metal-organic compounds
Cyclohexyldimethylammonium tetrahydroxypentaborate
aDepartment of Chemistry, Teachers College of Qingdao University, Qingdao, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com
The title compound, [C8H18N]+·[B5O6(OH)4]−, has been synthesized under mild solvothermal conditions in the presence of N,N-dimethylcyclohexylamine acting as a template. The structure consists of pentaborate [B5O6(OH)4]− anions connected through O—H⋯O hydrogen bonds into a three-dimensional framework, with large channels along [100], [010] and [001] directions. The [C8H18N]+ cations reside in the channels, interacting with the framework through N—H⋯O hydrogen bonds.
Related literature
For related literature, see: Batsanov et al. (1982); Burns et al. (1995); Chen et al. (1995); Grice et al. (1999); Liu & Li (2006); Liu et al. (2006); Schubert et al. (2000); Touboul et al. (2003); Wang et al. (2004, 2008a,b)
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808028869/mg2056sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028869/mg2056Isup2.hkl
A mixture of H3BO3 (0.186 g), Al2O3 (0.104 g), N,N-dimethylcyclohexylamine (0.75 ml), pyridine (4.4 ml) and H2O (0.50 ml) was sealed in a Teflon-lined steel autoclave, heated at 453 K for 8 days, and then cooled to room temperature. The homogeneous product consisting of large colorless block-shaped crystals was separated from the solution by filtration, washed with distilled water, and then dried in air.
All H atoms were positioned geometrically and treated as riding atoms: O—H = 0.82 Å, N—H = 0.91 Å and C—H = 0.96–0.98 Å with Uiso(H) = 1.2–1.5Ueq(parent atoms).
Data collection: SMART (Bruker, 2002); cell
SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level for non-H atoms. | |
Fig. 2. Projection of (I) along b, showing [B5O6(OH)4]- anions linked into a three-dimensional framework, with [C8H18N]+ cations occupying channels. Hydrogen bonds are shown as dashed lines. |
C8H18N+·B5H4O10− | Z = 2 |
Mr = 346.32 | F(000) = 364 |
Triclinic, P1 | Dx = 1.410 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6971 (4) Å | Cell parameters from 6623 reflections |
b = 9.8990 (2) Å | θ = 2.1–26.5° |
c = 10.2300 (3) Å | µ = 0.12 mm−1 |
α = 74.591 (3)° | T = 295 K |
β = 74.442 (2)° | Block, colorless |
γ = 82.190 (5)° | 0.45 × 0.45 × 0.45 mm |
V = 815.98 (5) Å3 |
Bruker SMART APEX area-detector diffractometer | 3318 independent reflections |
Radiation source: fine-focus sealed tube | 2536 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 26.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.949, Tmax = 0.949 | k = −12→12 |
6623 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.0744P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3318 reflections | Δρmax = 0.23 e Å−3 |
218 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.058 (6) |
C8H18N+·B5H4O10− | γ = 82.190 (5)° |
Mr = 346.32 | V = 815.98 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.6971 (4) Å | Mo Kα radiation |
b = 9.8990 (2) Å | µ = 0.12 mm−1 |
c = 10.2300 (3) Å | T = 295 K |
α = 74.591 (3)° | 0.45 × 0.45 × 0.45 mm |
β = 74.442 (2)° |
Bruker SMART APEX area-detector diffractometer | 3318 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2536 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.949 | Rint = 0.026 |
6623 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.23 e Å−3 |
3318 reflections | Δρmin = −0.29 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.3071 (2) | 1.10774 (18) | 0.59941 (19) | 0.0342 (4) | |
B2 | 0.1056 (2) | 1.1184 (2) | 0.8073 (2) | 0.0372 (4) | |
B3 | 0.3133 (2) | 0.92080 (17) | 0.81503 (17) | 0.0296 (4) | |
B4 | 0.3702 (2) | 0.66200 (18) | 0.88838 (18) | 0.0309 (4) | |
B5 | 0.5114 (2) | 0.81317 (18) | 0.95617 (18) | 0.0311 (4) | |
O1 | 0.35979 (15) | 1.16205 (12) | 0.46086 (12) | 0.0477 (3) | |
H1A | 0.4376 | 1.1133 | 0.4291 | 0.072* | |
O2 | 0.17524 (14) | 1.17636 (12) | 0.66942 (12) | 0.0480 (3) | |
O3 | −0.02096 (16) | 1.18988 (13) | 0.87215 (13) | 0.0555 (4) | |
H3A | −0.0641 | 1.1391 | 0.9470 | 0.083* | |
O4 | 0.16229 (13) | 0.99089 (11) | 0.87271 (11) | 0.0362 (3) | |
O5 | 0.37677 (12) | 0.98883 (11) | 0.66764 (10) | 0.0328 (3) | |
O6 | 0.42790 (13) | 0.92583 (10) | 0.89591 (11) | 0.0334 (3) | |
O7 | 0.28642 (13) | 0.77398 (10) | 0.82604 (11) | 0.0331 (3) | |
O8 | 0.61961 (15) | 0.82028 (12) | 1.02584 (13) | 0.0454 (3) | |
H8A | 0.6045 | 0.8953 | 1.0486 | 0.068* | |
O9 | 0.48965 (13) | 0.67959 (11) | 0.94784 (12) | 0.0375 (3) | |
O10 | 0.33377 (15) | 0.53291 (11) | 0.89197 (13) | 0.0453 (3) | |
H10A | 0.3859 | 0.4736 | 0.9386 | 0.068* | |
C2 | 0.2698 (4) | 0.5351 (3) | 0.4335 (3) | 0.0907 (9) | |
H2A | 0.3327 | 0.4461 | 0.4360 | 0.109* | |
H2B | 0.1854 | 0.5349 | 0.3880 | 0.109* | |
C1 | 0.3752 (4) | 0.6525 (3) | 0.3495 (3) | 0.0884 (8) | |
H1B | 0.4659 | 0.6475 | 0.3892 | 0.106* | |
H1C | 0.4156 | 0.6425 | 0.2542 | 0.106* | |
C4 | 0.1958 (3) | 0.5485 (2) | 0.5814 (2) | 0.0685 (6) | |
H4A | 0.1248 | 0.4738 | 0.6301 | 0.082* | |
H4B | 0.2793 | 0.5392 | 0.6304 | 0.082* | |
C3 | 0.2836 (3) | 0.7915 (3) | 0.3491 (2) | 0.0677 (6) | |
H3B | 0.2010 | 0.8008 | 0.2990 | 0.081* | |
H3C | 0.3552 | 0.8659 | 0.3005 | 0.081* | |
C5 | 0.2074 (3) | 0.8069 (2) | 0.4963 (2) | 0.0552 (5) | |
H5A | 0.2908 | 0.8097 | 0.5421 | 0.066* | |
H5B | 0.1428 | 0.8952 | 0.4922 | 0.066* | |
C6 | 0.1036 (2) | 0.6880 (2) | 0.58154 (18) | 0.0464 (4) | |
H6A | 0.0141 | 0.6920 | 0.5391 | 0.056* | |
C7 | −0.0497 (3) | 0.5880 (3) | 0.8280 (3) | 0.0899 (9) | |
H7A | −0.0881 | 0.6078 | 0.9185 | 0.135* | |
H7B | 0.0219 | 0.5050 | 0.8341 | 0.135* | |
H7D | −0.1386 | 0.5732 | 0.7956 | 0.135* | |
C8 | −0.0711 (3) | 0.8397 (3) | 0.7322 (3) | 0.0774 (7) | |
H8B | −0.1092 | 0.8485 | 0.8270 | 0.116* | |
H8E | −0.1603 | 0.8354 | 0.6953 | 0.116* | |
H8C | −0.0124 | 0.9194 | 0.6767 | 0.116* | |
N1 | 0.03619 (19) | 0.70824 (19) | 0.72858 (16) | 0.0540 (4) | |
H1D | 0.1208 | 0.7174 | 0.7614 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0377 (10) | 0.0291 (9) | 0.0329 (9) | 0.0001 (8) | −0.0099 (8) | −0.0021 (7) |
B2 | 0.0364 (10) | 0.0328 (10) | 0.0367 (10) | 0.0043 (8) | −0.0081 (8) | −0.0027 (8) |
B3 | 0.0345 (9) | 0.0252 (8) | 0.0286 (9) | 0.0013 (7) | −0.0110 (7) | −0.0038 (7) |
B4 | 0.0346 (9) | 0.0268 (9) | 0.0308 (9) | −0.0004 (7) | −0.0100 (7) | −0.0050 (7) |
B5 | 0.0318 (9) | 0.0298 (9) | 0.0316 (9) | 0.0026 (7) | −0.0096 (7) | −0.0075 (7) |
O1 | 0.0515 (8) | 0.0430 (7) | 0.0336 (6) | 0.0102 (6) | −0.0047 (5) | 0.0038 (5) |
O2 | 0.0495 (8) | 0.0379 (7) | 0.0381 (7) | 0.0151 (5) | −0.0026 (5) | 0.0048 (5) |
O3 | 0.0515 (8) | 0.0468 (8) | 0.0467 (7) | 0.0198 (6) | 0.0006 (6) | 0.0008 (6) |
O4 | 0.0361 (6) | 0.0325 (6) | 0.0319 (6) | 0.0059 (5) | −0.0056 (5) | −0.0010 (5) |
O5 | 0.0364 (6) | 0.0296 (6) | 0.0284 (6) | 0.0036 (4) | −0.0073 (4) | −0.0037 (4) |
O6 | 0.0422 (6) | 0.0247 (5) | 0.0361 (6) | 0.0024 (5) | −0.0179 (5) | −0.0062 (4) |
O7 | 0.0372 (6) | 0.0274 (6) | 0.0370 (6) | −0.0002 (5) | −0.0177 (5) | −0.0037 (4) |
O8 | 0.0540 (8) | 0.0337 (6) | 0.0605 (8) | 0.0078 (5) | −0.0354 (6) | −0.0155 (5) |
O9 | 0.0439 (7) | 0.0248 (6) | 0.0496 (7) | 0.0050 (5) | −0.0261 (5) | −0.0076 (5) |
O10 | 0.0546 (8) | 0.0262 (6) | 0.0614 (8) | −0.0016 (5) | −0.0320 (6) | −0.0036 (5) |
C2 | 0.130 (2) | 0.0621 (16) | 0.0858 (19) | 0.0030 (16) | −0.0256 (18) | −0.0321 (14) |
C1 | 0.0910 (19) | 0.101 (2) | 0.0638 (15) | 0.0082 (16) | −0.0015 (14) | −0.0295 (15) |
C4 | 0.0907 (17) | 0.0440 (12) | 0.0684 (15) | −0.0043 (11) | −0.0254 (13) | −0.0035 (10) |
C3 | 0.0751 (15) | 0.0731 (15) | 0.0487 (12) | −0.0154 (12) | −0.0111 (11) | −0.0032 (11) |
C5 | 0.0682 (13) | 0.0471 (11) | 0.0508 (11) | −0.0127 (10) | −0.0154 (10) | −0.0073 (9) |
C6 | 0.0485 (11) | 0.0532 (11) | 0.0407 (10) | −0.0104 (9) | −0.0183 (8) | −0.0055 (8) |
C7 | 0.0835 (18) | 0.125 (2) | 0.0532 (14) | −0.0480 (17) | −0.0113 (13) | 0.0068 (14) |
C8 | 0.0516 (13) | 0.110 (2) | 0.0765 (16) | 0.0118 (13) | −0.0205 (12) | −0.0362 (15) |
N1 | 0.0436 (9) | 0.0767 (12) | 0.0442 (9) | −0.0127 (8) | −0.0178 (7) | −0.0071 (8) |
B1—O1 | 1.350 (2) | C1—C3 | 1.492 (4) |
B1—O5 | 1.3552 (19) | C1—H1B | 0.9700 |
B1—O2 | 1.377 (2) | C1—H1C | 0.9700 |
B2—O3 | 1.341 (2) | C4—C6 | 1.500 (3) |
B2—O4 | 1.357 (2) | C4—H4A | 0.9700 |
B2—O2 | 1.375 (2) | C4—H4B | 0.9700 |
B3—O4 | 1.452 (2) | C3—C5 | 1.513 (3) |
B3—O5 | 1.4651 (19) | C3—H3B | 0.9700 |
B3—O6 | 1.469 (2) | C3—H3C | 0.9700 |
B3—O7 | 1.473 (2) | C5—C6 | 1.510 (3) |
B4—O10 | 1.346 (2) | C5—H5A | 0.9700 |
B4—O7 | 1.3491 (19) | C5—H5B | 0.9700 |
B4—O9 | 1.387 (2) | C6—N1 | 1.517 (2) |
B5—O8 | 1.343 (2) | C6—H6A | 0.9800 |
B5—O6 | 1.3439 (19) | C7—N1 | 1.484 (3) |
B5—O9 | 1.388 (2) | C7—H7A | 0.9600 |
O1—H1A | 0.8200 | C7—H7B | 0.9600 |
O3—H3A | 0.8200 | C7—H7D | 0.9600 |
O8—H8A | 0.8200 | C8—N1 | 1.497 (3) |
O10—H10A | 0.8200 | C8—H8B | 0.9600 |
C2—C1 | 1.506 (4) | C8—H8E | 0.9600 |
C2—C4 | 1.510 (3) | C8—H8C | 0.9600 |
C2—H2A | 0.9700 | N1—H1D | 0.9100 |
C2—H2B | 0.9700 | ||
O1—B1—O5 | 122.22 (15) | C6—C4—H4A | 109.5 |
O1—B1—O2 | 117.10 (14) | C2—C4—H4A | 109.5 |
O5—B1—O2 | 120.66 (14) | C6—C4—H4B | 109.5 |
O3—B2—O4 | 121.91 (16) | C2—C4—H4B | 109.5 |
O3—B2—O2 | 117.92 (15) | H4A—C4—H4B | 108.1 |
O4—B2—O2 | 120.14 (15) | C1—C3—C5 | 111.33 (19) |
O4—B3—O5 | 111.21 (12) | C1—C3—H3B | 109.4 |
O4—B3—O6 | 108.43 (12) | C5—C3—H3B | 109.4 |
O5—B3—O6 | 109.57 (13) | C1—C3—H3C | 109.4 |
O4—B3—O7 | 108.58 (13) | C5—C3—H3C | 109.4 |
O5—B3—O7 | 108.76 (12) | H3B—C3—H3C | 108.0 |
O6—B3—O7 | 110.28 (12) | C6—C5—C3 | 112.21 (17) |
O10—B4—O7 | 118.13 (15) | C6—C5—H5A | 109.2 |
O10—B4—O9 | 121.04 (14) | C3—C5—H5A | 109.2 |
O7—B4—O9 | 120.83 (14) | C6—C5—H5B | 109.2 |
O8—B5—O6 | 123.78 (14) | C3—C5—H5B | 109.2 |
O8—B5—O9 | 115.84 (14) | H5A—C5—H5B | 107.9 |
O6—B5—O9 | 120.38 (14) | C4—C6—C5 | 110.93 (18) |
B1—O1—H1A | 109.5 | C4—C6—N1 | 111.82 (15) |
B2—O2—B1 | 119.89 (13) | C5—C6—N1 | 109.11 (15) |
B2—O3—H3A | 109.5 | C4—C6—H6A | 108.3 |
B2—O4—B3 | 123.53 (13) | C5—C6—H6A | 108.3 |
B1—O5—B3 | 123.25 (13) | N1—C6—H6A | 108.3 |
B5—O6—B3 | 124.60 (12) | N1—C7—H7A | 109.5 |
B4—O7—B3 | 123.84 (12) | N1—C7—H7B | 109.5 |
B5—O8—H8A | 109.5 | H7A—C7—H7B | 109.5 |
B4—O9—B5 | 119.28 (12) | N1—C7—H7D | 109.5 |
B4—O10—H10A | 109.5 | H7A—C7—H7D | 109.5 |
C1—C2—C4 | 112.3 (2) | H7B—C7—H7D | 109.5 |
C1—C2—H2A | 109.1 | N1—C8—H8B | 109.5 |
C4—C2—H2A | 109.1 | N1—C8—H8E | 109.5 |
C1—C2—H2B | 109.1 | H8B—C8—H8E | 109.5 |
C4—C2—H2B | 109.1 | N1—C8—H8C | 109.5 |
H2A—C2—H2B | 107.9 | H8B—C8—H8C | 109.5 |
C3—C1—C2 | 110.5 (2) | H8E—C8—H8C | 109.5 |
C3—C1—H1B | 109.6 | C7—N1—C8 | 108.9 (2) |
C2—C1—H1B | 109.6 | C7—N1—C6 | 114.16 (19) |
C3—C1—H1C | 109.6 | C8—N1—C6 | 112.63 (16) |
C2—C1—H1C | 109.6 | C7—N1—H1D | 106.9 |
H1B—C1—H1C | 108.1 | C8—N1—H1D | 106.9 |
C6—C4—C2 | 110.61 (18) | C6—N1—H1D | 106.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O5i | 0.82 | 1.96 | 2.7759 (16) | 174 |
O3—H3A···O4ii | 0.82 | 1.99 | 2.8143 (16) | 178 |
O8—H8A···O6iii | 0.82 | 1.96 | 2.7816 (15) | 179 |
O10—H10A···O9iv | 0.82 | 2.03 | 2.8477 (15) | 178 |
N1—H1D···O7 | 0.91 | 1.94 | 2.8368 (18) | 169 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+2, −z+2; (iv) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C8H18N+·B5H4O10− |
Mr | 346.32 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 8.6971 (4), 9.8990 (2), 10.2300 (3) |
α, β, γ (°) | 74.591 (3), 74.442 (2), 82.190 (5) |
V (Å3) | 815.98 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.45 × 0.45 × 0.45 |
Data collection | |
Diffractometer | Bruker SMART APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.949, 0.949 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6623, 3318, 2536 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.119, 1.08 |
No. of reflections | 3318 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.29 |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
B1—O1 | 1.350 (2) | B3—O6 | 1.469 (2) |
B1—O5 | 1.3552 (19) | B3—O7 | 1.473 (2) |
B1—O2 | 1.377 (2) | B4—O10 | 1.346 (2) |
B2—O3 | 1.341 (2) | B4—O7 | 1.3491 (19) |
B2—O4 | 1.357 (2) | B4—O9 | 1.387 (2) |
B2—O2 | 1.375 (2) | B5—O8 | 1.343 (2) |
B3—O4 | 1.452 (2) | B5—O6 | 1.3439 (19) |
B3—O5 | 1.4651 (19) | B5—O9 | 1.388 (2) |
O1—B1—O5 | 122.22 (15) | O4—B3—O7 | 108.58 (13) |
O1—B1—O2 | 117.10 (14) | O5—B3—O7 | 108.76 (12) |
O5—B1—O2 | 120.66 (14) | O6—B3—O7 | 110.28 (12) |
O3—B2—O4 | 121.91 (16) | O10—B4—O7 | 118.13 (15) |
O3—B2—O2 | 117.92 (15) | O10—B4—O9 | 121.04 (14) |
O4—B2—O2 | 120.14 (15) | O7—B4—O9 | 120.83 (14) |
O4—B3—O5 | 111.21 (12) | O8—B5—O6 | 123.78 (14) |
O4—B3—O6 | 108.43 (12) | O8—B5—O9 | 115.84 (14) |
O5—B3—O6 | 109.57 (13) | O6—B5—O9 | 120.38 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O5i | 0.82 | 1.96 | 2.7759 (16) | 173.5 |
O3—H3A···O4ii | 0.82 | 1.99 | 2.8143 (16) | 177.6 |
O8—H8A···O6iii | 0.82 | 1.96 | 2.7816 (15) | 178.9 |
O10—H10A···O9iv | 0.82 | 2.03 | 2.8477 (15) | 177.6 |
N1—H1D···O7 | 0.91 | 1.94 | 2.8368 (18) | 169.2 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+2, −z+2; (iv) −x+1, −y+1, −z+2. |
Acknowledgements
This work was supported by the Qingdao University Research Fund (No. 063–06300522).
References
Batsanov, A. S., Nava, E. H., Struchkov, T. & Akimov, V. M. (1982). Cryst. Struct. Commun. 11, 1629–1631. CAS Google Scholar
Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131–1151. CAS Google Scholar
Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324. CrossRef CAS Web of Science Google Scholar
Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–761. CAS Google Scholar
Liu, Z. H. & Li, L. Q. (2006). Cryst. Growth Des. 6, 1247–1249. Web of Science CSD CrossRef CAS Google Scholar
Liu, Z. H., Li, L. Q. & Zhang, W. J. (2006). Inorg. Chem. 45, 1430-1432. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250–2251. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342. Web of Science CrossRef CAS Google Scholar
Wang, G. M., Li, J. H., Huang, H. L., Li, H. & Zhang, J. (2008a). Inorg. Chem. 47, 5039–5041. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, G. M., Li, J. H., Li, Z. X., Huang, H. L., Xue, S. Y. & Liu, H. L. (2008b). Inorg. Chem. 47, 1270–1272. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, G. M., Sun, Y. Q. & Yang, G. Y. (2004). J. Solid State Chem. 177, 4648–4654. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Borate materials have been receiving particular attention due to their fascinating structural diversities and potential applications in mineralogy and industry (Burns et al., 1995; Chen et al., 1995; Grice et al., 1999; Touboul et al., 2003). From a structural point of view, the ability of B to adopt both BO3 and BO4 coordination modes, coupled with the tendency of such units to polymerize into a wide range of polyanions, has led to a rapidly growing family of borates. Thus far, numerous inorganic borate materials with alkali metals, alkaline earth metals, rare earths and transition metals have been extensively studied. In contrast, the analogous chemistry of organically templated borates is still relatively undeveloped. To the best of our knowledge, only a few examples with polyanions, such as [B4O5(OH)4] (Batsanov et al., 1982), [B5O6(OH)4] (Wang et al., 2004), [B7O9(OH)5] (Liu & Li, 2006; Liu et al., 2006), [B9O12(OH)6] (Schubert et al., 2000) and [B14O20(OH)6] (Liu et al., 2006), have been reported. The aim of our work is to explore the construction of novel microporous aluminoborates templated by organic agents with different shape and size (Wang et al., 2008a,b). Unexpectedly, the title compound, (I), was isolated, a new organically templated pentaborate.
As shown in Fig. 1, the asymmetric unit of (I) contains one [B5O6(OH)4]- anion and one [C8H18N]+ cation. The anionic [B5O6(OH)4]- polyanion is composed of two common B3O3 rings, each containing two BO3 triangles and one BO4 tetrahedron. The B—O bond distances lie in the range 1.341 (2)–1.388 (2) Å for the BO3 triangles (B1, B2, B4 and B5) and 1.452 (2)–1.473 (2) Å for the B(3)O4 tetrahedron, in good agreement with those reported previously for other borate compounds. The O—B—O bond angles lie in the range 115.8 (2)–123.7 (2) ° for the triangles and 108.4 (2)–111.2 (2) ° for the tetrahedron. The anionic [B5O6(OH)4]- groups are connected to each other through intermolecular O—H···O hydrogen bonds, forming a three-dimensional framework with large channels along [100], [010] and [001] directions. The [C8H18N]+ cations reside in these channels, interacting with the framework through N—H···O hydrogen bonds (Fig. 2).