organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redermination of 9,9′-bianthracene-10,10′(9H,9′H)-dione

aDepartment of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun, Guizhou 558000, People's Republic of China, and bDepartment of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: ljmmarise@163.com

(Received 29 August 2008; accepted 9 September 2008; online 13 September 2008)

The crystal structure of the title compound, C28H18O2, was originally determined by Ehrenberg [(1967[Ehrenberg, M. (1967). Acta Cryst. 22, 482-487.]). Acta Cryst. 22, 482–487] using intensity data obtained from Weissenberg photographs. The current determination provides a crystal and mol­ecular structure with a significantly higher precision and presents standard uncertainties on geometric parameters which are not available from the original work. The mol­ecule lies on a crystallographic twofold rotation axis which bis­ects the C—C bond [1.603 (3) Å] which joins the two anthracen-9(10H)-one units.

Related literature

For general background, see: Li et al. (2002[Li, P. C., Wang, T. S., Lee, G. H., Liu, Y. H., Wang, Y., Chen, C. T. & Chao, I. (2002). J. Org. Chem. 67, 8002-8009.]); Shi et al. (2004[Shi, Z.-W., Li, Y.-Z., Li, Y., Lu, G.-Y. & Liu, S.-H. (2004). Acta Cryst. E60, o2275-o2277.]); Müller et al. (1996[Müller, K., Huang, H. S. & Wiegrebe, W. (1996). J. Med. Chem. 39, 3132-3128.], 1998[Müller, K., Altmann, R. & Prinz, H. (1998). Eur. J. Med. Chem. 33, 209-214.], 2001[Müller, K., Breu, K. & Reindl, H. (2001). Eur. J. Med. Chem. 36, 179-184.]); Prinz, Burgemeister & Wiegrebe (1996[Prinz, H., Burgemeister, T. & Wiegrebe, W. (1996). J. Org. Chem. 61, 2857-2860.]); Prinz, Wiegrebe & Müller (1996[Prinz, H., Wiegrebe, W. & Müller, K. (1996). J. Org. Chem. 61, 2853-2856.]). For related structures, see: Ehrenberg (1967[Ehrenberg, M. (1967). Acta Cryst. 22, 482-487.]).

[Scheme 1]

Experimental

Crystal data
  • C28H18O2

  • Mr = 386.42

  • Monoclinic, C 2/c

  • a = 22.295 (4) Å

  • b = 7.7297 (12) Å

  • c = 13.643 (2) Å

  • β = 126.768 (2)°

  • V = 1883.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.987

  • 4785 measured reflections

  • 1669 independent reflections

  • 1172 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.03

  • 1669 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis of anthracenone derivatives have attracted great interest due to their interesting biological activities (Müller et al., 1996, 1998, 2001; Prinz, Burgemeister & Wiegrebe, 1996; Prinz, Wiegrebe & Müller, 1996). Herein, we present a redetermination of the crystal structure of the title compound (I) which was originally refined in the non-conventional space group setting I2/a with unit cell parameters; a = 13.68 (4), b = 7.751 (3), c = 17.92 (4), β = 91.1 (3) (Ehrenberg, 1967). The current structure is of significantly higher precision than the orginal determination which was refined using intensity data obtained from Weissenberg photographs. The molecular structure of (I) is shown in Fig. 1. The molecule consists of two anthracen-9(10H)-one moieties linked together by a C—C [1.603 (3) Å] bond. A crystallographic twofold rotation axis bisects this bond.

Related literature top

For related literature, see: Ehrenberg (1967); Li et al. (2002); Shi et al. (2004); Müller et al. (1996, 1998, 2001); Prinz, Burgemeister & Wiegrebe (1996); Prinz, Wiegrebe & Müller (1996).

Experimental top

Reagents and solvents used were of commercially available quality. The title complex (I) was synthesized according to the method of Shi et al. (2004) and Li et al. (2002). CF3COOH (40 ml) was added dropwise with stirring to a solution of anthracene-9,10-dione (5.0 mmol) in 15 ml of anhydrous CH2Cl2. The mixture was then placed in an ice bath and NaBH4 (0.95 g, 25 mmol) was added in portions. The resulting mixture was stirred for 24 h at room temperature. The reaction mixture was poured into 200 ml ice-water. The organic layer was extracted with CH2Cl2, dried over Na2SO4 and evaporated in vacuo. The crude product was recrystallized from toluene twice to give the main product 9,9'-bianthracene-10,10'(9H,9'H)-dione.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids at the 30% probability level [symmetry code: (A) -x+2, y, -z+1/2].
9,9'-bianthracene-10,10'(9H,9'H)-dione top
Crystal data top
C28H18O2F(000) = 808
Mr = 386.42Dx = 1.363 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1069 reflections
a = 22.295 (4) Åθ = 2.9–24.7°
b = 7.7297 (12) ŵ = 0.09 mm1
c = 13.643 (2) ÅT = 273 K
β = 126.768 (2)°Block, yellow
V = 1883.4 (5) Å30.22 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1669 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2026
Tmin = 0.982, Tmax = 0.987k = 99
4785 measured reflectionsl = 168
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.4019P]
where P = (Fo2 + 2Fc2)/3
1669 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C28H18O2V = 1883.4 (5) Å3
Mr = 386.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.295 (4) ŵ = 0.09 mm1
b = 7.7297 (12) ÅT = 273 K
c = 13.643 (2) Å0.22 × 0.18 × 0.15 mm
β = 126.768 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1172 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.025
4785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
1669 reflectionsΔρmin = 0.17 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.86707 (8)0.25682 (16)0.29866 (15)0.0855 (5)
C10.90675 (10)0.1382 (2)0.30813 (16)0.0503 (4)
C20.98793 (9)0.16248 (19)0.37296 (14)0.0423 (4)
C31.02019 (10)0.3196 (2)0.43139 (15)0.0546 (5)
H30.99000.40830.42540.066*
C41.09595 (11)0.3451 (2)0.49762 (16)0.0616 (5)
H41.11690.45130.53460.074*
C51.14056 (10)0.2121 (2)0.50886 (15)0.0572 (5)
H51.19210.22770.55530.069*
C61.10969 (8)0.0560 (2)0.45207 (13)0.0457 (4)
H61.14080.03320.46160.055*
C71.03286 (8)0.02957 (19)0.38070 (13)0.0379 (4)
C80.99831 (8)0.13334 (18)0.30704 (13)0.0370 (4)
H81.02880.23060.35990.044*
C90.91944 (8)0.16565 (19)0.26300 (13)0.0393 (4)
C100.88717 (9)0.3276 (2)0.21705 (15)0.0491 (4)
H100.91580.41700.21910.059*
C110.81329 (10)0.3570 (2)0.16860 (16)0.0591 (5)
H110.79260.46600.13820.071*
C120.76987 (10)0.2268 (3)0.16480 (16)0.0589 (5)
H120.71990.24710.13140.071*
C130.80076 (9)0.0673 (2)0.21051 (15)0.0535 (5)
H130.77160.02070.20860.064*
C140.87527 (8)0.0352 (2)0.25983 (14)0.0426 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0740 (10)0.0554 (8)0.1455 (14)0.0116 (7)0.0756 (10)0.0060 (8)
C10.0571 (11)0.0449 (10)0.0648 (11)0.0082 (8)0.0450 (9)0.0049 (8)
C20.0527 (10)0.0383 (9)0.0436 (9)0.0017 (7)0.0331 (8)0.0012 (7)
C30.0705 (13)0.0430 (10)0.0553 (11)0.0008 (9)0.0403 (10)0.0061 (8)
C40.0735 (14)0.0512 (11)0.0535 (11)0.0147 (10)0.0344 (10)0.0138 (9)
C50.0496 (11)0.0651 (12)0.0458 (10)0.0120 (9)0.0227 (8)0.0111 (9)
C60.0446 (10)0.0512 (10)0.0392 (9)0.0003 (8)0.0240 (8)0.0024 (8)
C70.0447 (9)0.0388 (9)0.0327 (8)0.0000 (7)0.0245 (7)0.0022 (7)
C80.0394 (9)0.0327 (8)0.0406 (9)0.0041 (6)0.0247 (7)0.0050 (7)
C90.0427 (9)0.0384 (8)0.0414 (9)0.0003 (7)0.0276 (7)0.0074 (7)
C100.0502 (11)0.0421 (9)0.0571 (11)0.0027 (8)0.0333 (9)0.0037 (8)
C110.0568 (12)0.0566 (11)0.0606 (12)0.0179 (9)0.0333 (9)0.0026 (9)
C120.0414 (10)0.0781 (14)0.0570 (11)0.0074 (9)0.0293 (9)0.0030 (10)
C130.0464 (10)0.0645 (12)0.0558 (11)0.0060 (9)0.0339 (9)0.0081 (9)
C140.0429 (9)0.0472 (9)0.0451 (9)0.0033 (7)0.0303 (8)0.0070 (7)
Geometric parameters (Å, º) top
O1—C11.2260 (18)C8—C91.500 (2)
C1—C141.473 (2)C8—C8i1.603 (3)
C1—C21.475 (2)C8—H80.9800
C2—C31.393 (2)C9—C101.392 (2)
C2—C71.394 (2)C9—C141.392 (2)
C3—C41.372 (2)C10—C111.378 (2)
C3—H30.9300C10—H100.9300
C4—C51.374 (2)C11—C121.376 (3)
C4—H40.9300C11—H110.9300
C5—C61.375 (2)C12—C131.367 (2)
C5—H50.9300C12—H120.9300
C6—C71.388 (2)C13—C141.391 (2)
C6—H60.9300C13—H130.9300
C7—C81.504 (2)
O1—C1—C14120.85 (16)C7—C8—C8i110.23 (10)
O1—C1—C2121.12 (16)C9—C8—H8107.4
C14—C1—C2117.97 (14)C7—C8—H8107.4
C3—C2—C7119.84 (16)C8i—C8—H8107.4
C3—C2—C1118.80 (15)C10—C9—C14118.18 (15)
C7—C2—C1121.31 (14)C10—C9—C8119.74 (14)
C4—C3—C2120.84 (17)C14—C9—C8121.98 (13)
C4—C3—H3119.6C11—C10—C9120.78 (16)
C2—C3—H3119.6C11—C10—H10119.6
C3—C4—C5119.33 (17)C9—C10—H10119.6
C3—C4—H4120.3C12—C11—C10120.62 (17)
C5—C4—H4120.3C12—C11—H11119.7
C4—C5—C6120.59 (17)C10—C11—H11119.7
C4—C5—H5119.7C13—C12—C11119.45 (17)
C6—C5—H5119.7C13—C12—H12120.3
C5—C6—C7121.03 (16)C11—C12—H12120.3
C5—C6—H6119.5C12—C13—C14120.73 (17)
C7—C6—H6119.5C12—C13—H13119.6
C6—C7—C2118.28 (14)C14—C13—H13119.6
C6—C7—C8121.01 (14)C13—C14—C9120.23 (15)
C2—C7—C8120.59 (14)C13—C14—C1119.33 (15)
C9—C8—C7114.57 (13)C9—C14—C1120.43 (14)
C9—C8—C8i109.65 (14)
O1—C1—C2—C34.6 (2)C7—C8—C9—C10166.38 (13)
C14—C1—C2—C3172.72 (15)C8i—C8—C9—C1069.07 (14)
O1—C1—C2—C7178.00 (16)C7—C8—C9—C1417.4 (2)
C14—C1—C2—C74.7 (2)C8i—C8—C9—C14107.14 (13)
C7—C2—C3—C40.6 (2)C14—C9—C10—C110.7 (2)
C1—C2—C3—C4176.90 (15)C8—C9—C10—C11175.66 (14)
C2—C3—C4—C51.7 (3)C9—C10—C11—C120.1 (3)
C3—C4—C5—C61.5 (3)C10—C11—C12—C130.5 (3)
C4—C5—C6—C71.0 (3)C11—C12—C13—C140.5 (3)
C5—C6—C7—C23.2 (2)C12—C13—C14—C90.1 (2)
C5—C6—C7—C8172.91 (15)C12—C13—C14—C1179.91 (16)
C3—C2—C7—C63.0 (2)C10—C9—C14—C130.7 (2)
C1—C2—C7—C6174.42 (14)C8—C9—C14—C13175.56 (13)
C3—C2—C7—C8173.14 (14)C10—C9—C14—C1179.51 (14)
C1—C2—C7—C89.5 (2)C8—C9—C14—C14.2 (2)
C6—C7—C8—C9164.09 (13)O1—C1—C14—C134.5 (3)
C2—C7—C8—C919.91 (19)C2—C1—C14—C13172.84 (14)
C6—C7—C8—C8i71.68 (18)O1—C1—C14—C9175.31 (16)
C2—C7—C8—C8i104.32 (17)C2—C1—C14—C97.4 (2)
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H18O2
Mr386.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)22.295 (4), 7.7297 (12), 13.643 (2)
β (°) 126.768 (2)
V3)1883.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4785, 1669, 1172
Rint0.025
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.03
No. of reflections1669
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.17

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a key grant from Qiannan Normal College for Nationalities Foundation of Guizhou Province (grant No. 2007Z15) and the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2008XJKY-10B).

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEhrenberg, M. (1967). Acta Cryst. 22, 482–487.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLi, P. C., Wang, T. S., Lee, G. H., Liu, Y. H., Wang, Y., Chen, C. T. & Chao, I. (2002). J. Org. Chem. 67, 8002–8009.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMüller, K., Altmann, R. & Prinz, H. (1998). Eur. J. Med. Chem. 33, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationMüller, K., Breu, K. & Reindl, H. (2001). Eur. J. Med. Chem. 36, 179–184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMüller, K., Huang, H. S. & Wiegrebe, W. (1996). J. Med. Chem. 39, 3132–3128.  PubMed Web of Science Google Scholar
First citationPrinz, H., Burgemeister, T. & Wiegrebe, W. (1996). J. Org. Chem. 61, 2857–2860.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPrinz, H., Wiegrebe, W. & Müller, K. (1996). J. Org. Chem. 61, 2853–2856.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-W., Li, Y.-Z., Li, Y., Lu, G.-Y. & Liu, S.-H. (2004). Acta Cryst. E60, o2275–o2277.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds