metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1282-m1283

Poly[di­aqua(μ2-oxalato-κ4O1,O2:O1′,O2′)(μ2-pyrazine-2-carboxyl­ato-κ3N1,O:O′)cerium(III)]

aResearch Institute of Applied Chemistry, Central South University of Forestry and Technology, 412006 Zhuzhou, Hunan, People's Republic of China, and bSchool of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, 100044 Beijing, People's Republic of China
*Correspondence e-mail: chongchenwang@126.com

(Received 20 August 2008; accepted 11 September 2008; online 20 September 2008)

In the hydro­thermally synthesized title compound, [Ce(C5H3N2O2)(C2O4)(H2O)2]n, the CeIII ion is coordinated by four O atoms from two different oxalate ligands, three O atoms from two symmetry-related pyrazine-2-carboxyl­ate ligands, two O atoms from two water melecules and one N atom from a pyrazine-2-carboxyl­ate ligand in a distorted bicapped square-anti­prismatic coordination geometry. The oxalate and pyrazine-2-carboxyl­ate ligands bridge the CeIII ions, forming a two-dimensional structure. In addition, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds connect the two-dimensional structure into a three-dimensional network.

Related literature

For background information, see: Eliseeva et al. (2004[Eliseeva, S. V., Mirzov, O. V., Troyanov, S. I., Vitukhnovsky, A. G. & Kuzmina, N. P. (2004). J. Alloys Compd, 374, 293-297.]); Wang et al. (2007[Wang, X. F., Lv, Y., Okamura, T., Kawaguchi, H., Wu, G. Y. & Ueyama, N. (2007). Cryst. Growth Des. 7, 1125-1133.]); Zou et al. (1999[Zou, J. Z., Xu, Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507-1512.]); Zheng et al. (2002[Zheng, X. J., Jin, L. P. & Lu, S. Z. (2002). Eur. J. Inorg. Chem. pp. 3356-3363.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce(C5H3N2O2)(C2O4)(H2O)2]

  • Mr = 387.27

  • Triclinic, [P \overline 1]

  • a = 8.0298 (7) Å

  • b = 8.7161 (9) Å

  • c = 8.8201 (9) Å

  • α = 115.514 (2)°

  • β = 101.747 (1)°

  • γ = 95.999 (1)°

  • V = 532.38 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.31 mm−1

  • T = 298 (2) K

  • 0.24 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.424, Tmax = 0.672

  • 2790 measured reflections

  • 1858 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 1.09

  • 1858 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected bond lengths (Å)

Ce1—O8 2.506 (2)
Ce1—O4i 2.521 (2)
Ce1—O5 2.530 (2)
Ce1—O3 2.538 (2)
Ce1—O6ii 2.540 (2)
Ce1—O1 2.578 (2)
Ce1—O7 2.595 (3)
Ce1—O1iii 2.614 (2)
Ce1—N1 2.815 (3)
Ce1—O2iii 2.897 (3)
Symmetry codes: (i) -x+1, -y+2, -z+3; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+3.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O5iv 0.85 2.10 2.836 (4) 145
O7—H7B⋯O2v 0.85 1.94 2.738 (4) 156
O8—H8A⋯N2vi 0.85 1.96 2.799 (4) 169
O8—H8B⋯O3iii 0.85 2.05 2.873 (3) 163
Symmetry codes: (iii) -x+1, -y+1, -z+3; (iv) -x+1, -y+1, -z+2; (v) x, y, z-1; (vi) x, y-1, z-1.

Data collection: SMART (Bruker, 1996[Bruker. (1996). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker. (1996). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rare metal coordination polymers of one-, two- and three-dimensional extended frameworks are an attractive research area because of the diverse structures available (Zheng, 2002; Eliseeva et al., 2004). Pyrazine-2,3-dicaboxylic acid is a good ligand with a versatitle coordination mode, which is widely used in self-assembled polymeric coordination synthesis (Zou et al., 1999; Wang et al., 2007). The title compound, [Ce(C5H3N2O2)(C2O4)(H2O)2]n, was obtained unintentionally as the harvested product of the hydrothermal reaction of pyrazine-2,3-dicaboxylic acid and Ce2(C2O4)3.10H2O. We report here the crystal structure of the title compound, a 2-D polymeric structure consisting of pyrazine-2-dicaboxylate and oxalate ligands.

The coordination environment of the CeIII ion can be described as a distorted bicapped square-antiprism, in which the CeIII ion is ten-coordinated by four oxygen atoms from two different oxalate ligands, three oxygen atoms from two different pyrazine -2-carboxylic acid ligands, two oxygen atoms from two water molecules, and one nitrogen atom from a pyrazine-2-carboxylate ligand, as shown in the Fig. 1. The oxalate ligands and pyrazine-2-carboxylate ligands bridge CeIII ions to form a two-dimensional structure. The Ce—O bond lengths range from 2.506 (2) to 2.897 (3) Å. In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds connect the two-dimensional structure into a three dimensional network.

Related literature top

For background information, see: Eliseeva et al. (2004); Wang et al. (2007); Zou et al. (1999); Zheng et al. (2002).

Experimental top

Colorless block-shaped crystals of the title compound were obtained by a hydrothermal reaction of Ce2(C2O4)3.10H2O (0.10 mmol, 0.0710 g), pyrazine-2,3-dicarboxylic acid (0.10 mmol, 0.0168 g) and deionized water (15 ml) in a 23 ml teflon-lined reaction vesset at 423 K for 120 h followed by slow cooling to room temperature (yield 77% based on initial input of pyrazine-2,3-dicarboxylic acid).

Refinement top

H atoms were included in calculated positions and refined in a riding-model approximation with O—H = 0.85 Å, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with symmetry related atoms included to show the coordination environment of Ce1. Displacement ellipsoids are drawn at the 40% probability level [Symmetry codes: (A) -x + 1, -y + 2, -z + 3, (B) -x+1, -y+2, -z+3, (C) -x, -y+1, -z+2].
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
Poly[diaqua(µ2-oxalato- κ4O1,O2:O1',O2')(µ2-pyrazine- 2-carboxylato-κ3N1,O:O')cerium(III)] top
Crystal data top
[Ce(C5H3N2O2)(C2O4)(H2O)2]Z = 2
Mr = 387.27F(000) = 370
Triclinic, P1Dx = 2.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0298 (7) ÅCell parameters from 2791 reflections
b = 8.7161 (9) Åθ = 2.7–28.5°
c = 8.8201 (9) ŵ = 4.31 mm1
α = 115.514 (2)°T = 298 K
β = 101.747 (1)°Block, colourless
γ = 95.999 (1)°0.24 × 0.15 × 0.10 mm
V = 532.38 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1858 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.424, Tmax = 0.672k = 1010
2790 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.3347P]
where P = (Fo2 + 2Fc2)/3
1858 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Ce(C5H3N2O2)(C2O4)(H2O)2]γ = 95.999 (1)°
Mr = 387.27V = 532.38 (9) Å3
Triclinic, P1Z = 2
a = 8.0298 (7) ÅMo Kα radiation
b = 8.7161 (9) ŵ = 4.31 mm1
c = 8.8201 (9) ÅT = 298 K
α = 115.514 (2)°0.24 × 0.15 × 0.10 mm
β = 101.747 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1858 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1760 reflections with I > 2σ(I)
Tmin = 0.424, Tmax = 0.672Rint = 0.013
2790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.09Δρmax = 0.68 e Å3
1858 reflectionsΔρmin = 0.95 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.33921 (2)0.58558 (2)1.32325 (2)0.01398 (8)
N10.1921 (4)0.7628 (4)1.5966 (4)0.0211 (6)
N20.1556 (4)1.0173 (4)1.9097 (4)0.0265 (7)
O10.3927 (3)0.5389 (3)1.5971 (3)0.0193 (5)
O20.4946 (3)0.6763 (4)1.8853 (3)0.0287 (6)
O30.5575 (3)0.8498 (3)1.5730 (3)0.0214 (5)
O40.6890 (3)1.1263 (3)1.6700 (3)0.0224 (5)
O50.2132 (3)0.4771 (4)0.9986 (3)0.0257 (6)
O60.0157 (3)0.4293 (4)0.7792 (3)0.0257 (6)
O70.5757 (3)0.6984 (3)1.2121 (3)0.0251 (6)
H7A0.65350.64011.18780.030*
H7B0.52550.70401.12050.030*
O80.2021 (3)0.2812 (3)1.2493 (3)0.0228 (5)
H8A0.17360.20011.14470.027*
H8B0.25660.24141.31260.027*
C10.3960 (4)0.6567 (4)1.7474 (5)0.0186 (7)
C20.2763 (4)0.7791 (4)1.7518 (5)0.0194 (7)
C30.2585 (5)0.9048 (5)1.9071 (5)0.0258 (8)
H30.31920.91142.01220.031*
C40.0669 (5)0.9965 (5)1.7544 (5)0.0273 (8)
H40.00921.06891.75020.033*
C50.0845 (5)0.8704 (5)1.5992 (5)0.0264 (8)
H50.01970.86031.49390.032*
C60.5713 (4)0.9932 (4)1.5705 (4)0.0159 (7)
C70.0567 (4)0.4734 (4)0.9350 (4)0.0187 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01536 (12)0.01406 (12)0.01362 (12)0.00340 (8)0.00329 (8)0.00769 (9)
N10.0232 (16)0.0251 (16)0.0198 (16)0.0104 (13)0.0082 (12)0.0127 (13)
N20.0270 (17)0.0240 (16)0.0273 (18)0.0080 (13)0.0117 (14)0.0084 (14)
O10.0259 (13)0.0191 (12)0.0190 (13)0.0111 (10)0.0106 (10)0.0108 (10)
O20.0305 (15)0.0407 (16)0.0213 (14)0.0144 (12)0.0069 (11)0.0185 (12)
O30.0258 (13)0.0179 (12)0.0206 (13)0.0034 (10)0.0015 (10)0.0115 (10)
O40.0215 (13)0.0180 (12)0.0264 (14)0.0034 (10)0.0006 (11)0.0120 (11)
O50.0162 (13)0.0410 (16)0.0198 (13)0.0090 (11)0.0044 (10)0.0138 (12)
O60.0200 (13)0.0389 (15)0.0165 (13)0.0077 (11)0.0033 (10)0.0118 (12)
O70.0266 (14)0.0329 (15)0.0230 (14)0.0106 (11)0.0128 (11)0.0157 (12)
O80.0283 (14)0.0169 (12)0.0202 (13)0.0021 (10)0.0042 (11)0.0077 (11)
C10.0210 (18)0.0223 (18)0.0204 (19)0.0057 (14)0.0096 (14)0.0151 (15)
C20.0201 (18)0.0201 (17)0.0225 (18)0.0069 (14)0.0087 (14)0.0120 (15)
C30.026 (2)0.028 (2)0.0213 (19)0.0070 (16)0.0066 (15)0.0098 (16)
C40.030 (2)0.027 (2)0.032 (2)0.0126 (16)0.0133 (17)0.0166 (17)
C50.030 (2)0.032 (2)0.026 (2)0.0148 (17)0.0102 (16)0.0180 (17)
C60.0176 (17)0.0146 (17)0.0178 (17)0.0049 (13)0.0068 (14)0.0085 (14)
C70.0201 (18)0.0203 (18)0.0183 (18)0.0038 (14)0.0060 (15)0.0109 (15)
Geometric parameters (Å, º) top
Ce1—O82.506 (2)O3—C61.254 (4)
Ce1—O4i2.521 (2)O4—C61.251 (4)
Ce1—O52.530 (2)O4—Ce1i2.521 (2)
Ce1—O32.538 (2)O5—C71.259 (4)
Ce1—O6ii2.540 (2)O6—C71.244 (4)
Ce1—O12.578 (2)O6—Ce1ii2.540 (2)
Ce1—O72.595 (3)O7—H7A0.8500
Ce1—O1iii2.614 (2)O7—H7B0.8500
Ce1—N12.815 (3)O8—H8A0.8500
Ce1—O2iii2.897 (3)O8—H8B0.8500
N1—C51.337 (5)C1—C21.502 (5)
N1—C21.337 (5)C2—C31.384 (5)
N2—C41.333 (5)C3—H30.9300
N2—C31.343 (5)C4—C51.385 (5)
O1—C11.273 (4)C4—H40.9300
O1—Ce1iii2.614 (2)C5—H50.9300
O2—C11.240 (4)C6—C6i1.564 (6)
O2—Ce1iii2.897 (3)C7—C7ii1.554 (7)
O8—Ce1—O4i149.92 (8)O7—Ce1—O2iii64.80 (8)
O8—Ce1—O582.87 (9)O1iii—Ce1—O2iii46.97 (7)
O4i—Ce1—O581.64 (8)N1—Ce1—O2iii157.52 (8)
O8—Ce1—O3139.44 (8)C5—N1—C2116.2 (3)
O4i—Ce1—O364.55 (7)C5—N1—Ce1126.2 (2)
O5—Ce1—O3136.12 (8)C2—N1—Ce1114.7 (2)
O8—Ce1—O6ii76.91 (9)C4—N2—C3116.2 (3)
O4i—Ce1—O6ii73.14 (8)C1—O1—Ce1122.9 (2)
O5—Ce1—O6ii63.80 (8)C1—O1—Ce1iii100.9 (2)
O3—Ce1—O6ii124.88 (8)Ce1—O1—Ce1iii119.65 (9)
O8—Ce1—O168.68 (8)C1—O2—Ce1iii88.3 (2)
O4i—Ce1—O1123.57 (8)C6—O3—Ce1119.4 (2)
O5—Ce1—O1151.55 (9)C6—O4—Ce1i120.1 (2)
O3—Ce1—O171.80 (8)C7—O5—Ce1121.5 (2)
O6ii—Ce1—O1107.92 (8)C7—O6—Ce1ii121.0 (2)
O8—Ce1—O7130.61 (8)Ce1—O7—H7A117.4
O4i—Ce1—O767.79 (8)Ce1—O7—H7B108.6
O5—Ce1—O772.58 (8)H7A—O7—H7B107.4
O3—Ce1—O769.25 (8)Ce1—O8—H8A120.9
O6ii—Ce1—O7124.39 (8)Ce1—O8—H8B114.4
O1—Ce1—O7126.31 (8)H8A—O8—H8B106.6
O8—Ce1—O1iii77.10 (8)O2—C1—O1123.3 (3)
O4i—Ce1—O1iii132.90 (8)O2—C1—C2120.1 (3)
O5—Ce1—O1iii114.25 (8)O1—C1—C2116.6 (3)
O3—Ce1—O1iii75.86 (7)N1—C2—C3122.0 (3)
O6ii—Ce1—O1iii153.96 (9)N1—C2—C1115.8 (3)
O1—Ce1—O1iii60.35 (9)C3—C2—C1122.2 (3)
O7—Ce1—O1iii75.23 (8)N2—C3—C2121.6 (4)
O8—Ce1—N197.71 (9)N2—C3—H3119.2
O4i—Ce1—N172.66 (9)C2—C3—H3119.2
O5—Ce1—N1128.42 (8)N2—C4—C5122.1 (3)
O3—Ce1—N168.56 (9)N2—C4—H4119.0
O6ii—Ce1—N166.20 (8)C5—C4—H4119.0
O1—Ce1—N158.85 (8)N1—C5—C4121.8 (3)
O7—Ce1—N1131.17 (9)N1—C5—H5119.1
O1iii—Ce1—N1116.07 (8)C4—C5—H5119.1
O8—Ce1—O2iii66.33 (8)O4—C6—O3126.0 (3)
O4i—Ce1—O2iii129.05 (8)O4—C6—C6i117.0 (3)
O5—Ce1—O2iii67.54 (8)O3—C6—C6i117.0 (4)
O3—Ce1—O2iii112.59 (8)O6—C7—O5126.5 (3)
O6ii—Ce1—O2iii121.33 (8)O6—C7—C7ii117.4 (4)
O1—Ce1—O2iii99.44 (7)O5—C7—C7ii116.1 (4)
O8—Ce1—N1—C5117.5 (3)O1iii—Ce1—O3—C6142.2 (3)
O4i—Ce1—N1—C533.2 (3)N1—Ce1—O3—C691.9 (2)
O5—Ce1—N1—C530.5 (4)O2iii—Ce1—O3—C6112.3 (2)
O3—Ce1—N1—C5102.1 (3)O8—Ce1—O5—C782.8 (3)
O6ii—Ce1—N1—C545.6 (3)O4i—Ce1—O5—C771.3 (3)
O1—Ce1—N1—C5176.8 (3)O3—Ce1—O5—C7110.1 (3)
O7—Ce1—N1—C570.2 (3)O6ii—Ce1—O5—C73.9 (3)
O1iii—Ce1—N1—C5163.1 (3)O1—Ce1—O5—C783.1 (3)
O2iii—Ce1—N1—C5160.4 (3)O7—Ce1—O5—C7140.6 (3)
O8—Ce1—N1—C282.8 (3)O1iii—Ce1—O5—C7155.2 (3)
O4i—Ce1—N1—C2126.4 (3)N1—Ce1—O5—C711.4 (3)
O5—Ce1—N1—C2169.8 (2)O2iii—Ce1—O5—C7150.1 (3)
O3—Ce1—N1—C257.6 (2)Ce1iii—O2—C1—O16.9 (3)
O6ii—Ce1—N1—C2154.8 (3)Ce1iii—O2—C1—C2171.1 (3)
O1—Ce1—N1—C223.5 (2)Ce1—O1—C1—O2144.3 (3)
O7—Ce1—N1—C289.5 (3)Ce1iii—O1—C1—O27.8 (4)
O1iii—Ce1—N1—C23.4 (3)Ce1—O1—C1—C233.8 (4)
O2iii—Ce1—N1—C239.9 (4)Ce1iii—O1—C1—C2170.3 (3)
O8—Ce1—O1—C1144.1 (3)C5—N1—C2—C32.5 (5)
O4i—Ce1—O1—C14.7 (3)Ce1—N1—C2—C3159.3 (3)
O5—Ce1—O1—C1144.4 (2)C5—N1—C2—C1179.6 (3)
O3—Ce1—O1—C145.2 (2)Ce1—N1—C2—C118.6 (4)
O6ii—Ce1—O1—C176.6 (3)O2—C1—C2—N1171.3 (3)
O7—Ce1—O1—C190.4 (3)O1—C1—C2—N16.8 (5)
O1iii—Ce1—O1—C1129.0 (3)O2—C1—C2—C36.6 (5)
N1—Ce1—O1—C130.3 (2)O1—C1—C2—C3175.3 (3)
O2iii—Ce1—O1—C1156.0 (3)C4—N2—C3—C22.5 (6)
O8—Ce1—O1—Ce1iii86.94 (11)N1—C2—C3—N20.1 (6)
O4i—Ce1—O1—Ce1iii124.21 (10)C1—C2—C3—N2177.7 (3)
O5—Ce1—O1—Ce1iii86.64 (18)C3—N2—C4—C52.4 (6)
O3—Ce1—O1—Ce1iii83.76 (11)C2—N1—C5—C42.6 (6)
O6ii—Ce1—O1—Ce1iii154.49 (10)Ce1—N1—C5—C4156.8 (3)
O7—Ce1—O1—Ce1iii38.53 (14)N2—C4—C5—N10.2 (6)
O1iii—Ce1—O1—Ce1iii0.0Ce1i—O4—C6—O3168.9 (3)
N1—Ce1—O1—Ce1iii159.23 (14)Ce1i—O4—C6—C6i11.3 (5)
O2iii—Ce1—O1—Ce1iii27.05 (11)Ce1—O3—C6—O4169.0 (3)
O8—Ce1—O3—C6168.2 (2)Ce1—O3—C6—C6i10.8 (5)
O4i—Ce1—O3—C611.6 (2)Ce1ii—O6—C7—O5176.2 (3)
O5—Ce1—O3—C631.8 (3)Ce1ii—O6—C7—C7ii2.7 (5)
O6ii—Ce1—O3—C655.2 (3)Ce1—O5—C7—O6176.9 (3)
O1—Ce1—O3—C6154.8 (3)Ce1—O5—C7—C7ii4.2 (5)
O7—Ce1—O3—C662.9 (2)
Symmetry codes: (i) x+1, y+2, z+3; (ii) x, y+1, z+2; (iii) x+1, y+1, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5iv0.852.102.836 (4)145
O7—H7B···O2v0.851.942.738 (4)156
O8—H8A···N2vi0.851.962.799 (4)169
O8—H8B···O3iii0.852.052.873 (3)163
Symmetry codes: (iii) x+1, y+1, z+3; (iv) x+1, y+1, z+2; (v) x, y, z1; (vi) x, y1, z1.

Experimental details

Crystal data
Chemical formula[Ce(C5H3N2O2)(C2O4)(H2O)2]
Mr387.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0298 (7), 8.7161 (9), 8.8201 (9)
α, β, γ (°)115.514 (2), 101.747 (1), 95.999 (1)
V3)532.38 (9)
Z2
Radiation typeMo Kα
µ (mm1)4.31
Crystal size (mm)0.24 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.424, 0.672
No. of measured, independent and
observed [I > 2σ(I)] reflections
2790, 1858, 1760
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.09
No. of reflections1858
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.95

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SAINT (Bruker, 1996, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ce1—O82.506 (2)Ce1—O12.578 (2)
Ce1—O4i2.521 (2)Ce1—O72.595 (3)
Ce1—O52.530 (2)Ce1—O1iii2.614 (2)
Ce1—O32.538 (2)Ce1—N12.815 (3)
Ce1—O6ii2.540 (2)Ce1—O2iii2.897 (3)
Symmetry codes: (i) x+1, y+2, z+3; (ii) x, y+1, z+2; (iii) x+1, y+1, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5iv0.852.102.836 (4)145.3
O7—H7B···O2v0.851.942.738 (4)155.7
O8—H8A···N2vi0.851.962.799 (4)169.1
O8—H8B···O3iii0.852.052.873 (3)162.8
Symmetry codes: (iii) x+1, y+1, z+3; (iv) x+1, y+1, z+2; (v) x, y, z1; (vi) x, y1, z1.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Research Fund of Beijing University of Civil Engineering and Architecture (grant No. 100700502) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (grant No. BJE10016200611).

References

First citationBruker. (1996). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationEliseeva, S. V., Mirzov, O. V., Troyanov, S. I., Vitukhnovsky, A. G. & Kuzmina, N. P. (2004). J. Alloys Compd, 374, 293–297.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. F., Lv, Y., Okamura, T., Kawaguchi, H., Wu, G. Y. & Ueyama, N. (2007). Cryst. Growth Des. 7, 1125–1133.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, X. J., Jin, L. P. & Lu, S. Z. (2002). Eur. J. Inorg. Chem. pp. 3356–3363.  CrossRef Google Scholar
First citationZou, J. Z., Xu, Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507–1512.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1282-m1283
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds