organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-hydr­­oxy-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan, cInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
*Correspondence e-mail: waseeq_786@yahoo.com

(Received 20 August 2008; accepted 6 September 2008; online 13 September 2008)

The asymmetric unit of the title compound, C10H9NO5S, contains two independent mol­ecules. The heterocyclic thia­zine rings in both mol­ecules adopt half-chair conformations, with the S atoms in each mol­ecule displaced by 0.455 (3) and 0.539 (3) Å and the N atoms displaced in the opposite direction by 0.214 (3) and 0.203 (3) Å, from the planes defined by the remaining ring atoms. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds involving both inter- and intra­molecular inter­actions.

Related literature

For related literature, see: Banerjee & Sarkar (2002[Banerjee, R. & Sarkar, M. (2002). J. Lumin. 99, 255-263.]); Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Hirai et al. (1997[Hirai, T., Matsumoto, S. & Kishi, I. (1997). J. Chromatogr. B, 692, 375-388.]); Khalil et al. (2000[Khalil, S., Borham, N. & El-Ries, M. A. (2000). Anal. Chim. Acta, 441, 215-219.]); Myung et al. (2002[Myung, S. P., Eun, S. C., Myung, S. L. & Soon-kyoung, K. (2002). Bull. Korean Chem. Soc. 23, 1836-1838.]); Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.], 2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO5S

  • Mr = 255.24

  • Triclinic, [P \overline 1]

  • a = 7.777 (2) Å

  • b = 10.932 (4) Å

  • c = 12.890 (4) Å

  • α = 105.569 (16)°

  • β = 94.588 (15)°

  • γ = 97.763 (16)°

  • V = 1038.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 (2) K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.927, Tmax = 0.950

  • 8716 measured reflections

  • 4693 independent reflections

  • 4191 reflections with (I) > 2.0 σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.03

  • 4693 reflections

  • 321 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.81 (2) 1.86 (2) 2.600 (2) 152 (2)
N1—H1N⋯O9 0.81 (2) 2.22 (2) 2.994 (2) 162 (2)
O6—H6O⋯O9 0.81 (2) 1.91 (2) 2.634 (2) 147 (2)
N2—H2N⋯O3i 0.83 (2) 2.13 (2) 2.966 (2) 175 (2)
C4—H4⋯O8ii 0.95 2.36 3.259 (2) 158
C20—H20A⋯O2i 0.98 2.51 3.267 (2) 134
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z-1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 1,2-benzothiazine-3-carboxamide 1,1-dioxide derivatives belong to oxicams, a new class of non-steroidal anti-inflammatory drugs (NSAIDs). They are important for their analgesic and anti-inflammatory activities (Hirai et al., 1997, Khalil et al., 2000; Myung et al., 2002). Besides great therapeutic potential, these are very motivating polyfunctional heterocyclic molecules by virtue of their dynamic structural features, which include different tautomeric forms and their possible polymorphism (Banerjee et al., 2002). Continuing our investigations in this important field, (Siddiqui et al., 2006, 2008), we now report the crystal structure of the title compound, (I), in this paper.

An asymmetric unit of (I) contains two independent molecules presented in Figures 1 (molecule a) and 2 (molecule b). The heterocyclic thiazine rings in both molecules adopt half-chair conformations, with atoms S1 and N1 in molecule a and atoms S2 and N2 in molecule b displaced by -0.455 (3), 0.214 (3), -0.539 (3) and 0.203 (3) Å, from the planes defined by C1/C6/C7/C8 and C11/C16/C17/C18, respectively; the puckering parameters (Cremer & Pople, 1975) are Q = 0.4365 (12) and 0.4901 (12) Å, θ = 61.8 (2) and 64.1 (2)° and ϕ = 19.6 (2) and 17.5 (2)°, respectively. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008).

The structure is stabilized by classical as well as non-classical hydrogen bonding (Fig. 3). Details of the hydrogen bonding geometry have been provided in Table 1.

Related literature top

For related literature, see: Banerjee & Sarkar (2002); Cremer & Pople, 1975; Hirai et al. (1997); Khalil et al. (2000); Myung et al. (2002); Siddiqui et al. (2006, 2008).

Experimental top

The synthesis of the title compound as an important intermediate in the synthesis of oxicams has been reported (Siddiqui et al., 2006). Crystals suitable for crystallographic studies were obtained from a solution of MeOH by slow evaporation at 313 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl and methyl C—H distances were set to 0.95 and 0.98 Å, respectively, and Uiso(H) = 1.2 Ueq(C). The H-atoms bonded to N and O-atoms were allowed to refine with Uiso(H) = 1.2 Ueq(N/O). The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of molecule a with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. ORTEP-3 (Farrugia, 1997) drawing of molecule b with displacement ellipsoids plotted at 50% probability level.
[Figure 3] Fig. 3. Part of the crystal structure showing H-bonding interactions (classical in red, non-classical in green and intramolecular in black) indicated by dashed lines, H-atoms not involved in H-bonds have been excluded.
Methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide top
Crystal data top
C10H9NO5SZ = 4
Mr = 255.24F(000) = 528
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.777 (2) ÅCell parameters from 8716 reflections
b = 10.932 (4) Åθ = 3.3–27.5°
c = 12.890 (4) ŵ = 0.32 mm1
α = 105.569 (16)°T = 173 K
β = 94.588 (15)°Block, colorless
γ = 97.763 (16)°0.24 × 0.22 × 0.16 mm
V = 1038.2 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
4693 independent reflections
Radiation source: fine-focus sealed tube4191 reflections with (I) > 2.0 σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.927, Tmax = 0.950k = 1413
8716 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.041P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
4693 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H9NO5Sγ = 97.763 (16)°
Mr = 255.24V = 1038.2 (6) Å3
Triclinic, P1Z = 4
a = 7.777 (2) ÅMo Kα radiation
b = 10.932 (4) ŵ = 0.32 mm1
c = 12.890 (4) ÅT = 173 K
α = 105.569 (16)°0.24 × 0.22 × 0.16 mm
β = 94.588 (15)°
Data collection top
Nonius KappaCCD
diffractometer
4693 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4191 reflections with (I) > 2.0 σ(I)
Tmin = 0.927, Tmax = 0.950Rint = 0.019
8716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
4693 reflectionsΔρmin = 0.41 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30114 (5)0.07908 (3)0.24748 (3)0.01734 (10)
O10.23427 (16)0.14432 (12)0.08819 (9)0.0293 (3)
H1O0.263 (3)0.213 (2)0.0882 (18)0.035*
O20.40121 (15)0.17533 (10)0.33806 (9)0.0245 (2)
O30.14058 (14)0.00794 (10)0.26334 (9)0.0218 (2)
O40.37308 (17)0.31701 (11)0.02096 (9)0.0311 (3)
O50.49305 (15)0.26084 (10)0.15392 (9)0.0243 (2)
N10.42676 (17)0.02186 (12)0.19684 (10)0.0200 (3)
H1N0.528 (3)0.0058 (18)0.2220 (16)0.024*
C10.25147 (19)0.14330 (14)0.13951 (12)0.0192 (3)
C20.2150 (2)0.26789 (15)0.16002 (13)0.0247 (3)
H20.22980.32310.23200.030*
C30.1567 (2)0.31014 (17)0.07309 (15)0.0297 (4)
H30.13120.39510.08550.036*
C40.1354 (2)0.22878 (18)0.03175 (14)0.0303 (4)
H40.09190.25790.09030.036*
C50.1764 (2)0.10609 (17)0.05230 (13)0.0251 (3)
H50.16280.05200.12470.030*
C60.23809 (18)0.06130 (15)0.03369 (12)0.0195 (3)
C70.28587 (19)0.06738 (15)0.01323 (12)0.0207 (3)
C80.37515 (19)0.10618 (14)0.09083 (12)0.0194 (3)
C90.4123 (2)0.23777 (15)0.06838 (12)0.0220 (3)
C100.5260 (3)0.39148 (16)0.13991 (15)0.0326 (4)
H10A0.56540.40220.21060.039*
H10B0.61670.40830.09170.039*
H10C0.41830.45220.10790.039*
S20.86977 (5)0.34163 (3)0.69700 (3)0.01856 (10)
O60.98831 (15)0.24939 (12)0.36870 (9)0.0243 (2)
H6O0.932 (3)0.180 (2)0.3347 (17)0.029*
O70.72248 (14)0.39245 (11)0.66203 (9)0.0253 (2)
O80.89790 (15)0.34412 (11)0.80904 (9)0.0252 (2)
O90.77047 (14)0.03249 (11)0.33635 (9)0.0261 (2)
O100.70377 (16)0.02541 (11)0.48543 (9)0.0271 (3)
N20.86481 (19)0.19551 (13)0.62361 (10)0.0237 (3)
H2N0.869 (3)0.138 (2)0.6548 (16)0.028*
C111.05550 (19)0.41894 (14)0.65790 (12)0.0187 (3)
C121.1639 (2)0.52218 (15)0.73162 (13)0.0235 (3)
H121.14430.54750.80560.028*
C131.3017 (2)0.58800 (15)0.69539 (14)0.0268 (3)
H131.37750.65860.74480.032*
C141.3285 (2)0.55026 (16)0.58671 (14)0.0263 (3)
H141.42090.59700.56210.032*
C151.2225 (2)0.44570 (15)0.51417 (13)0.0226 (3)
H151.24360.42040.44040.027*
C161.08448 (19)0.37690 (14)0.54858 (12)0.0188 (3)
C170.97645 (19)0.26167 (14)0.47423 (12)0.0189 (3)
C180.8758 (2)0.17361 (14)0.51071 (12)0.0202 (3)
C190.77841 (19)0.05550 (15)0.43550 (12)0.0210 (3)
C200.6136 (2)0.14884 (16)0.41616 (14)0.0314 (4)
H20A0.56960.20260.46120.038*
H20B0.69490.19180.37030.038*
H20C0.51540.13540.37020.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02110 (18)0.01460 (17)0.01551 (17)0.00158 (13)0.00185 (13)0.00366 (13)
O10.0381 (7)0.0269 (6)0.0176 (5)0.0025 (5)0.0021 (5)0.0001 (5)
O20.0315 (6)0.0189 (5)0.0189 (5)0.0002 (4)0.0004 (4)0.0010 (4)
O30.0232 (5)0.0212 (5)0.0227 (5)0.0017 (4)0.0056 (4)0.0091 (4)
O40.0415 (7)0.0223 (6)0.0243 (6)0.0063 (5)0.0025 (5)0.0023 (5)
O50.0300 (6)0.0194 (5)0.0242 (5)0.0078 (4)0.0048 (4)0.0052 (4)
N10.0187 (6)0.0191 (6)0.0189 (6)0.0035 (5)0.0025 (5)0.0009 (5)
C10.0182 (7)0.0201 (7)0.0203 (7)0.0006 (5)0.0029 (5)0.0087 (6)
C20.0268 (8)0.0227 (8)0.0274 (8)0.0053 (6)0.0072 (6)0.0100 (6)
C30.0292 (8)0.0280 (8)0.0400 (9)0.0088 (7)0.0099 (7)0.0196 (7)
C40.0251 (8)0.0404 (10)0.0338 (9)0.0062 (7)0.0037 (7)0.0243 (8)
C50.0214 (7)0.0342 (9)0.0213 (7)0.0020 (6)0.0018 (6)0.0119 (7)
C60.0153 (6)0.0233 (7)0.0200 (7)0.0004 (5)0.0019 (5)0.0081 (6)
C70.0200 (7)0.0223 (7)0.0169 (7)0.0005 (6)0.0028 (5)0.0026 (6)
C80.0200 (7)0.0172 (7)0.0179 (7)0.0014 (5)0.0017 (5)0.0006 (5)
C90.0225 (7)0.0201 (7)0.0222 (7)0.0022 (6)0.0058 (6)0.0037 (6)
C100.0453 (10)0.0215 (8)0.0359 (9)0.0137 (7)0.0117 (8)0.0105 (7)
S20.02101 (18)0.01819 (18)0.01673 (17)0.00130 (13)0.00248 (13)0.00623 (13)
O60.0270 (6)0.0265 (6)0.0175 (5)0.0004 (5)0.0052 (4)0.0045 (4)
O70.0216 (5)0.0304 (6)0.0277 (6)0.0065 (4)0.0061 (4)0.0128 (5)
O80.0328 (6)0.0254 (6)0.0168 (5)0.0017 (5)0.0022 (4)0.0069 (4)
O90.0244 (5)0.0298 (6)0.0193 (5)0.0009 (5)0.0018 (4)0.0019 (4)
O100.0362 (6)0.0198 (5)0.0211 (5)0.0044 (5)0.0014 (5)0.0044 (4)
N20.0358 (7)0.0173 (6)0.0172 (6)0.0004 (5)0.0012 (5)0.0065 (5)
C110.0184 (7)0.0171 (7)0.0224 (7)0.0042 (5)0.0023 (5)0.0080 (6)
C120.0247 (7)0.0204 (7)0.0236 (7)0.0028 (6)0.0036 (6)0.0032 (6)
C130.0240 (8)0.0193 (7)0.0326 (8)0.0013 (6)0.0021 (6)0.0024 (6)
C140.0209 (7)0.0236 (8)0.0358 (9)0.0023 (6)0.0085 (6)0.0102 (7)
C150.0221 (7)0.0222 (7)0.0252 (7)0.0054 (6)0.0066 (6)0.0077 (6)
C160.0185 (7)0.0175 (7)0.0217 (7)0.0053 (5)0.0019 (5)0.0068 (6)
C170.0184 (7)0.0211 (7)0.0176 (7)0.0055 (5)0.0020 (5)0.0051 (6)
C180.0228 (7)0.0191 (7)0.0174 (7)0.0030 (6)0.0004 (5)0.0039 (6)
C190.0188 (7)0.0219 (7)0.0214 (7)0.0039 (6)0.0008 (5)0.0048 (6)
C200.0410 (10)0.0193 (8)0.0267 (8)0.0059 (7)0.0052 (7)0.0026 (6)
Geometric parameters (Å, º) top
S1—O21.4318 (12)S2—O71.4310 (12)
S1—O31.4386 (11)S2—O81.4356 (12)
S1—N11.6139 (14)S2—N21.6170 (15)
S1—C11.7581 (15)S2—C111.7521 (15)
O1—C71.3462 (18)O6—C171.3426 (18)
O1—H1O0.81 (2)O6—H6O0.81 (2)
O4—C91.2273 (19)O9—C191.2292 (19)
O5—C91.3246 (19)O10—C191.3267 (19)
O5—C101.4513 (19)O10—C201.4516 (19)
N1—C81.4192 (19)N2—C181.4216 (19)
N1—H1N0.81 (2)N2—H2N0.83 (2)
C1—C21.389 (2)C11—C121.388 (2)
C1—C61.404 (2)C11—C161.407 (2)
C2—C31.389 (2)C12—C131.392 (2)
C2—H20.9500C12—H120.9500
C3—C41.387 (3)C13—C141.391 (2)
C3—H30.9500C13—H130.9500
C4—C51.382 (3)C14—C151.382 (2)
C4—H40.9500C14—H140.9500
C5—C61.403 (2)C15—C161.397 (2)
C5—H50.9500C15—H150.9500
C6—C71.464 (2)C16—C171.466 (2)
C7—C81.363 (2)C17—C181.363 (2)
C8—C91.463 (2)C18—C191.459 (2)
C10—H10A0.9800C20—H20A0.9800
C10—H10B0.9800C20—H20B0.9800
C10—H10C0.9800C20—H20C0.9800
O2—S1—O3119.12 (7)O7—S2—O8118.19 (7)
O2—S1—N1107.80 (7)O7—S2—N2110.26 (8)
O3—S1—N1108.47 (7)O8—S2—N2108.16 (7)
O2—S1—C1111.19 (7)O7—S2—C11107.46 (7)
O3—S1—C1106.82 (7)O8—S2—C11110.99 (7)
N1—S1—C1102.09 (7)N2—S2—C11100.30 (7)
C7—O1—H1O105.2 (16)C17—O6—H6O107.2 (14)
C9—O5—C10116.20 (13)C19—O10—C20116.26 (13)
C8—N1—S1118.66 (10)C18—N2—S2118.32 (11)
C8—N1—H1N120.1 (14)C18—N2—H2N122.7 (14)
S1—N1—H1N117.5 (14)S2—N2—H2N118.5 (14)
C2—C1—C6122.02 (14)C12—C11—C16121.77 (14)
C2—C1—S1120.29 (12)C12—C11—S2120.58 (12)
C6—C1—S1117.53 (11)C16—C11—S2117.57 (11)
C1—C2—C3118.62 (15)C11—C12—C13118.93 (15)
C1—C2—H2120.7C11—C12—H12120.5
C3—C2—H2120.7C13—C12—H12120.5
C4—C3—C2120.26 (16)C14—C13—C12119.95 (15)
C4—C3—H3119.9C14—C13—H13120.0
C2—C3—H3119.9C12—C13—H13120.0
C5—C4—C3121.02 (15)C15—C14—C13120.86 (15)
C5—C4—H4119.5C15—C14—H14119.6
C3—C4—H4119.5C13—C14—H14119.6
C4—C5—C6120.04 (15)C14—C15—C16120.39 (15)
C4—C5—H5120.0C14—C15—H15119.8
C6—C5—H5120.0C16—C15—H15119.8
C5—C6—C1117.94 (14)C15—C16—C11118.04 (14)
C5—C6—C7120.79 (14)C15—C16—C17121.18 (14)
C1—C6—C7121.28 (13)C11—C16—C17120.75 (13)
O1—C7—C8122.72 (14)O6—C17—C18123.41 (14)
O1—C7—C6114.65 (13)O6—C17—C16114.53 (13)
C8—C7—C6122.63 (13)C18—C17—C16122.04 (13)
C7—C8—N1120.81 (13)C17—C18—N2120.21 (13)
C7—C8—C9120.74 (14)C17—C18—C19121.04 (14)
N1—C8—C9118.38 (13)N2—C18—C19118.75 (13)
O4—C9—O5124.32 (14)O9—C19—O10123.81 (14)
O4—C9—C8122.83 (14)O9—C19—C18123.27 (14)
O5—C9—C8112.84 (13)O10—C19—C18112.90 (13)
O5—C10—H10A109.5O10—C20—H20A109.5
O5—C10—H10B109.5O10—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
O5—C10—H10C109.5O10—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
O2—S1—N1—C8163.59 (11)O7—S2—N2—C1862.59 (13)
O3—S1—N1—C866.16 (13)O8—S2—N2—C18166.78 (11)
C1—S1—N1—C846.39 (13)C11—S2—N2—C1850.50 (13)
O2—S1—C1—C236.33 (14)O7—S2—C11—C1298.46 (13)
O3—S1—C1—C295.16 (13)O8—S2—C11—C1232.17 (15)
N1—S1—C1—C2151.06 (12)N2—S2—C11—C12146.32 (13)
O2—S1—C1—C6148.12 (11)O7—S2—C11—C1678.25 (13)
O3—S1—C1—C680.39 (12)O8—S2—C11—C16151.13 (11)
N1—S1—C1—C633.39 (13)N2—S2—C11—C1636.98 (13)
C6—C1—C2—C32.7 (2)C16—C11—C12—C131.9 (2)
S1—C1—C2—C3172.61 (12)S2—C11—C12—C13174.65 (12)
C1—C2—C3—C40.1 (2)C11—C12—C13—C140.3 (2)
C2—C3—C4—C51.9 (3)C12—C13—C14—C151.7 (2)
C3—C4—C5—C61.0 (2)C13—C14—C15—C160.9 (2)
C4—C5—C6—C11.7 (2)C14—C15—C16—C111.2 (2)
C4—C5—C6—C7178.64 (14)C14—C15—C16—C17176.71 (14)
C2—C1—C6—C53.6 (2)C12—C11—C16—C152.7 (2)
S1—C1—C6—C5171.83 (11)S2—C11—C16—C15174.00 (11)
C2—C1—C6—C7176.74 (14)C12—C11—C16—C17175.28 (14)
S1—C1—C6—C77.80 (18)S2—C11—C16—C178.05 (18)
C5—C6—C7—O112.3 (2)C15—C16—C17—O617.4 (2)
C1—C6—C7—O1167.33 (13)C11—C16—C17—O6164.76 (13)
C5—C6—C7—C8167.84 (14)C15—C16—C17—C18161.26 (14)
C1—C6—C7—C812.5 (2)C11—C16—C17—C1816.6 (2)
O1—C7—C8—N1179.89 (14)O6—C17—C18—N2177.69 (13)
C6—C7—C8—N10.0 (2)C16—C17—C18—N23.8 (2)
O1—C7—C8—C93.0 (2)O6—C17—C18—C192.6 (2)
C6—C7—C8—C9176.87 (13)C16—C17—C18—C19175.92 (13)
S1—N1—C8—C734.08 (19)S2—N2—C18—C1734.94 (19)
S1—N1—C8—C9142.91 (12)S2—N2—C18—C19145.32 (12)
C10—O5—C9—O43.7 (2)C20—O10—C19—O92.1 (2)
C10—O5—C9—C8176.75 (13)C20—O10—C19—C18176.20 (13)
C7—C8—C9—O43.3 (2)C17—C18—C19—O95.4 (2)
N1—C8—C9—O4179.71 (14)N2—C18—C19—O9174.86 (14)
C7—C8—C9—O5177.16 (13)C17—C18—C19—O10172.87 (14)
N1—C8—C9—O50.17 (19)N2—C18—C19—O106.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.81 (2)1.86 (2)2.600 (2)152 (2)
N1—H1N···O90.81 (2)2.22 (2)2.994 (2)162 (2)
O6—H6O···O90.81 (2)1.91 (2)2.634 (2)147 (2)
N2—H2N···O3i0.83 (2)2.13 (2)2.966 (2)175 (2)
C4—H4···O8ii0.952.363.259 (2)158
C20—H20A···O2i0.982.513.267 (2)134
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC10H9NO5S
Mr255.24
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.777 (2), 10.932 (4), 12.890 (4)
α, β, γ (°)105.569 (16), 94.588 (15), 97.763 (16)
V3)1038.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.927, 0.950
No. of measured, independent and
observed [(I) > 2.0 σ(I)] reflections
8716, 4693, 4191
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.03
No. of reflections4693
No. of parameters321
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.41

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.81 (2)1.86 (2)2.600 (2)152 (2)
N1—H1N···O90.81 (2)2.22 (2)2.994 (2)162 (2)
O6—H6O···O90.81 (2)1.91 (2)2.634 (2)147 (2)
N2—H2N···O3i0.83 (2)2.13 (2)2.966 (2)175 (2)
C4—H4···O8ii0.952.363.259 (2)158
C20—H20A···O2i0.982.513.267 (2)134
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1.
 

References

First citationBanerjee, R. & Sarkar, M. (2002). J. Lumin. 99, 255–263.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHirai, T., Matsumoto, S. & Kishi, I. (1997). J. Chromatogr. B, 692, 375–388.  CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationKhalil, S., Borham, N. & El-Ries, M. A. (2000). Anal. Chim. Acta, 441, 215–219.  Web of Science CrossRef Google Scholar
First citationMyung, S. P., Eun, S. C., Myung, S. L. & Soon-kyoung, K. (2002). Bull. Korean Chem. Soc. 23, 1836–1838.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds