metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1291-m1292

Aqua­(3-carboxybenzoato-κO1)(nitrato-κO)(dipyrido[3,2-a:2′,3′-c]phenazine-κ2N4,N5)copper(II)

aInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 200135, People's Republic of China
*Correspondence e-mail: lxf_shmtu@yahoo.com.cn

(Received 22 August 2008; accepted 14 September 2008; online 20 September 2008)

The title complex, [Cu(C8H5O4)(NO3)(C18H10N4)(H2O)], was synthesized by reacting Cu(NO3)2, isophthalic acid and dipyridophenazine under hydro­thermal conditions. The CuII ion is in a slightly distorted square-pyramidal coordination environment. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect complex mol­ecules into chains along [001].

Related literature

For related literature, see: Gupta et al. (1992[Gupta, N., Grover, N., Neyhart, G. A., Liang, W., Singh, P. & Thorp, H. H. (1992). Angew. Chem. Int. Ed. 31, 1048-1050.]); Han & Ma (2006[Han, Z.-B. & Ma, Y. (2006). Acta Cryst. E62, m2236-m2237.]); Han et al. (2007[Han, Z. B., He, Y. K., Ge, C. H., Ribas, J. & Xu, L. (2007). Dalton Trans. pp. 3020-3024.]); Hartshorn & Barton (1992[Hartshorn, R. M. & Barton, J. K. (1992). J. Am. Chem. Soc. 114, 5919-5925.]); He & Han (2006[He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2676-m2677.]); Murphy et al. (1993[Murphy, C. J., Arkin, M. R., Jenkins, Y., Ghatlia, N. D., Bossmann, S. H., Turro, N. J. & Barton, J. K. (1993). Science, 262, 1025-1029.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H5O4)(NO3)(C18H10N4)(H2O)]

  • Mr = 590.99

  • Triclinic, [P \overline 1]

  • a = 7.8965 (17) Å

  • b = 11.295 (4) Å

  • c = 14.533 (6) Å

  • α = 112.73 (3)°

  • β = 90.94 (3)°

  • γ = 102.60 (2)°

  • V = 1159.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 (2) K

  • 0.37 × 0.32 × 0.24 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.707, Tmax = 0.797

  • 6320 measured reflections

  • 5180 independent reflections

  • 3353 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.198

  • S = 1.01

  • 5180 reflections

  • 367 parameters

  • 39 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1W 1.952 (3)
Cu1—O3 1.960 (3)
Cu1—N1 2.000 (4)
Cu1—N2 2.001 (4)
Cu1—O7 2.284 (4)
O1W—Cu1—O3 94.58 (14)
O1W—Cu1—N1 171.25 (17)
O3—Cu1—N1 89.65 (14)
O1W—Cu1—N2 92.03 (15)
O3—Cu1—N2 164.17 (16)
N1—Cu1—N2 82.02 (15)
O1W—Cu1—O7 97.54 (17)
O3—Cu1—O7 89.57 (16)
N1—Cu1—O7 90.14 (16)
N2—Cu1—O7 103.82 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6i 0.841 (19) 2.08 (3) 2.856 (7) 153 (5)
O1W—H1WA⋯O5i 0.841 (19) 2.41 (3) 3.165 (6) 151 (6)
O1W—H1WB⋯O4 0.842 (19) 1.88 (4) 2.565 (5) 138 (6)
O2—H2B⋯O4ii 0.82 1.94 2.722 (4) 159
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dipyridophenazine derivatives can be used as molecular light switches (Hartshorn & Barton, 1992) for the study of fast electron transfer through DNA (Murphy et al., 1993). A dipyridophenazine ruthenium(II) complex has been found to be a good cleavage agent with high affinity for DNA (Gupta et al., 1992). Recently, some examples of dinuclear copper(II) complexes of dipyridophenazine or isophthalate have been reported (He & Han, 2006; Han & Ma, 2006; Han et al., 2007). The synthesis and crystal structure of a mononuclear copper(II) complex with a dipyridophenazine and a hydrogenisophthalato ligand is presented herein.

The title complex (I) (Fig. 1) is formed by one dipyridophenazine ligand, one NO3 ligand, one aqua ligand and one hydrogenisophthalato ligand coordinated to a CuII atom by three oxygen atoms and two nitrogen atoms in a slightly distorted square-pyramidal geometry. In the crystal structure, the mononuclear complex molecules are linked via intermolecular O—H···O hydrogen bonds (Table 2) forming one-dimensional chains along [001].

Related literature top

For related literature, see: Gupta et al. (1992); Han & Ma (2006); Han et al. (2007); Hartshorn & Barton (1992); He & Han (2006); Murphy et al. (1993).

Experimental top

A mixture of Cu(NO3)2.2H2O (0.5 mmol, 0.120 g), isophthalic acid (0.5 mmol, 0.084 g), dipyridophenazine (0.5 mmol, 0.141 g) and water (10 ml) was mixed in a 23 ml Teflon reactor, which was heated at 453 K for six days and then cooled to room temperature at a rate of 5 K h-1. Yield: 58%. CH&N analysis for C26H17N5O8Cu (found/calc): C, 53.05 (52.84), H, 2.94 (2.90), N, 11.96% (11.85%).

Refinement top

H atoms were placed at calculated positions in the riding-model approximation (C—H = 0.93 Å, O—H = 0.82 Å) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Water H atoms were located in difference Fourier maps and refined with Uiso = 1.5eq(O), and distance restrains of O—H = 0.85 (2) and H···H = 1.39 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Aqua(3-carboxybenzoato-κO1)(dipyrido[3,2-a:2',3'-c]phenazine- κ2N4,N5)(nitrato-κO)copper(II) top
Crystal data top
[Cu(C8H5O4)(NO3)(C18H10N4)(H2O)]Z = 2
Mr = 590.99F(000) = 602
Triclinic, P1Dx = 1.693 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8965 (17) ÅCell parameters from 2056 reflections
b = 11.295 (4) Åθ = 3.0–23.0°
c = 14.533 (6) ŵ = 1.01 mm1
α = 112.73 (3)°T = 293 K
β = 90.94 (3)°Block, green
γ = 102.60 (2)°0.37 × 0.32 × 0.24 mm
V = 1159.4 (6) Å3
Data collection top
Bruker APEX area-detector
diffractometer
5180 independent reflections
Radiation source: fine-focus sealed tube3353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 110
Tmin = 0.707, Tmax = 0.797k = 1313
6320 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1211P)2]
where P = (Fo2 + 2Fc2)/3
5180 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.60 e Å3
39 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Cu(C8H5O4)(NO3)(C18H10N4)(H2O)]γ = 102.60 (2)°
Mr = 590.99V = 1159.4 (6) Å3
Triclinic, P1Z = 2
a = 7.8965 (17) ÅMo Kα radiation
b = 11.295 (4) ŵ = 1.01 mm1
c = 14.533 (6) ÅT = 293 K
α = 112.73 (3)°0.37 × 0.32 × 0.24 mm
β = 90.94 (3)°
Data collection top
Bruker APEX area-detector
diffractometer
5180 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3353 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.797Rint = 0.036
6320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05939 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.60 e Å3
5180 reflectionsΔρmin = 0.92 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27167 (8)0.70493 (5)0.50884 (4)0.0396 (2)
C10.2797 (7)0.4150 (4)0.4401 (3)0.0445 (11)
H1A0.22110.43540.50230.053*
C20.3193 (7)0.2855 (5)0.3703 (4)0.0497 (13)
H2A0.29150.21950.38650.060*
C30.4002 (7)0.2552 (5)0.2769 (4)0.0428 (11)
H3A0.42690.16840.22930.051*
C40.4426 (6)0.3552 (4)0.2532 (3)0.0345 (9)
C50.5234 (6)0.3340 (4)0.1558 (3)0.0342 (9)
C60.6258 (6)0.1988 (4)0.0066 (3)0.0373 (10)
C70.6553 (7)0.0742 (4)0.0887 (3)0.0432 (11)
H7A0.61480.00590.08260.052*
C80.7424 (7)0.0553 (5)0.1756 (4)0.0495 (12)
H8A0.76290.02720.22870.059*
C90.8031 (7)0.1561 (5)0.1884 (3)0.0484 (12)
H9A0.86350.13980.24920.058*
C100.7739 (7)0.2774 (5)0.1122 (4)0.0485 (12)
H10A0.81330.34450.12110.058*
C110.6829 (6)0.3022 (4)0.0187 (3)0.0385 (10)
C120.5768 (6)0.4395 (4)0.1423 (3)0.0345 (9)
C130.5442 (6)0.5688 (4)0.2256 (3)0.0370 (10)
C140.6011 (7)0.6754 (5)0.2202 (4)0.0449 (11)
H14A0.66350.66600.16190.054*
C150.5634 (7)0.7937 (5)0.3021 (4)0.0491 (12)
H15A0.60280.86460.30030.059*
C160.4675 (7)0.8076 (4)0.3869 (4)0.0469 (12)
H16A0.43910.88970.44080.056*
C170.4550 (6)0.5890 (4)0.3143 (3)0.0345 (9)
C180.4036 (6)0.4815 (4)0.3297 (3)0.0336 (9)
C190.1568 (7)0.8271 (5)1.0427 (4)0.0454 (11)
C200.0882 (6)0.7361 (4)0.9360 (3)0.0374 (10)
C210.0985 (7)0.6051 (5)0.9002 (4)0.0456 (11)
H21A0.14740.57440.94260.055*
C220.0371 (7)0.5205 (5)0.8029 (4)0.0486 (12)
H22A0.04770.43350.77880.058*
C230.0412 (7)0.5655 (5)0.7404 (4)0.0441 (11)
H23A0.08310.50810.67440.053*
C240.0572 (6)0.6956 (4)0.7756 (3)0.0352 (9)
C250.0095 (6)0.7805 (4)0.8736 (3)0.0364 (9)
H25A0.00130.86800.89780.044*
C260.1412 (6)0.7470 (4)0.7111 (3)0.0370 (10)
N10.3230 (5)0.5117 (4)0.4209 (3)0.0382 (8)
N20.4136 (5)0.7078 (3)0.3947 (3)0.0390 (8)
N30.5463 (5)0.2151 (3)0.0821 (3)0.0372 (8)
N40.6549 (5)0.4244 (4)0.0569 (3)0.0389 (8)
N50.0836 (6)0.8341 (4)0.4567 (3)0.0484 (10)
O10.2191 (6)0.7958 (4)1.1021 (3)0.0698 (12)
O20.1382 (6)0.9481 (3)1.0633 (2)0.0592 (10)
H2B0.14900.98961.12430.089*
O30.1920 (5)0.6681 (3)0.6212 (2)0.0463 (8)
O40.1588 (5)0.8630 (3)0.7480 (2)0.0508 (9)
O50.2236 (7)0.8977 (5)0.5054 (4)0.0954 (17)
O60.0214 (9)0.8751 (6)0.4026 (5)0.113 (2)
O70.0063 (5)0.7317 (4)0.4652 (4)0.0729 (12)
O1W0.2595 (6)0.8908 (3)0.5905 (2)0.0525 (9)
H1WA0.211 (8)0.953 (4)0.574 (4)0.079*
H1WB0.250 (8)0.915 (5)0.6533 (16)0.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0579 (4)0.0285 (3)0.0284 (3)0.0089 (2)0.0000 (2)0.0082 (2)
C10.061 (3)0.037 (2)0.034 (2)0.014 (2)0.003 (2)0.0122 (19)
C20.077 (4)0.036 (2)0.037 (2)0.022 (2)0.004 (2)0.012 (2)
C30.053 (3)0.035 (2)0.040 (2)0.018 (2)0.002 (2)0.0102 (19)
C40.038 (2)0.030 (2)0.036 (2)0.0091 (18)0.0024 (18)0.0132 (17)
C50.038 (2)0.033 (2)0.031 (2)0.0103 (18)0.0010 (17)0.0112 (17)
C60.039 (2)0.037 (2)0.034 (2)0.0111 (19)0.0034 (18)0.0112 (18)
C70.054 (3)0.035 (2)0.036 (2)0.014 (2)0.000 (2)0.0080 (19)
C80.061 (3)0.043 (3)0.036 (2)0.016 (2)0.004 (2)0.004 (2)
C90.055 (3)0.052 (3)0.030 (2)0.012 (2)0.009 (2)0.009 (2)
C100.061 (3)0.046 (3)0.039 (2)0.014 (2)0.006 (2)0.017 (2)
C110.045 (3)0.039 (2)0.028 (2)0.006 (2)0.0012 (18)0.0119 (18)
C120.040 (2)0.032 (2)0.032 (2)0.0112 (18)0.0012 (18)0.0120 (17)
C130.043 (3)0.029 (2)0.039 (2)0.0076 (18)0.0063 (19)0.0141 (18)
C140.058 (3)0.039 (2)0.040 (2)0.017 (2)0.002 (2)0.016 (2)
C150.070 (3)0.033 (2)0.048 (3)0.022 (2)0.001 (2)0.014 (2)
C160.060 (3)0.031 (2)0.043 (3)0.013 (2)0.006 (2)0.0077 (19)
C170.043 (3)0.027 (2)0.033 (2)0.0094 (18)0.0053 (18)0.0111 (17)
C180.039 (2)0.032 (2)0.031 (2)0.0107 (18)0.0029 (17)0.0120 (17)
C190.058 (3)0.044 (3)0.038 (2)0.022 (2)0.007 (2)0.016 (2)
C200.045 (3)0.036 (2)0.034 (2)0.0164 (19)0.0066 (19)0.0137 (18)
C210.058 (3)0.042 (2)0.043 (3)0.023 (2)0.006 (2)0.017 (2)
C220.064 (3)0.036 (2)0.044 (3)0.020 (2)0.005 (2)0.009 (2)
C230.053 (3)0.036 (2)0.038 (2)0.013 (2)0.006 (2)0.0075 (19)
C240.042 (2)0.032 (2)0.030 (2)0.0073 (18)0.0031 (18)0.0116 (17)
C250.045 (3)0.031 (2)0.032 (2)0.0123 (18)0.0029 (18)0.0100 (17)
C260.047 (3)0.032 (2)0.030 (2)0.0065 (19)0.0021 (18)0.0119 (17)
N10.050 (2)0.0337 (18)0.0276 (17)0.0102 (16)0.0008 (16)0.0085 (15)
N20.049 (2)0.0276 (17)0.0358 (19)0.0090 (16)0.0033 (17)0.0078 (15)
N30.045 (2)0.0322 (18)0.0342 (19)0.0120 (16)0.0000 (16)0.0114 (15)
N40.047 (2)0.0344 (19)0.0336 (19)0.0096 (16)0.0002 (16)0.0124 (15)
N50.054 (3)0.041 (2)0.057 (3)0.015 (2)0.009 (2)0.023 (2)
O10.104 (3)0.067 (3)0.047 (2)0.045 (2)0.011 (2)0.0204 (19)
O20.101 (3)0.0427 (19)0.0304 (17)0.024 (2)0.0060 (18)0.0078 (15)
O30.074 (2)0.0329 (16)0.0273 (15)0.0122 (16)0.0032 (15)0.0083 (12)
O40.085 (3)0.0340 (16)0.0269 (15)0.0175 (17)0.0052 (16)0.0045 (13)
O50.079 (3)0.071 (3)0.118 (4)0.008 (3)0.017 (3)0.035 (3)
O60.140 (5)0.120 (5)0.116 (5)0.035 (4)0.009 (4)0.086 (4)
O70.062 (3)0.056 (2)0.117 (4)0.015 (2)0.021 (2)0.052 (3)
O1W0.090 (3)0.0293 (16)0.0361 (17)0.0128 (17)0.0001 (18)0.0122 (14)
Geometric parameters (Å, º) top
Cu1—O1W1.952 (3)C14—C151.370 (7)
Cu1—O31.960 (3)C14—H14A0.9300
Cu1—N12.000 (4)C15—C161.373 (7)
Cu1—N22.001 (4)C15—H15A0.9300
Cu1—O72.284 (4)C16—N21.331 (6)
C1—N11.336 (6)C16—H16A0.9300
C1—C21.381 (6)C17—N21.363 (5)
C1—H1A0.9300C17—C181.454 (6)
C2—C31.374 (6)C18—N11.343 (5)
C2—H2A0.9300C19—O11.188 (6)
C3—C41.403 (6)C19—O21.324 (6)
C3—H3A0.9300C19—C201.501 (7)
C4—C181.392 (6)C20—C211.387 (6)
C4—C51.452 (6)C20—C251.389 (6)
C5—N31.327 (5)C21—C221.371 (7)
C5—C121.426 (6)C21—H21A0.9300
C6—N31.352 (5)C22—C231.394 (7)
C6—C111.409 (6)C22—H22A0.9300
C6—C71.418 (6)C23—C241.393 (6)
C7—C81.346 (7)C23—H23A0.9300
C7—H7A0.9300C24—C251.387 (6)
C8—C91.400 (7)C24—C261.491 (6)
C8—H8A0.9300C25—H25A0.9300
C9—C101.355 (7)C26—O41.250 (5)
C9—H9A0.9300C26—O31.261 (5)
C10—C111.425 (6)N5—O61.201 (6)
C10—H10A0.9300N5—O51.215 (6)
C11—N41.358 (5)N5—O71.236 (5)
C12—N41.310 (6)O2—H2B0.8200
C12—C131.458 (6)O1W—H1WA0.841 (19)
C13—C171.372 (6)O1W—H1WB0.842 (19)
C13—C141.402 (6)
O1W—Cu1—O394.58 (14)C14—C15—H15A120.0
O1W—Cu1—N1171.25 (17)C16—C15—H15A120.0
O3—Cu1—N189.65 (14)N2—C16—C15122.3 (4)
O1W—Cu1—N292.03 (15)N2—C16—H16A118.9
O3—Cu1—N2164.17 (16)C15—C16—H16A118.9
N1—Cu1—N282.02 (15)N2—C17—C13123.4 (4)
O1W—Cu1—O797.54 (17)N2—C17—C18115.2 (4)
O3—Cu1—O789.57 (16)C13—C17—C18121.4 (4)
N1—Cu1—O790.14 (16)N1—C18—C4123.9 (4)
N2—Cu1—O7103.82 (17)N1—C18—C17116.1 (4)
N1—C1—C2122.1 (4)C4—C18—C17120.0 (4)
N1—C1—H1A119.0O1—C19—O2123.7 (5)
C2—C1—H1A119.0O1—C19—C20125.0 (5)
C3—C2—C1119.4 (4)O2—C19—C20111.3 (4)
C3—C2—H2A120.3C21—C20—C25119.6 (4)
C1—C2—H2A120.3C21—C20—C19119.7 (4)
C2—C3—C4120.0 (4)C25—C20—C19120.7 (4)
C2—C3—H3A120.0C22—C21—C20120.6 (5)
C4—C3—H3A120.0C22—C21—H21A119.7
C18—C4—C3116.3 (4)C20—C21—H21A119.7
C18—C4—C5119.5 (4)C21—C22—C23119.6 (4)
C3—C4—C5124.2 (4)C21—C22—H22A120.2
N3—C5—C12122.1 (4)C23—C22—H22A120.2
N3—C5—C4118.1 (4)C24—C23—C22120.7 (4)
C12—C5—C4119.8 (4)C24—C23—H23A119.6
N3—C6—C11121.4 (4)C22—C23—H23A119.6
N3—C6—C7119.3 (4)C25—C24—C23118.7 (4)
C11—C6—C7119.2 (4)C25—C24—C26119.1 (4)
C8—C7—C6119.6 (4)C23—C24—C26122.2 (4)
C8—C7—H7A120.2C24—C25—C20120.7 (4)
C6—C7—H7A120.2C24—C25—H25A119.6
C7—C8—C9122.0 (4)C20—C25—H25A119.6
C7—C8—H8A119.0O4—C26—O3123.8 (4)
C9—C8—H8A119.0O4—C26—C24119.4 (4)
C10—C9—C8120.1 (4)O3—C26—C24116.8 (4)
C10—C9—H9A119.9C1—N1—C18118.3 (4)
C8—C9—H9A119.9C1—N1—Cu1128.4 (3)
C9—C10—C11120.1 (5)C18—N1—Cu1113.1 (3)
C9—C10—H10A120.0C16—N2—C17117.7 (4)
C11—C10—H10A120.0C16—N2—Cu1129.4 (3)
N4—C11—C6121.7 (4)C17—N2—Cu1112.9 (3)
N4—C11—C10119.3 (4)C5—N3—C6116.1 (4)
C6—C11—C10119.0 (4)C12—N4—C11116.4 (4)
N4—C12—C5122.1 (4)O6—N5—O5118.2 (5)
N4—C12—C13118.4 (4)O6—N5—O7121.5 (5)
C5—C12—C13119.5 (4)O5—N5—O7120.3 (5)
C17—C13—C14117.5 (4)C19—O2—H2B109.5
C17—C13—C12119.5 (4)C26—O3—Cu1128.9 (3)
C14—C13—C12123.0 (4)N5—O7—Cu1121.6 (3)
C15—C14—C13119.0 (4)Cu1—O1W—H1WA123 (4)
C15—C14—H14A120.5Cu1—O1W—H1WB117 (4)
C13—C14—H14A120.5H1WA—O1W—H1WB111 (3)
C14—C15—C16120.1 (4)
N1—C1—C2—C32.4 (8)C26—C24—C25—C20179.9 (4)
C1—C2—C3—C40.3 (8)C21—C20—C25—C240.8 (7)
C2—C3—C4—C182.2 (7)C19—C20—C25—C24178.7 (4)
C2—C3—C4—C5178.2 (5)C25—C24—C26—O44.0 (7)
C18—C4—C5—N3174.7 (4)C23—C24—C26—O4176.9 (5)
C3—C4—C5—N35.6 (7)C25—C24—C26—O3176.6 (4)
C18—C4—C5—C125.8 (6)C23—C24—C26—O32.5 (7)
C3—C4—C5—C12173.9 (4)C2—C1—N1—C181.7 (7)
N3—C6—C7—C8176.6 (5)C2—C1—N1—Cu1177.8 (4)
C11—C6—C7—C82.3 (7)C4—C18—N1—C11.0 (7)
C6—C7—C8—C91.1 (8)C17—C18—N1—C1177.3 (4)
C7—C8—C9—C100.4 (9)C4—C18—N1—Cu1175.7 (4)
C8—C9—C10—C110.6 (8)C17—C18—N1—Cu16.1 (5)
N3—C6—C11—N42.5 (7)O3—Cu1—N1—C110.2 (4)
C7—C6—C11—N4178.7 (4)N2—Cu1—N1—C1176.7 (4)
N3—C6—C11—C10176.8 (4)O7—Cu1—N1—C179.3 (4)
C7—C6—C11—C102.0 (7)O3—Cu1—N1—C18173.5 (3)
C9—C10—C11—N4179.9 (5)N2—Cu1—N1—C187.0 (3)
C9—C10—C11—C60.6 (8)O7—Cu1—N1—C1896.9 (3)
N3—C5—C12—N41.5 (7)C15—C16—N2—C170.8 (8)
C4—C5—C12—N4178.0 (4)C15—C16—N2—Cu1179.2 (4)
N3—C5—C12—C13178.5 (4)C13—C17—N2—C162.0 (7)
C4—C5—C12—C132.0 (6)C18—C17—N2—C16175.8 (4)
N4—C12—C13—C17176.8 (4)C13—C17—N2—Cu1176.7 (4)
C5—C12—C13—C173.1 (7)C18—C17—N2—Cu15.5 (5)
N4—C12—C13—C143.7 (7)O1W—Cu1—N2—C161.2 (5)
C5—C12—C13—C14176.3 (4)O3—Cu1—N2—C16115.8 (6)
C17—C13—C14—C150.9 (7)N1—Cu1—N2—C16174.7 (5)
C12—C13—C14—C15179.6 (5)O7—Cu1—N2—C1697.1 (5)
C13—C14—C15—C161.6 (8)O1W—Cu1—N2—C17179.7 (3)
C14—C15—C16—N22.6 (9)O3—Cu1—N2—C1765.7 (6)
C14—C13—C17—N22.8 (7)N1—Cu1—N2—C176.8 (3)
C12—C13—C17—N2177.7 (4)O7—Cu1—N2—C1781.4 (3)
C14—C13—C17—C18174.9 (4)C12—C5—N3—C61.0 (6)
C12—C13—C17—C184.6 (7)C4—C5—N3—C6178.5 (4)
C3—C4—C18—N12.9 (7)C11—C6—N3—C50.9 (6)
C5—C4—C18—N1177.4 (4)C7—C6—N3—C5179.7 (4)
C3—C4—C18—C17175.3 (4)C5—C12—N4—C110.1 (7)
C5—C4—C18—C174.4 (6)C13—C12—N4—C11179.9 (4)
N2—C17—C18—N10.4 (6)C6—C11—N4—C122.0 (7)
C13—C17—C18—N1177.5 (4)C10—C11—N4—C12177.3 (4)
N2—C17—C18—C4178.7 (4)O4—C26—O3—Cu111.6 (7)
C13—C17—C18—C40.8 (7)C24—C26—O3—Cu1169.0 (3)
O1—C19—C20—C211.2 (8)O1W—Cu1—O3—C264.4 (4)
O2—C19—C20—C21179.2 (5)N1—Cu1—O3—C26176.7 (4)
O1—C19—C20—C25176.7 (5)N2—Cu1—O3—C26118.7 (6)
O2—C19—C20—C252.9 (7)O7—Cu1—O3—C2693.1 (4)
C25—C20—C21—C222.3 (8)O6—N5—O7—Cu154.7 (7)
C19—C20—C21—C22179.8 (5)O5—N5—O7—Cu1123.5 (5)
C20—C21—C22—C232.0 (8)O1W—Cu1—O7—N530.2 (5)
C21—C22—C23—C240.2 (8)O3—Cu1—O7—N5124.7 (4)
C22—C23—C24—C251.3 (7)N1—Cu1—O7—N5145.6 (4)
C22—C23—C24—C26179.6 (5)N2—Cu1—O7—N563.8 (5)
C23—C24—C25—C201.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.84 (2)2.08 (3)2.856 (7)153 (5)
O1W—H1WA···O5i0.84 (2)2.41 (3)3.165 (6)151 (6)
O1W—H1WB···O40.84 (2)1.88 (4)2.565 (5)138 (6)
O2—H2B···O4ii0.821.942.722 (4)159
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C8H5O4)(NO3)(C18H10N4)(H2O)]
Mr590.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8965 (17), 11.295 (4), 14.533 (6)
α, β, γ (°)112.73 (3), 90.94 (3), 102.60 (2)
V3)1159.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.37 × 0.32 × 0.24
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.707, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
6320, 5180, 3353
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.198, 1.02
No. of reflections5180
No. of parameters367
No. of restraints39
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.92

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O1W1.952 (3)Cu1—N22.001 (4)
Cu1—O31.960 (3)Cu1—O72.284 (4)
Cu1—N12.000 (4)
O1W—Cu1—O394.58 (14)N1—Cu1—N282.02 (15)
O1W—Cu1—N1171.25 (17)O1W—Cu1—O797.54 (17)
O3—Cu1—N189.65 (14)O3—Cu1—O789.57 (16)
O1W—Cu1—N292.03 (15)N1—Cu1—O790.14 (16)
O3—Cu1—N2164.17 (16)N2—Cu1—O7103.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.841 (19)2.08 (3)2.856 (7)153 (5)
O1W—H1WA···O5i0.841 (19)2.41 (3)3.165 (6)151 (6)
O1W—H1WB···O40.842 (19)1.88 (4)2.565 (5)138 (6)
O2—H2B···O4ii0.821.942.722 (4)159
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z+2.
 

Acknowledgements

This work was supported by the Project of Shanghai Municipal Education Commission (2008068, 2008080).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGupta, N., Grover, N., Neyhart, G. A., Liang, W., Singh, P. & Thorp, H. H. (1992). Angew. Chem. Int. Ed. 31, 1048–1050.  CSD CrossRef Web of Science Google Scholar
First citationHan, Z. B., He, Y. K., Ge, C. H., Ribas, J. & Xu, L. (2007). Dalton Trans. pp. 3020–3024.  Web of Science CSD CrossRef Google Scholar
First citationHan, Z.-B. & Ma, Y. (2006). Acta Cryst. E62, m2236–m2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHartshorn, R. M. & Barton, J. K. (1992). J. Am. Chem. Soc. 114, 5919–5925.  CrossRef CAS Web of Science Google Scholar
First citationHe, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2676–m2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurphy, C. J., Arkin, M. R., Jenkins, Y., Ghatlia, N. D., Bossmann, S. H., Turro, N. J. & Barton, J. K. (1993). Science, 262, 1025–1029.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1291-m1292
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds