between Br1 and Br1iii, Br1 and Br1iv [symmetry codes: (iii) 1/2-x,-1/2+y,1/2-z; (iv) 1/2-x,1/2+y,1/2-z] .

Related literature top

For related literature, see: Cohen et al. (1964); Desiraju (1989); Mathews et al. (1991); Willey et al. (1994); Zaman et al. (2004); Zhang et al. (2007); Zordan et al. (2005); Chen et al. (2008).

Experimental top

Distilled water (30 ml) containing 5-bromo-2-hydroxy-benzaldehyde (0.201 g, 1 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid (0.111 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of cobalt chloride (0.237 g, 1 mmol) was added to the resulting solution and stirred for 2 h and filtrate. the filtration was left to stand at room temperature. After 12 days, red crystals were produced from the filtrate (yield: 76.4 %, based on Co).

Refinement top

H atoms were positioned geometrically and were treated as riding atoms, with C–H distances of 0.93 Å and Uiso(H) = 1.2 Ueq(C), and with and O–H distance of 0.85 Å and Uiso(H) = 1.5 Ueq(O) .

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% probability displacement ellipsoids [symmetry code: (A) -x, -y, -z+1]
[Figure 2] Fig. 2. 1-D chain of (I). Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. 2-D structure of (I). Blue dashed lines indicate Br..Br interactions and yellow dashed lnies show hydrogen bonds.
Diaquabis(4-bromo-2-formylphenolato-κ2O,O')cobalt(II) top
Crystal data top
[Co(C7H4BrO2)2(H2O)2]F(000) = 964
Mr = 494.99Dx = 2.074 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3884 reflections
a = 29.527 (5) Åθ = 2.8–26.0°
b = 4.7406 (8) ŵ = 6.15 mm1
c = 11.6314 (18) ÅT = 293 K
β = 103.162 (3)°Prism, red
V = 1585.3 (4) Å30.21 × 0.19 × 0.19 mm
Z = 4
Data collection top
Bruker SMART-CCD
diffractometer
1290 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.0°, θmin = 2.8°
ϕ and ω scansh = 2736
3884 measured reflectionsk = 55
1553 independent reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0409P)2 + 2.4257P]
where P = (Fo2 + 2Fc2)/3
1553 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co(C7H4BrO2)2(H2O)2]V = 1585.3 (4) Å3
Mr = 494.99Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.527 (5) ŵ = 6.15 mm1
b = 4.7406 (8) ÅT = 293 K
c = 11.6314 (18) Å0.21 × 0.19 × 0.19 mm
β = 103.162 (3)°
Data collection top
Bruker SMART-CCD
diffractometer
1290 reflections with I > 2σ(I)
3884 measured reflectionsRint = 0.033
1553 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
1553 reflectionsΔρmin = 0.32 e Å3
106 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.50000.0288 (2)
Br10.222905 (17)0.41219 (14)0.34123 (5)0.0652 (2)
O10.03315 (9)0.2051 (5)0.3818 (2)0.0354 (6)
O20.05893 (9)0.2221 (5)0.5574 (2)0.0333 (6)
O30.02353 (10)0.3049 (5)0.6373 (2)0.0377 (6)
H3B0.04160.41950.61350.057*
H30.00030.39710.64900.057*
C10.09460 (13)0.2474 (8)0.5103 (3)0.0309 (8)
C20.13013 (14)0.4390 (9)0.5592 (4)0.0405 (10)
H20.12800.53900.62660.049*
C30.16768 (15)0.4831 (10)0.5110 (4)0.0447 (11)
H3A0.19080.60940.54630.054*
C40.17148 (14)0.3393 (10)0.4089 (4)0.0421 (10)
C50.13865 (13)0.1447 (9)0.3593 (3)0.0377 (9)
H50.14190.04470.29280.045*
C60.09989 (13)0.0949 (8)0.4087 (3)0.0304 (8)
C70.06866 (15)0.1242 (8)0.3544 (3)0.0367 (9)
H70.07630.21570.29070.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0330 (4)0.0264 (4)0.0284 (4)0.0043 (3)0.0104 (3)0.0022 (3)
Br10.0404 (3)0.1038 (5)0.0569 (3)0.0135 (3)0.0226 (2)0.0066 (3)
O10.0411 (16)0.0322 (14)0.0362 (15)0.0047 (12)0.0157 (12)0.0056 (11)
O20.0323 (15)0.0353 (15)0.0340 (14)0.0067 (12)0.0114 (12)0.0080 (11)
O30.0474 (17)0.0312 (14)0.0364 (15)0.0001 (12)0.0138 (13)0.0008 (11)
C10.031 (2)0.032 (2)0.030 (2)0.0007 (16)0.0078 (16)0.0034 (15)
C20.037 (2)0.049 (3)0.036 (2)0.0060 (19)0.0098 (19)0.0067 (18)
C30.035 (2)0.054 (3)0.043 (3)0.012 (2)0.006 (2)0.001 (2)
C40.031 (2)0.056 (3)0.041 (2)0.003 (2)0.0123 (18)0.009 (2)
C50.037 (2)0.048 (3)0.031 (2)0.0001 (19)0.0122 (17)0.0015 (18)
C60.034 (2)0.0287 (19)0.0287 (19)0.0008 (16)0.0062 (16)0.0003 (15)
C70.045 (3)0.038 (2)0.032 (2)0.0022 (19)0.0177 (18)0.0033 (17)
Geometric parameters (Å, º) top
Co1—O2i2.013 (2)C1—C21.406 (6)
Co1—O22.013 (2)C1—C61.424 (5)
Co1—O12.099 (2)C2—C31.368 (6)
Co1—O1i2.099 (2)C2—H20.9300
Co1—O3i2.149 (3)C3—C41.395 (6)
Co1—O32.149 (3)C3—H3A0.9300
Br1—C41.894 (4)C4—C51.367 (6)
O1—C71.225 (5)C5—C61.412 (5)
O2—C11.299 (4)C5—H50.9300
O3—H3B0.8500C6—C71.436 (6)
O3—H30.8500C7—H70.9300
O2i—Co1—O2180O2—C1—C6123.8 (3)
O2i—Co1—O192.14 (10)C2—C1—C6116.8 (3)
O2—Co1—O187.86 (10)C3—C2—C1122.1 (4)
O2i—Co1—O1i87.86 (10)C3—C2—H2118.9
O2—Co1—O1i92.14 (10)C1—C2—H2118.9
O1—Co1—O1i180C2—C3—C4120.3 (4)
O2i—Co1—O3i89.80 (10)C2—C3—H3A119.9
O2—Co1—O3i90.20 (10)C4—C3—H3A119.9
O1—Co1—O3i86.83 (10)C5—C4—C3120.1 (4)
O1i—Co1—O3i93.17 (10)C5—C4—Br1120.4 (3)
O2i—Co1—O390.20 (10)C3—C4—Br1119.5 (3)
O2—Co1—O389.80 (10)C4—C5—C6120.3 (4)
O1—Co1—O393.17 (10)C4—C5—H5119.9
O1i—Co1—O386.83 (10)C6—C5—H5119.9
O3i—Co1—O3180C5—C6—C1120.3 (3)
C7—O1—Co1125.4 (2)C5—C6—C7116.2 (3)
C1—O2—Co1129.1 (2)C1—C6—C7123.5 (3)
Co1—O3—H3B107.9O1—C7—C6127.9 (4)
Co1—O3—H3109.2O1—C7—H7116.1
H3B—O3—H3108.2C6—C7—H7116.1
O2—C1—C2119.4 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.852.122.842 (4)142
O3—H3B···O2iii0.851.932.725 (4)155
Symmetry codes: (ii) x, y1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Co(C7H4BrO2)2(H2O)2]
Mr494.99
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)29.527 (5), 4.7406 (8), 11.6314 (18)
β (°) 103.162 (3)
V3)1585.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.15
Crystal size (mm)0.21 × 0.19 × 0.19
Data collection
DiffractometerBruker SMART-CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3884, 1553, 1290
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.095, 1.04
No. of reflections1553
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.32

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O22.013 (2)Co1—O32.149 (3)
Co1—O12.099 (2)
O2i—Co1—O2180O1—Co1—O3i86.83 (10)
O2—Co1—O187.86 (10)O2—Co1—O389.80 (10)
O2—Co1—O1i92.14 (10)O1—Co1—O393.17 (10)
O1—Co1—O1i180O3i—Co1—O3180
O2—Co1—O3i90.20 (10)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.852.122.842 (4)142.4
O3—H3B···O2iii0.851.932.725 (4)155.1
Symmetry codes: (ii) x, y1, z+1; (iii) x, y1, z.
 

Acknowledgements

We acknowledge financial support by the Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guangxi, People's Republic of China.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, F.-Y., Zhang, S.-H. & Ge, C.-M. (2008). Acta Cryst. E64, m1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.  CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621–1624.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilley, G. R., Palin, J., Lakin, M. T. & Alcock, N. W. (1994). Transition Met. Chem. 19, 187–190.  CSD CrossRef CAS Web of Science Google Scholar
First citationZaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds