organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Mesitylmethylsulfanyl)pyridine N-oxide monohydrate

aDepartment of Chemistry, Popes College, Sawyerpuram 628251, Tamilnadu, India, bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 64114, India, cDepartment of Physics, Popes College, Sawyerpuram 628251, Tamilnadu, India, and dInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 3 September 2008; accepted 12 September 2008; online 17 September 2008)

In the title compound, C15H17NOS·H2O, the benzene and pyridine rings form a dihedral angle of 71.18 (2)°. The intra­molecular S⋯O distance [2.737 (3) Å] is shorter than expected and, in terms of hybridization principles, the N—C—S angle [114.1 (2)°] is smaller than expected. The crystal structure is stabilized by inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds. In addition, weak ππ stacking inter­actions with a centroid–centroid distance of 3.778 (3) Å are also observed.

Related literature

For related structures, see: Jebas et al. (2005[Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677-o2678.]); Hartung et al. (1996[Hartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst. C52, 2841-2844.]); Ravindran Durai Nayagam et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]). For biological activities of N-oxide derivatives, see: Bovin et al. (1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr. 129, 145-150.]); Katsuyuki et al. (1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Leonard et al. (1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]); Lobana & Bhatia (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Symons & West (1985[Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Daltan Trans. pp. 379-381.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NOS·H2O

  • Mr = 277.37

  • Monoclinic, P 21 /c

  • a = 12.358 (7) Å

  • b = 15.404 (6) Å

  • c = 7.748 (5) Å

  • β = 106.40 (2)°

  • V = 1415.0 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.01 mm−1

  • T = 193 (2) K

  • 0.50 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.67, Tmax = 0.99 (expected range = 0.612–0.904)

  • 2896 measured reflections

  • 2684 independent reflections

  • 2048 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.190

  • S = 1.06

  • 2684 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O18 0.84 2.05 2.875 (4) 165
O1W—H2W⋯O18i 0.84 2.17 2.869 (4) 141
C16—H16⋯O1W 0.95 2.58 3.226 (6) 125
Symmetry code: (i) -x+1, -y, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

N-oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in the 2 position display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N–oxide derivatives (Jebas et al., 2005; Ravindran Durai Nayagam, et al., 2008). As an extension of our work, we report here the crystal structure of the title compound.

The asymmetric unit of (I), consists of one molecule 2-(1-oxo-2-pyridylsulfanylmethyl) mesitylene and a water molecule. The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N-oxides (Allen et al., 1987).

The pyridine ring and the benzene rings are essentially individually planar with the maximum deviation from planarity being 0.011 (2) Å for atom C2 and -0.010 (2) Å for atom C12 respectively. The dihedral angle formed by the benzene ring (C1–C6) and the pyridine ring (C12–C16/N17) is 71.18 (2)°. The atom O18 attached to atom N17 of the pyridine ring is essentially co-planar; the relevant torsion angle being O18—N17—C16—C15 = 178.9 (3)°.

The crystal structure is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds. In addition, ππ interactions with Cg1···Cg1i = 3.778 (3) Å (Cg1 is the centroid defined by ring atoms C12–C16/N17) [symmetry code:(i) 1-x,-y,1-z] are observed. As in the structure of 2-(1-phenyl-4-penten-l-yl-thio)pyridine N-oxide (Hartung et al., 1996) a short intramolecular S···O [2.737 (3) Å] distance is observed.

Related literature top

For related structures, see: Jebas et al. (2005); Hartung et al. (1996); Ravindran Durai Nayagam et al.,2008). For biological activities of N-oxide derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.149,1 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in acetone and water (1: 1v/v) and allowed to undergo slow evaporation. Colourless crystals were obtained after a week

Refinement top

After checking for their presence in the Fourier map, all the hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms with the C—H = 0.95 Å (aromatic); C—H = 0.99 Å(methylene); C—H = 0.98 Å (methyl) and O—H = 0.84 Å with Uiso(H) in the range of 1.2Ueq(C)–1.5Ueq(C,O)methyl.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the b axis showing hydrogen bonds as dashed lines.
2-(Mesitylmethylsulfanyl)pyridine N-oxide monohydrate top
Crystal data top
C15H17NOS·H2OF(000) = 592
Mr = 277.37Dx = 1.302 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.358 (7) Åθ = 36–50°
b = 15.404 (6) ŵ = 2.01 mm1
c = 7.748 (5) ÅT = 193 K
β = 106.40 (2)°Plate, colourless
V = 1415.0 (13) Å30.50 × 0.20 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2048 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.067
Graphite monochromatorθmax = 70.0°, θmin = 3.7°
ω/2θ scansh = 1415
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 180
Tmin = 0.67, Tmax = 0.99l = 90
2896 measured reflections3 standard reflections every 60 min
2684 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1179P)2 + 0.1489P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C15H17NOS·H2OV = 1415.0 (13) Å3
Mr = 277.37Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.358 (7) ŵ = 2.01 mm1
b = 15.404 (6) ÅT = 193 K
c = 7.748 (5) Å0.50 × 0.20 × 0.05 mm
β = 106.40 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2048 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.067
Tmin = 0.67, Tmax = 0.993 standard reflections every 60 min
2896 measured reflections intensity decay: 3%
2684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.06Δρmax = 0.58 e Å3
2684 reflectionsΔρmin = 0.79 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0724 (3)0.0867 (2)0.3741 (4)0.0305 (7)
C20.0757 (3)0.1748 (2)0.4252 (4)0.0336 (7)
C30.0205 (3)0.2249 (2)0.3573 (4)0.0375 (8)
H30.01990.28370.39460.045*
C40.1170 (3)0.1924 (2)0.2377 (4)0.0376 (8)
C50.1186 (3)0.1053 (2)0.1862 (4)0.0355 (7)
H50.18440.08180.10450.043*
C60.0247 (3)0.05268 (19)0.2537 (4)0.0314 (7)
C70.1771 (3)0.2149 (2)0.5531 (5)0.0469 (9)
H7A0.19540.18350.66780.070*
H7B0.24110.21170.50220.070*
H7C0.16120.27580.57330.070*
C80.2178 (4)0.2507 (3)0.1647 (6)0.0561 (11)
H8A0.28370.21530.10540.084*
H8B0.23320.28330.26370.084*
H8C0.20200.29130.07750.084*
C90.0327 (3)0.0412 (2)0.1961 (5)0.0379 (8)
H9A0.02470.05340.13410.057*
H9B0.02020.07860.30220.057*
H9C0.10780.05260.11440.057*
C100.1718 (3)0.0290 (2)0.4538 (4)0.0354 (7)
H10A0.22030.05560.56530.042*
H10B0.14540.02800.48500.042*
S110.25245 (7)0.01425 (5)0.29196 (10)0.0343 (3)
C120.3569 (3)0.05537 (19)0.4133 (4)0.0300 (7)
C130.3783 (3)0.0803 (2)0.5928 (4)0.0364 (7)
H130.33430.05670.66400.044*
C140.4623 (3)0.1386 (2)0.6672 (5)0.0454 (9)
H140.47650.15520.78970.054*
C150.5265 (3)0.1733 (2)0.5633 (6)0.0487 (9)
H150.58390.21470.61280.058*
C160.5057 (3)0.1469 (2)0.3886 (6)0.0446 (9)
H160.55010.16970.31710.053*
N170.4236 (2)0.08942 (17)0.3157 (4)0.0336 (6)
O180.4037 (2)0.06592 (17)0.1461 (3)0.0446 (6)
O1W0.6227 (3)0.0815 (2)0.0886 (4)0.0610 (8)
H1W0.55750.06900.09330.091*
H2W0.64950.03940.04520.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (18)0.0265 (14)0.0256 (14)0.0078 (13)0.0208 (14)0.0057 (11)
C20.0497 (19)0.0286 (16)0.0288 (15)0.0017 (14)0.0214 (14)0.0011 (13)
C30.057 (2)0.0265 (15)0.0356 (17)0.0102 (14)0.0246 (16)0.0070 (13)
C40.0480 (19)0.0392 (17)0.0332 (16)0.0162 (15)0.0239 (15)0.0141 (14)
C50.0420 (18)0.0388 (18)0.0300 (16)0.0035 (14)0.0171 (14)0.0055 (13)
C60.0492 (19)0.0263 (15)0.0255 (14)0.0026 (13)0.0217 (14)0.0050 (12)
C70.058 (2)0.0377 (19)0.048 (2)0.0032 (17)0.0194 (18)0.0037 (16)
C80.062 (3)0.058 (2)0.055 (2)0.030 (2)0.027 (2)0.020 (2)
C90.060 (2)0.0264 (16)0.0334 (16)0.0007 (14)0.0230 (16)0.0007 (12)
C100.0476 (19)0.0363 (16)0.0261 (15)0.0109 (14)0.0167 (14)0.0030 (13)
S110.0424 (5)0.0364 (5)0.0281 (4)0.0087 (3)0.0164 (3)0.0048 (3)
C120.0309 (15)0.0228 (14)0.0361 (16)0.0022 (12)0.0091 (13)0.0048 (12)
C130.0443 (18)0.0318 (16)0.0312 (16)0.0004 (14)0.0075 (14)0.0038 (13)
C140.046 (2)0.0403 (19)0.045 (2)0.0026 (16)0.0045 (17)0.0067 (16)
C150.0396 (19)0.039 (2)0.068 (3)0.0066 (15)0.0159 (18)0.0110 (18)
C160.0367 (18)0.0357 (18)0.066 (2)0.0061 (15)0.0230 (18)0.0009 (17)
N170.0343 (14)0.0293 (13)0.0402 (15)0.0044 (11)0.0154 (12)0.0042 (11)
O180.0475 (15)0.0501 (15)0.0417 (14)0.0042 (11)0.0213 (12)0.0012 (11)
O1W0.0589 (18)0.085 (2)0.0441 (15)0.0134 (16)0.0233 (14)0.0132 (15)
Geometric parameters (Å, º) top
C1—C61.397 (5)C9—H9B0.9800
C1—C21.411 (4)C9—H9C0.9800
C1—C101.500 (4)C10—S111.823 (3)
C2—C31.390 (5)C10—H10A0.9900
C2—C71.494 (5)C10—H10B0.9900
C3—C41.381 (5)S11—C121.736 (3)
C3—H30.9500C12—N171.371 (4)
C4—C51.399 (5)C12—C131.394 (4)
C4—C81.509 (5)C13—C141.371 (5)
C5—C61.391 (5)C13—H130.9500
C5—H50.9500C14—C151.388 (6)
C6—C91.509 (4)C14—H140.9500
C7—H7A0.9800C15—C161.367 (6)
C7—H7B0.9800C15—H150.9500
C7—H7C0.9800C16—N171.345 (4)
C8—H8A0.9800C16—H160.9500
C8—H8B0.9800N17—O181.318 (4)
C8—H8C0.9800O1W—H1W0.8400
C9—H9A0.9800O1W—H2W0.8400
C6—C1—C2120.0 (3)C6—C9—H9B109.5
C6—C1—C10120.1 (3)H9A—C9—H9B109.5
C2—C1—C10119.9 (3)C6—C9—H9C109.5
C3—C2—C1118.3 (3)H9A—C9—H9C109.5
C3—C2—C7119.3 (3)H9B—C9—H9C109.5
C1—C2—C7122.4 (3)C1—C10—S11109.5 (2)
C4—C3—C2122.5 (3)C1—C10—H10A109.8
C4—C3—H3118.7S11—C10—H10A109.8
C2—C3—H3118.7C1—C10—H10B109.8
C3—C4—C5118.6 (3)S11—C10—H10B109.8
C3—C4—C8120.1 (3)H10A—C10—H10B108.2
C5—C4—C8121.3 (4)C12—S11—C1099.89 (16)
C6—C5—C4120.6 (3)N17—C12—C13118.1 (3)
C6—C5—H5119.7N17—C12—S11114.1 (2)
C4—C5—H5119.7C13—C12—S11127.8 (3)
C5—C6—C1120.0 (3)C14—C13—C12120.5 (3)
C5—C6—C9118.0 (3)C14—C13—H13119.7
C1—C6—C9122.0 (3)C12—C13—H13119.7
C2—C7—H7A109.5C13—C14—C15119.9 (4)
C2—C7—H7B109.5C13—C14—H14120.1
H7A—C7—H7B109.5C15—C14—H14120.1
C2—C7—H7C109.5C16—C15—C14118.8 (3)
H7A—C7—H7C109.5C16—C15—H15120.6
H7B—C7—H7C109.5C14—C15—H15120.6
C4—C8—H8A109.5N17—C16—C15121.4 (3)
C4—C8—H8B109.5N17—C16—H16119.3
H8A—C8—H8B109.5C15—C16—H16119.3
C4—C8—H8C109.5O18—N17—C16120.4 (3)
H8A—C8—H8C109.5O18—N17—C12118.2 (3)
H8B—C8—H8C109.5C16—N17—C12121.3 (3)
C6—C9—H9A109.5H1W—O1W—H2W109.5
C6—C1—C2—C32.0 (4)C6—C1—C10—S1180.1 (3)
C10—C1—C2—C3176.0 (3)C2—C1—C10—S11101.9 (3)
C6—C1—C2—C7179.9 (3)C1—C10—S11—C12178.5 (2)
C10—C1—C2—C72.1 (5)C10—S11—C12—N17170.9 (2)
C1—C2—C3—C42.3 (5)C10—S11—C12—C138.2 (3)
C7—C2—C3—C4179.6 (3)N17—C12—C13—C141.3 (5)
C2—C3—C4—C51.5 (5)S11—C12—C13—C14177.7 (3)
C2—C3—C4—C8178.3 (3)C12—C13—C14—C150.2 (5)
C3—C4—C5—C60.3 (5)C13—C14—C15—C161.3 (6)
C8—C4—C5—C6179.5 (3)C14—C15—C16—N171.0 (6)
C4—C5—C6—C10.0 (4)C15—C16—N17—O18178.9 (3)
C4—C5—C6—C9178.7 (3)C15—C16—N17—C120.5 (5)
C2—C1—C6—C50.9 (4)C13—C12—N17—O18179.9 (3)
C10—C1—C6—C5177.1 (3)S11—C12—N17—O180.9 (4)
C2—C1—C6—C9179.5 (3)C13—C12—N17—C161.7 (5)
C10—C1—C6—C91.5 (4)S11—C12—N17—C16177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O180.842.052.875 (4)165
O1W—H2W···O18i0.842.172.869 (4)141
C16—H16···O1W0.952.583.226 (6)125
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H17NOS·H2O
Mr277.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.358 (7), 15.404 (6), 7.748 (5)
β (°) 106.40 (2)
V3)1415.0 (13)
Z4
Radiation typeCu Kα
µ (mm1)2.01
Crystal size (mm)0.50 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.67, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
2896, 2684, 2048
Rint0.067
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.190, 1.06
No. of reflections2684
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.79

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CORINC (Dräger & Gattow, 1971), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O180.842.052.875 (4)165.4
O1W—H2W···O18i0.842.172.869 (4)140.6
C16—H16···O1W0.952.583.226 (6)125
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr. 129, 145–150.  Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst. C52, 2841–2844.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Daltan Trans. pp. 379–381.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds