metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[2-(2-pyridylmeth­­oxy)pyrazine-κN4]bis­­(thio­cyanato-κN)cobalt(II)

aDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China
*Correspondence e-mail: yangzhongnian1978@yahoo.com.cn

(Received 20 September 2008; accepted 24 September 2008; online 30 September 2008)

In the title complex, [Co(NCS)2(C10H9N3O)2(H2O)2], the CoII ion is located on a crystallographic twofold rotation axis and is in a slightly distorted octa­hedral CoN4O2 coordination environment. The dihedral angle between the pyridine and pyrazine rings is 85.86 (10)°. In the crystal structure, inter­molecular O—H⋯N and O—H⋯S hydrogen bonds link complex mol­ecules into a three-dimensional network.

Related literature

For the isostructural Mn complex, see: Li (2007[Li, J.-M. (2007). Acta Cryst. E63, m2266.]). For a related structure, see: Zhao et al. (2007[Zhao, H.-Y., Shi, J.-M. & Liu, L.-D. (2007). Acta Cryst. E63, m441-m442.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C10H9N3O)2(H2O)2]

  • Mr = 585.53

  • Monoclinic, C 2/c

  • a = 19.954 (4) Å

  • b = 10.044 (2) Å

  • c = 13.650 (3) Å

  • β = 110.749 (3)°

  • V = 2558.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 (2) K

  • 0.41 × 0.31 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.714, Tmax = 0.872

  • 7123 measured reflections

  • 2768 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.09

  • 2768 reflections

  • 168 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N4 2.0597 (19)
Co1—O2 2.1394 (13)
Co1—N3 2.1856 (15)
N4—Co1—N4i 175.43 (9)
N4—Co1—O2 91.49 (6)
N4i—Co1—O2 85.34 (6)
O2—Co1—O2i 92.24 (8)
N4—Co1—N3i 92.63 (6)
O2—Co1—N3i 173.74 (6)
N4—Co1—N3 90.81 (6)
O2—Co1—N3 92.79 (6)
N3i—Co1—N3 82.45 (8)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H5⋯S1ii 0.86 2.58 3.4123 (17) 164
O2—H8⋯N1iii 0.83 1.98 2.803 (2) 172
Symmetry codes: (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecules containing both pyridyl and pyrazinyl groups are useful multi-dentate ligands and a number of complexes have been published dealing with these ligands (e.g. Zhao et al., 2007; Li, 2007). Herein the crystal structure of the title complex, (I), with 2-((pyridin-2-yl)methoxy)pyrazine as ligand, is reported.

The molecular structure of (I) is shown in Fig. 1. In the mono-nuclear complex, atom Co1 lies on a twofold rotation axis and its coordination geometry is slightly distorted octahedral (Table 1). In the crystal structure, complex molecules are linked via intermolecular O—H···S and O—H···N hydrogen bonds as shown in Fig. 2 and Table 2, to form a three-dimensional network. The diheral angle between pyridine and pyrazine rings is 85.86 (10)°. The title compound is isostructural with the MnII complex (Li, 2007).

Related literature top

For the isostructural Mn complex, see: Li (2007). For a related structure, see: Zhao et al. (2007).

Experimental top

A 5 ml methanol solution of 2-[(pyridin-2-yl)methoxy]pyrazine (0.0526 g, 0.281 mmol) was added into 10 ml H2O solution containing Co(ClO4)2.6H2O (0.1032 g, 0.282 mmol) and NaSCN (0.0457 g, 0.564 mmol), and the mixture was stirred for a few minutes. Red single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

The H atoms bonded to O atoms were located in a difference Fourier map, and included in their 'as found' positions. The C-bound H atoms were placed in calculated positions, C—H = 0.93–0.97 Å. All H atoms were refined as riding, with Uiso(H) = 1.2–1.5Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of complex (I), showing the the asymmetric atom numbering scheme with thermal ellipsoids drawn at the 30% probability level. (symmetry code: (i) -x, y, -z + 3/2)
[Figure 2] Fig. 2. Part of the crystal structure of (I). Hydrogen bonds are shown as dashed lines.
Diaquabis[2-(2-pyridylmethoxy)pyrazine-κN4]bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C10H9N3O)2(H2O)2]F(000) = 1204
Mr = 585.53Dx = 1.520 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3335 reflections
a = 19.954 (4) Åθ = 2.3–27.5°
b = 10.044 (2) ŵ = 0.88 mm1
c = 13.650 (3) ÅT = 298 K
β = 110.749 (3)°Block, red
V = 2558.2 (10) Å30.41 × 0.31 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2768 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 2521
Tmin = 0.714, Tmax = 0.872k = 1112
7123 measured reflectionsl = 917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.3122P]
where P = (Fo2 + 2Fc2)/3
2768 reflections(Δ/σ)max = 0.008
168 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
[Co(NCS)2(C10H9N3O)2(H2O)2]V = 2558.2 (10) Å3
Mr = 585.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.954 (4) ŵ = 0.88 mm1
b = 10.044 (2) ÅT = 298 K
c = 13.650 (3) Å0.41 × 0.31 × 0.16 mm
β = 110.749 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2768 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
2361 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.872Rint = 0.032
7123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.09Δρmax = 0.75 e Å3
2768 reflectionsΔρmin = 0.37 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23226 (11)0.20768 (19)1.25209 (19)0.0415 (5)
H10.19270.25831.21360.050*
C20.25719 (13)0.2109 (2)1.3601 (2)0.0473 (5)
H20.23510.26431.39550.057*
C30.31522 (12)0.1337 (2)1.41439 (17)0.0471 (5)
H30.33280.13261.48720.057*
C40.34682 (12)0.0580 (2)1.35887 (17)0.0474 (5)
H40.38630.00621.39610.057*
C50.26655 (10)0.12879 (17)1.20171 (15)0.0336 (4)
C60.24197 (11)0.1258 (2)1.08505 (16)0.0431 (5)
H6A0.28250.11381.06250.052*
H6B0.21840.20891.05620.052*
N20.17307 (9)0.09050 (15)0.88100 (13)0.0385 (4)
C80.15889 (10)0.00579 (18)0.94509 (15)0.0349 (4)
C90.13592 (11)0.0711 (2)0.77904 (16)0.0425 (5)
H90.14260.13010.73080.051*
C100.08838 (10)0.0321 (2)0.74250 (16)0.0398 (5)
H100.06460.04210.67080.048*
C110.10991 (10)0.09863 (18)0.91016 (15)0.0341 (4)
H110.10120.15450.95870.041*
C120.02714 (11)0.28829 (18)0.53206 (17)0.0365 (4)
Co10.00000.28266 (3)0.75000.02902 (14)
N40.02348 (10)0.29084 (16)0.61484 (15)0.0394 (4)
N30.07579 (8)0.11899 (15)0.80922 (13)0.0330 (3)
N10.32395 (9)0.05466 (17)1.25423 (13)0.0402 (4)
O10.19253 (8)0.01598 (14)1.04945 (11)0.0455 (4)
O20.07922 (7)0.43031 (14)0.82323 (11)0.0425 (3)
H50.06370.49160.85320.064*
H80.10790.45990.79690.064*
S10.03352 (5)0.28165 (7)0.41650 (6)0.0722 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (10)0.0342 (10)0.0538 (13)0.0006 (7)0.0096 (10)0.0005 (9)
C20.0484 (13)0.0442 (11)0.0552 (14)0.0083 (9)0.0257 (11)0.0133 (10)
C30.0505 (13)0.0511 (12)0.0351 (11)0.0126 (10)0.0096 (10)0.0053 (10)
C40.0409 (11)0.0471 (12)0.0439 (12)0.0040 (9)0.0022 (10)0.0025 (10)
C50.0296 (9)0.0283 (9)0.0380 (10)0.0092 (7)0.0059 (8)0.0013 (7)
C60.0425 (11)0.0390 (10)0.0387 (11)0.0150 (9)0.0032 (9)0.0006 (9)
N20.0362 (9)0.0342 (8)0.0403 (9)0.0070 (7)0.0075 (7)0.0012 (7)
C80.0310 (9)0.0330 (9)0.0339 (10)0.0013 (7)0.0032 (8)0.0014 (8)
C90.0439 (11)0.0420 (11)0.0367 (11)0.0094 (9)0.0082 (9)0.0046 (9)
C100.0362 (10)0.0425 (10)0.0347 (10)0.0066 (8)0.0051 (9)0.0033 (9)
C110.0294 (9)0.0315 (9)0.0354 (10)0.0028 (7)0.0040 (8)0.0028 (8)
C120.0364 (10)0.0331 (9)0.0404 (9)0.0018 (7)0.0140 (9)0.0011 (8)
Co10.0249 (2)0.0302 (2)0.0284 (2)0.0000.00494 (15)0.000
N40.0405 (10)0.0391 (9)0.0397 (9)0.0016 (7)0.0152 (8)0.0003 (7)
N30.0257 (7)0.0328 (8)0.0354 (8)0.0009 (6)0.0045 (6)0.0013 (6)
N10.0346 (9)0.0398 (9)0.0419 (9)0.0016 (7)0.0083 (8)0.0039 (8)
O10.0514 (9)0.0385 (7)0.0343 (8)0.0187 (6)0.0002 (7)0.0015 (6)
O20.0415 (8)0.0437 (8)0.0417 (8)0.0125 (6)0.0137 (7)0.0072 (6)
S10.1124 (7)0.0671 (5)0.0530 (4)0.0083 (4)0.0491 (4)0.0012 (3)
Geometric parameters (Å, º) top
C1—C51.379 (3)C8—C111.397 (2)
C1—C21.380 (3)C9—C101.373 (3)
C1—H10.9300C9—H90.9300
C2—C31.372 (3)C10—N31.348 (2)
C2—H20.9300C10—H100.9300
C3—C41.374 (3)C11—N31.319 (2)
C3—H30.9300C11—H110.9300
C4—N11.337 (3)C12—N41.158 (3)
C4—H40.9300C12—S11.628 (2)
C5—N11.341 (2)Co1—N42.0597 (19)
C5—C61.491 (3)Co1—N4i2.0597 (19)
C6—O11.445 (2)Co1—O22.1394 (13)
C6—H6A0.9700Co1—O2i2.1394 (13)
C6—H6B0.9700Co1—N3i2.1856 (15)
N2—C81.321 (2)Co1—N32.1856 (15)
N2—C91.339 (3)O2—H50.8552
C8—O11.346 (2)O2—H80.8316
C5—C1—C2119.44 (19)C9—C10—H10119.6
C5—C1—H1120.3N3—C11—C8120.83 (17)
C2—C1—H1120.3N3—C11—H11119.6
C3—C2—C1118.7 (2)C8—C11—H11119.6
C3—C2—H2120.7N4—C12—S1178.7 (2)
C1—C2—H2120.7N4—Co1—N4i175.43 (9)
C2—C3—C4118.6 (2)N4—Co1—O291.49 (6)
C2—C3—H3120.7N4i—Co1—O285.34 (6)
C4—C3—H3120.7N4—Co1—O2i85.34 (6)
N1—C4—C3123.60 (19)N4i—Co1—O2i91.49 (6)
N1—C4—H4118.2O2—Co1—O2i92.24 (8)
C3—C4—H4118.2N4—Co1—N3i92.63 (6)
N1—C5—C1122.21 (19)N4i—Co1—N3i90.81 (6)
N1—C5—C6117.08 (18)O2—Co1—N3i173.74 (6)
C1—C5—C6120.69 (18)O2i—Co1—N3i92.79 (6)
O1—C6—C5107.55 (16)N4—Co1—N390.81 (6)
O1—C6—H6A110.2N4i—Co1—N392.63 (6)
C5—C6—H6A110.2O2—Co1—N392.79 (6)
O1—C6—H6B110.2O2i—Co1—N3173.74 (6)
C5—C6—H6B110.2N3i—Co1—N382.45 (8)
H6A—C6—H6B108.5C12—N4—Co1170.41 (18)
C8—N2—C9115.14 (16)C11—N3—C10117.06 (16)
N2—C8—O1120.55 (16)C11—N3—Co1122.44 (12)
N2—C8—C11123.07 (17)C10—N3—Co1120.49 (13)
O1—C8—C11116.38 (17)C4—N1—C5117.44 (17)
N2—C9—C10122.97 (19)C8—O1—C6116.04 (15)
N2—C9—H9118.5Co1—O2—H5113.0
C10—C9—H9118.5Co1—O2—H8123.6
N3—C10—C9120.87 (19)H5—O2—H8111.7
N3—C10—H10119.6
C5—C1—C2—C30.8 (3)C9—C10—N3—Co1180.00 (15)
C1—C2—C3—C41.0 (3)N4—Co1—N3—C11150.92 (14)
C2—C3—C4—N10.3 (3)N4i—Co1—N3—C1126.06 (15)
C2—C1—C5—N10.3 (3)O2—Co1—N3—C1159.39 (14)
C2—C1—C5—C6178.48 (17)N3i—Co1—N3—C11116.53 (16)
N1—C5—C6—O188.0 (2)N4—Co1—N3—C1030.49 (15)
C1—C5—C6—O193.7 (2)N4i—Co1—N3—C10152.53 (15)
C9—N2—C8—O1179.51 (18)O2—Co1—N3—C10122.02 (14)
C9—N2—C8—C111.2 (3)N3i—Co1—N3—C1062.06 (13)
C8—N2—C9—C102.4 (3)C3—C4—N1—C50.7 (3)
N2—C9—C10—N31.2 (3)C1—C5—N1—C41.0 (3)
N2—C8—C11—N31.2 (3)C6—C5—N1—C4179.25 (17)
O1—C8—C11—N3178.10 (17)N2—C8—O1—C61.9 (3)
C8—C11—N3—C102.4 (3)C11—C8—O1—C6178.76 (17)
C8—C11—N3—Co1178.94 (13)C5—C6—O1—C8173.42 (17)
C9—C10—N3—C111.3 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H5···S1ii0.862.583.4123 (17)164
O2—H8···N1iii0.831.982.803 (2)172
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C10H9N3O)2(H2O)2]
Mr585.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.954 (4), 10.044 (2), 13.650 (3)
β (°) 110.749 (3)
V3)2558.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.41 × 0.31 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.714, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
7123, 2768, 2361
Rint0.032
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.09
No. of reflections2768
No. of parameters168
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N42.0597 (19)Co1—N32.1856 (15)
Co1—O22.1394 (13)
N4—Co1—N4i175.43 (9)O2—Co1—N3i173.74 (6)
N4—Co1—O291.49 (6)N4—Co1—N390.81 (6)
N4i—Co1—O285.34 (6)O2—Co1—N392.79 (6)
O2—Co1—O2i92.24 (8)N3i—Co1—N382.45 (8)
N4—Co1—N3i92.63 (6)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H5···S1ii0.862.583.4123 (17)164.1
O2—H8···N1iii0.831.982.803 (2)171.6
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+2.
 

Acknowledgements

This work was supported by the Doctors' Foundation of Binzhou University.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J.-M. (2007). Acta Cryst. E63, m2266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H.-Y., Shi, J.-M. & Liu, L.-D. (2007). Acta Cryst. E63, m441–m442.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds